Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Rep ; 14(1): 11261, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760405

RESUMO

Here, we focused on the role of Nucleobindin 2 (NUCB2), a multifunctional protein, in gastric carcinoma (GC) progression. NUCB2 expression was investigated in 150 GC cases (20 non-invasive (pT1) and 130 invasive (pT2/pT3/pT4) tumors) by immunohistochemistry (IHC), and in situ hybridization for detection of the mRNA in 21 cases. Using GC cell lines, we determined whether NUCB2 expression was associated with specific cellular phenotypes. In GC clinical samples, NUCB2 was transcriptionally upregulated when compared to normal tissues. High NUCB2 expression was associated with clinicopathological factors including deep tumor invasion, lymphovascular invasion, lymph node metastasis, and advanced clinical stages, and was a significant independent predictor of unfavorable progression-free survival in 150 non-invasive and invasive GC patients. Similar findings were also evident in 72 invasive GC cases in which patients received post-operative chemotherapy, but not in 58 invasive tumors from patients who did not receive the chemotherapy. In cell lines, NUCB2 knockout inhibited proliferation, susceptibility to apoptosis, and migration capability by inducting cellular senescence; this was consistent with higher proliferation and apoptotic indices in the NUCB2 IHC-high compared to NUCB2 IHC-low GC cases. NUCB2-dependent inhibition of senescence in GC engenders aggressive tumor behavior by modulating proliferation, apoptosis, and migration.


Assuntos
Senescência Celular , Nucleobindinas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Nucleobindinas/metabolismo , Feminino , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Idoso , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Apoptose , Movimento Celular , Prognóstico
2.
Cell Commun Signal ; 22(1): 298, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812013

RESUMO

BACKGROUND: Nucleobindin-2 (Nucb2) and nesfatin-1 (N1) are widely distributed hormones that regulate numerous physiological processes, from energy homeostasis to carcinogenesis. However, the role of nesfatin-2 (N2), the second product of Nucb2 proteolytic processing, remains elusive. To elucidate the relationship between the structure and function of nesfatins, we investigated the properties of chicken and human homologs of N1, as well as a fragment of Nucb2 consisting of N1 and N2 conjoined in a head-to-tail manner (N1/2). RESULTS: Our findings indicate that Zn(II) sensing, in the case of N1, is conserved between chicken and human species. However, the data presented here reveal significant differences in the molecular features of the analyzed peptides, particularly in the presence of Zn(II). We demonstrated that Zn(II) has a Janus effect on the M30 region (a crucial anorexigenic core) of N1 and N1/2. In N1 homologs, Zn(II) binding results in the concealment of the M30 region driven by a disorder-to-order transition and adoption of the amyloid fold. In contrast, in N1/2 molecules, Zn(II) binding causes the exposure of the M30 region and its destabilization, resulting in strong exposure of the region recognized by prohormone convertases within the N1/2 molecule. CONCLUSIONS: In conclusion, we found that Zn(II) binding is conserved between chicken and human N1. However, despite the high homology of chicken and human N1, their interaction modes with Zn(II) appear to differ. Furthermore, Zn(II) binding might be essential for regulating the function of nesfatins by spatiotemporally hindering the N1 anorexigenic M30 core and concomitantly facilitating N1 release from Nucb2.


Assuntos
Galinhas , Nucleobindinas , Zinco , Nucleobindinas/metabolismo , Zinco/metabolismo , Humanos , Animais , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética
3.
Commun Biol ; 7(1): 623, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802487

RESUMO

Nesfatin-1 (NESF-1) has been shown to modulate lipid metabolism. We have identified a nesfatin-1-like-peptide (NLP) processed from a related precursor nucleobindin 1 (NUCB1). Here we determined if NLP, like NESF-1, regulates lipid accumulation in vitro, and tested if the disruption of nucb1 gene affects hepatic lipid metabolism genes in mice. Hepatocytes (HepG2/C3A cells) express NLP and NESF-1 and both peptides significantly reduced lipogenic enzyme mRNAs and enhanced beta-oxidation enzyme mRNAs. Lipid contents in oleic acid induced HepG2/C3A cells were attenuated by NESF-1 and NLP. The inhibitory effect on cellular lipid content was blocked by compound C, an inhibitor of AMPK. The disruption of nucb1 gene affected lipid metabolism-related enzyme mRNAs, endogenous nucb2 mRNA and AMPK phosphorylation. The lipid-lowering effects identified here highlights the potential of nucleobindins and peptides processed from them to address lipid disorders, and its possible benefits in metabolic disease management.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Hepatócitos , Metabolismo dos Lipídeos , Proteínas do Tecido Nervoso , Nucleobindinas , Nucleobindinas/metabolismo , Nucleobindinas/genética , Animais , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células Hep G2 , Masculino , Camundongos Endogâmicos C57BL
4.
Bioelectromagnetics ; 45(5): 209-217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369591

RESUMO

In recent years exposure of living beings to radiofrequency radiation (RFR) emitted from wireless equipment has increased. In this study, we investigated the effects of 3.5-GHz RFR on hormones that regulate energy metabolism in the body. Twenty-eight rats were divided into four groups: healthy sham (n = 7), healthy RFR (n = 7), diabetic sham (n = 7), and diabetic RFR (n = 7). Over a month, each group spent 2 h/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, blood and adipose tissues were collected from euthanized rats. Total antioxidant, total oxidant, hydrogen peroxide, ghrelin, nesfatin-1, and irisin were determined. Insulin expression in pancreatic tissues was examined by immunohistochemical analysis. Whole body specific absorption rate was 37 mW/kg. For the parameters analyzed in blood and fat, the estimated effect size varied within the ranges of 0.215-0.929 and 0.503-0.839, respectively. The blood and adipose nesfatin-1 (p = 0.002), blood and pancreatic insulin are decreased, (p = 0.001), gherelin (p = 0.020), irisin (p = 0.020), and blood glucose (p = 0.040) are increased in healthy and diabetic rats exposed to RFR. While nesfatin-1 are negatively correlated with oxidative stress, hyperglycemia and insulin, ghrelin and irisin are positively correlated with oxidative stress and hyperglycemia. Thus, RFR may have deleterious effects on energy metabolism, particularly in the presence of diabetes.


Assuntos
Tecido Adiposo , Fibronectinas , Grelina , Insulina , Nucleobindinas , Ondas de Rádio , Animais , Ondas de Rádio/efeitos adversos , Grelina/sangue , Grelina/metabolismo , Nucleobindinas/metabolismo , Masculino , Fibronectinas/metabolismo , Fibronectinas/sangue , Ratos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos da radiação , Insulina/metabolismo , Insulina/sangue , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/sangue , Metabolismo Energético/efeitos da radiação , Proteínas de Ligação ao Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos da radiação , Ratos Wistar
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339201

RESUMO

Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.


Assuntos
Nucleobindinas , Placenta , Placentação , Trofoblastos , Animais , Feminino , Gravidez , Ratos , Caderinas/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Fusão Celular , Receptores ErbB/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipase C gama/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Nucleobindinas/metabolismo
6.
J Transl Med ; 21(1): 362, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277807

RESUMO

BACKGROUND: Reprogramming lipid metabolism for tumor metastasis is essential in breast cancer, and NUCB2/Nesfatin-1 plays a crucial role in regulating energy metabolism. Its high expression is associated with poor prognosis in breast cancer. Here, we studied whether NUCB2/Nesfatin-1 promotes breast cancer metastasis through reprogramming cholesterol metabolism. METHODS: ELISA was employed to measure the concentration of Nesfatin-1 in the serum of breast cancer patients and the control group. Database analysis suggested that NUCB2/Nesfatin-1 might be acetylated in breast cancer, which was confirmed by treating the breast cancer cells with acetyltransferase inhibitors. Transwell migration and Matrigel invasion assays were conducted, and nude mouse lung metastasis models were established to examine the effect of NUCB2/Nesfatin-1 on breast cancer metastasis in vitro and in vivo. The Affymetrix gene expression chip results were analyzed using IPA software to identify the critical pathway induced by NUCB2/Nesfatin-1. We evaluated the effect of NUCB2/Nesfatin-1 on cholesterol biosynthesis through the mTORC1-SREBP2-HMGCR axis by utilizing mTORC1 inhibitor and rescue experiments. RESULTS: NUCB2/Nesfatin-1 was found to be overexpressed in the breast cancer patients, and its overexpression was positively correlated with poor prognosis. NUCB2 was potentially acetylated, leading to high expression in breast cancer. NUCB2/Nesfatin-1 promoted metastasis in vitro and in vivo, while Nesfatin-1 rescued impaired cell metastasis induced by NUCB2 depletion. Mechanistically, NUCB2/Nesfatin-1 upregulated cholesterol synthesis via the mTORC1 signal pathway, contributing to breast cancer migration and metastasis. CONCLUSIONS: Our findings demonstrate that the NUCB2/Nesfatin-1/mTORC1/SREBP2 signal pathway is critical in regulating cholesterol synthesis, essential for breast cancer metastasis. Thus, NUCB2/Nesfatin-1 might be utilized as a diagnostic tool and also used in cancer therapy for breast cancer in the future.


Assuntos
Neoplasias da Mama , Proteínas de Ligação ao Cálcio , Animais , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Colesterol , Proteínas de Ligação a DNA/metabolismo , Nucleobindinas/genética , Nucleobindinas/metabolismo , Regulação para Cima , Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
7.
Am J Pathol ; 193(8): 1116-1128, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169340

RESUMO

Epithelial-mesenchymal transition is a hallmark of uterine carcinosarcoma (UCS). Here, shotgun proteomics analysis used to identify biomarkers associated with blebbistatin-mediated epithelial-mesenchymal transition in UCS indicated up-regulation of nucleobindin-2 (NUCB2) in endometrial carcinoma (Em Ca) cells. Expression of N-cadherin, Snail, Slug, and ZEB1 was reduced in NUCB2 knockout Em Ca cells, whereas ZEB1, Twist1, and vimentin were up-regulated in NUCB2-overexpressing Em Ca cells. NUCB2 knockout reduced cell proliferation and migration, whereas NUCB2 overexpression had the opposite effect. Treatment of Em Ca cells with transforming growth factor (TGF)-ß1 dramatically altered morphology toward a fibroblastic appearance; concomitantly, expression of NUCB2 and ZEB1 increased. The NUCB2 promoter was also activated by transfection of Smad2. In UCS tissues, NUCB2 expression was significantly higher in sarcomatous compared with carcinomatous components, which was consistent with increased TGF-ß1 mRNA expression in stromal and sarcomatous components compared with carcinomatous components. In addition, NUCB2 score correlated positively with ZEB1 and vimentin scores, whereas ZEB1 score correlated positively with Slug and vimentin scores and inversely with the E-cadherin score. Collectively, these data indicate that TGF-ß-dependent up-regulation of NUCB2 and ZEB1 contributes to the phenotypic characteristics of sarcomatous components in UCS.


Assuntos
Carcinossarcoma , Neoplasias Uterinas , Humanos , Feminino , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Nucleobindinas/genética , Nucleobindinas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo , Genes Homeobox , Caderinas/genética , Caderinas/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Fenótipo , Carcinossarcoma/genética , Carcinossarcoma/patologia , Dedos de Zinco , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral
8.
J Orthop Surg Res ; 18(1): 153, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859270

RESUMO

Autophagy and cytoskeleton integrity of chondrocytes are a considered as major factors in the progression of osteoarthritis (OA) involving excessive chondrocyte apoptosis and senescence. Nesfatin-1, an adipokine, has been reported to be closely related to cell autophagy and cytoskeleton malfunction. Our previous study found that nesfatin-1 was highly correlated with OA progress in OA patient, and the expression of nesfatin-1 rises in knee articular tissue, serum and chondrocytes. In current study, we aimed to explore the therapeutic effect of nesfatin-1 on OA and its molecular mechanism related to chondrocyte autophagy and cytoskeleton malfunction. We firstly demonstrated that nesfatin-1 effectively suppressed excessive autophagy of OA chondrocytes at both gene and protein levels. Meanwhile, we also found that nesfatin-1 significantly improved cytoskeleton integrity by showing higher F-actin/G-actin ratio, as well as more organized actin fiber structure. Mechanistically, utility of RhoA activator and inhibitor revealed that regulation of autophagy and cytoskeleton integrity via nesfatin-1 was realized via RhoA/ROCK pathway. We also confirmed that nesfatin-1 significantly ameliorated IL-1ß induced cartilage degeneration via destabilization of the medial meniscus (DMM) model. Overall, our study indicates that nesfatin-1 might be a promising therapeutic molecule for OA intervention.


Assuntos
Condrócitos , Nucleobindinas , Osteoartrite , Humanos , Actinas , Autofagia , Citoesqueleto , Proteína rhoA de Ligação ao GTP/metabolismo , Nucleobindinas/metabolismo , Quinases Associadas a rho/metabolismo
9.
Brain Behav ; 12(11): e2778, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271663

RESUMO

AIMS: Spinal cord injury (SCI) is one of the most severe neurological diseases. However, there is still no effective treatment for it. Nesfatin, a precursor neuropeptide derived from nucleobindin 2 (NUCB2), has displayed a wide range of protective effects in different types of cells and tissue. However, the effects of nesfatin-1 in SCI have not been reported before. MATERIALS AND METHODS: A SCI model was established. The behavior of mice was assessed using the Basso, Beattie, and Bresnahan (BBB) assessment. RESULTS: Here, we report that the administration of nesfatin-1 improved neurological recovery in SCI mice by increasing BBB scores, reducing lesion area volume and spinal cord water content. Also, nesfatin-1 ameliorated oxidative stress by reducing reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. We also found that nesfatin-1 prevented neuronal apoptosis in SCI mice by reducing caspase 3 activity and the expression of Bax, as well as increasing B-cell lymphoma-2 (Bcl-2). Additionally, nesfatin-1 reduced the levels of interleukin 6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α). Nesfatin-1 also promoted microglia towards M2 polarization by increasing the marker CD206 but reducing CD16. Importantly, nesfatin-1 enhanced the phosphorylation of signal transducer and activator of transcription 1 (STAT1) but reduced the expression levels of toll-like receptor 4 (TLR4) and phosphorylated nuclear factor kappa-B p65 (p-NF-κB p65). CONCLUSION: Our findings imply that nesfatin-1 exerts neuroprotective actions in SCI by promoting the activation of M2 microglia, and its underlying mechanisms might be related to the activation of STAT1 and inhibition of the TLR4/NF-κB signaling pathway.


Assuntos
Doenças Neuroinflamatórias , Nucleobindinas , Traumatismos da Medula Espinal , Animais , Camundongos , NF-kappa B/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Nucleobindinas/metabolismo , Neuroproteção
10.
Front Public Health ; 10: 882686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045734

RESUMO

Aims: To evaluate the correlation of nesfatin-1, GSH and SOD levels with ß-cell insulin secretion and their influence on insulin secretion in the development of type 2 diabetes mellitus (T2DM). Materials and methods: 75 patients with T2DM, 67 with prediabetes and 37 heathy participants were recruited in this study. Serum levels of nesfatin-1, GSH and SOD were quantified and statistically analyzed. Results: The levels of nesfatin-1, GSH and SOD in T2DM were significantly decreased (P < 0.001) compared to either in prediabetes or in healthy control, and significant reduction of these biomarkers was also observed in prediabetes when compared to the control (P < 0.001). Circulating nesfatin-1, GSH and SOD were not only strongly correlated with ß-cell insulin secretion, but also exerted remarkable influence on the secretion. Conclusion: Serum nesfatin-1, GSH and SOD are important factors involving insulin secretion in the development of T2DM, which may help provide new ideas for forthcoming investigations on the roles of these factors in pathogenesis of T2DM, as well as for active prediction and prevention of prediabetes before it develops into overt T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Glutationa/metabolismo , Nucleobindinas/metabolismo , Estado Pré-Diabético , Superóxido Dismutase-1/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Glutationa/sangue , Humanos , Secreção de Insulina , Nucleobindinas/sangue , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Superóxido Dismutase , Superóxido Dismutase-1/sangue
11.
J Cardiothorac Surg ; 17(1): 206, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36008865

RESUMO

Acute lung injury (ALI) is a continuum of lung changes associated with uncontrolled excessive lung inflammation. However, the pathogenesis of ALI is still complicated and effective clinical pharmacological management is required. Various signaling pathways are involved in the inflammatory responses of ALI. Here, we aimed to explore the role of nesfatin-1, an amino-acid peptide with anti-inflammatory action, in an LPS-induced ALI mice model, and its role in regulating macrophages in response to LPS stimulation in vitro. This was to clarify the underlying mechanisms of regulating the inflammatory response in the development of ALI. The results show that nesfatin-1 expression was downregulated in the lung tissues of ALI mice compared to control mice. Nesfatin-1 treatment ameliorated the inflammatory response and lung tissue damage in LPS-induced ALI in mice. In vitro studies showed that nesfatin-1 attenuated the generation and release of proinflammatory cytokines interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in LPS-induced RAW 264.7 cells. Nesfatin-1 also inhibited reactive oxygen species production and improved superoxide dismutase (SOD) activity in LPS-induced RAW 264.7 cells. These findings suggest that nesfatin-1 exerted a crucial role in regulating the LPS-mediated activation of M1 macrophages. Further mechanism investigations indicated that nesfatin-1 inhibited the activation of p38 MAPK/c-Jun and NF-κB pathways in LPS-induced RAW 264.7 cells, as evidenced by decreased expression levels of p-p38, p-c-Fos, and p-p65. Overall, nesfatin-1 alleviated LPS-induced ALI, which might be attributed to regulating inflammatory response through macrophages modulation.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Nucleobindinas/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Células RAW 264.7
12.
Transpl Immunol ; 74: 101626, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35569717

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) are at increased risk of developing renal cell carcinoma (RCC). Accumulating evidence has demonstrated that circular RNAs (circRNAs) are essential players in tumor advancement. However, the functions of circ_0000274 in renal cell carcinoma (RCC) are barely explored. METHODS: The primary RCC cell lines 786-O and A498 were used in this study. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was employed for the RNA levels of circ_0000274, microRNA-338-3p (miR-338-3p) and nucleobindin 2 (NUCB2). RNase R assay was conducted to analyze the feature of circ_0000274.Cell Counting Kit-8 (CCK-8) assay, colony formation assay, transwell assay, tube formation assay and flow cytometry analysis were conducted for cell viability, colony formation, metastasis, angiogenesis and apoptosis, respectively. Western blot assay was utilized for protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were adopted to analyze the associations of circ_0000274 RNA, miR-338-3p RNA and NUCB2 protein. Murine xenograft model was established to explore the function of circ_0000274 RNA in vivo. Immunohistochemistry (IHC) assay was used to analyze NUCB2 protein level in xenograft tumors. RESULTS: Compared to normal tissues and cells, circ_0000274 RNA level was elevated in RCC tissues and cells. Knockdown of circ_0000274 RNA suppressed cell viability, colony formation, metastasis and tube formation and promoted apoptosis in RCC cells in vitro. Circ_0000274 RNA sponged miR-338-3p RNA to positively regulate NUCB2 protein in RCC cells. Inhibition of miR-338-3p reversed the impacts of circ_0000274 knockdown on RCC cell malignant behaviors. MiR-338-3p RNA overexpression repressed the malignant phenotypes of RCC cells, while NUCB2 protein elevation could abrogate the effect. Moreover, circ_0000274 RNA knockdown blocked tumorigenesis in vivo. Besides, circ_0000274 RNA knockdown inactivated the JAK1/STAT3 protein signaling pathway. CONCLUSION: Circ_0000274 RNA functioned as an oncogene in RCC development by regulating miR-338-3p RNA/NUCB2 protein axis and activating the JAK1/STAT3 protein signaling pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Circular , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , MicroRNAs/genética , Nucleobindinas/genética , Nucleobindinas/metabolismo , RNA Circular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
13.
Nutrients ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406022

RESUMO

BACKGROUND: Excess adipose tissue accumulation and obesity are characterised by chronic, low-grade, systemic inflammation. Nestfatin-1 is a neuropeptide derived from the precursor protein nucleobindin-2 (NUCB2), which was initially reported to exert anorexigenic effects. The present study aimed to investigate the effects of an obesogenic diet (OD; high-fat, high-sugar) in NUCB2 knockout (KO) mice and of nesfatin-1 treatment in LPS-stimulated 3T3-L1 preadipocytes. METHODS: Subcutaneous white adipose tissue (Sc-WAT) samples from wild type (WT) and NUCB2 KO mice that were fed a normal diet (ND), or the OD for 12 weeks were used for RNA and protein extraction, as well as immunohistochemistry. 3T3-L1 cells were treated with 100 nM nesfatin-1 during differentiation and stimulated with 1 µg/mL LPS for measuring the expression and secretion of pro-inflammatory mediators by qPCR, western blotting, immunofluorescence, Bioplex, and ELISA. RESULTS: Following the OD, the mRNA, protein and cellular expression of pro-inflammatory mediators (Tnfα, Il-6, Il-1ß, Adgre1, Mcp1, TLR4, Hmbgb1 and NF-kB) significantly increased in the ScWAT of NUCB2 KO mice compared to ND controls. Adiponectin and Nrf2 expression significantly decreased in the ScWAT of OD-fed NUCB2 KO, without changes in the OD-fed WT mice. Furthermore, nesfatin-1 treatment in LPS-stimulated 3T3-L1 cells significantly reduced the expression and secretion of pro-inflammatory cytokines (Tnfα, Il-6, Il-1ß, Mcp1) and hmgb1. CONCLUSION: An obesogenic diet can induce significant inflammation in the ScWAT of NUCB2 KO mice, involving the HMGB1, NRF2 and NF-kB pathways, while nesfatin-1 reduces the pro-inflammatory response in LPS-stimulated 3T3-L1 cells. These findings provide a novel insight into the metabolic regulation of inflammation in WAT.


Assuntos
Tecido Adiposo Branco , Dieta , Nucleobindinas , Tecido Adiposo Branco/metabolismo , Animais , Dieta/efeitos adversos , Proteína HMGB1/metabolismo , Inflamação , Mediadores da Inflamação , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas/metabolismo , Gordura Subcutânea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Life Sci ; 294: 120376, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123998

RESUMO

AIMS: We aimed to investigate putative neuroprotective effects of nesfatin-1 on oxidative brain injury and memory dysfunction induced by a single epileptic seizure and to compare these effects with those of antiepileptic phenytoin. MAIN METHODS: Wistar albino rats were randomly divided into a control group and pentylenetetrazole (PTZ)-seizure groups pretreated intraperitoneally (ip) with saline or nesfatin-1 (NES-1; 0.3, 1 or 3 µg/kg/day) or phenytoin (PHE; 40 mg/kg/day) or PHE + NES-1 (0.3 µg/kg/day) at 30 min before the single-dose PTZ injection (45 mg/kg; ip). All treatments were repeated at the 24th and 48th h of the provoked epileptic seizure. Passive-avoidance test was performed to assess memory function. The rats were decapitated at the 72nd hour of seizures and brain tissues were analyzed for histopathological changes and for measuring levels of malondialdehyde, glutathione, myeloperoxidase activity and reactive oxygen/nitrogen species. KEY FINDINGS: In parallel to the effects of phenytoin, NES-1 reduced seizure score, elevated antioxidant glutathione content, depressed generation of nitric oxide and protected against seizure-induced neuronal damage. Additionally, increased malondialdehyde levels and elevated glial fibrillary acidic protein immunoreactivity in the cortex and hippocampus were decreased and memory dysfunction was improved by NES-1. However, NES-1 had no impact on myeloperoxidase activity or production of reactive oxygen species in the brain. SIGNIFICANCE: The findings of the present study demonstrate that nesfatin-1 treatment provides neuroprotection against seizure-induced oxidative damage and memory dysfunction by inhibiting reactive nitrogen species and upregulating antioxidant capacity, indicating its potential in alleviating memory deficits and increasing the effectiveness of conventional anti-convulsant therapies.


Assuntos
Lesões Encefálicas/prevenção & controle , Epilepsia/complicações , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Nucleobindinas/metabolismo , Estresse Oxidativo , Convulsões/complicações , Animais , Anticonvulsivantes/farmacologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Epilepsia/patologia , Glutationa/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Óxido Nítrico/metabolismo , Nucleobindinas/genética , Fenitoína/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Convulsões/patologia
15.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681721

RESUMO

Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.


Assuntos
Grelina/metabolismo , Nucleobindinas/metabolismo , Reprodução/genética , Feminino , Grelina/sangue , Grelina/genética , Humanos , Hipotálamo/metabolismo , Nucleobindinas/sangue , Nucleobindinas/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez
16.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502065

RESUMO

The novel peptide phoenixin was shown to be involved in several physiological processes ranging from reproduction to food intake. Interest in this protein has steadily increased over the last few years and its known implications have become much broader, playing a role in glucose homeostasis, anxiety, nociception, and pruritus. Phoenixin is expressed in a multitude of organs such as the small intestine, pancreas, and in the hypothalamus, as well as several other brain nuclei influencing numerous physiological functions. Its highly conserved amino-acid sequence amongst species leads to the assumption, that phoenixin might be involved in essential physiological functions. Its co-expression and opposing functionality to the extensively studied peptide nesfatin-1 has given rise to the idea of a possible counterbalancing role. Several recent publications focused on phoenixin's role in stress reactions, namely restraint stress and lipopolysaccharide-induced inflammation response, in which also nesfatin-1 is known to be altered. This review provides an overview on the phoenixins and nesfatin-1 properties and putative effects, and especially highlights the recent developments on their role and interaction in the response to response.


Assuntos
Nucleobindinas/metabolismo , Hormônios Peptídicos/metabolismo , Estresse Psicológico/metabolismo , Animais , Pleiotropia Genética , Humanos , Nucleobindinas/genética , Hormônios Peptídicos/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Estresse Psicológico/genética
17.
Front Endocrinol (Lausanne) ; 12: 740174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566899

RESUMO

Background: Nesfatin-1 is an 82-amino acid polypeptide, cleaved from the 396-amino acid precursor protein nucleobindin-2 (NUCB2) and discovered in 2006 in the rat hypothalamus. In contrast to the growing body of evidence for the pleiotropic effects of the peptide, the receptor mediating these effects and the exact signaling cascades remain still unknown. Methods: This systematic review was conducted using a search in the Embase, PubMed, and Web of Science databases. The keywords "nesfatin-1" combined with "receptor", "signaling", "distribution", "pathway", g- protein coupled receptor", and "binding" were used to identify all relevant articles reporting about potential nesfatin-1 signaling and the assumed mediation via a Gi protein-coupled receptor. Results: Finally, 1,147 articles were found, of which 1,077 were excluded in several steps of screening, 70 articles were included in this systematic review. Inclusion criteria were studies investigating nesfatin-1's putative receptor or signaling cascade, observational preclinical and clinical studies, experimental studies, registry-based studies, cohort studies, population-based studies, and studies in English language. After screening for eligibility, the studies were assigned to the following subtopics and discussed regarding intracellular signaling of nesfatin-1 including the potential receptor mediating these effects and downstream signaling of the peptide. Conclusion: The present review sheds light on the various effects of nesfatin-1 by influencing several intracellular signaling pathways and downstream cascades, including the peptide's influence on various hormones and their receptors. These data point towards mediation via a Gi protein-coupled receptor. Nonetheless, the identification of the nesfatin-1 receptor will enable us to better investigate the exact mediating mechanisms underlying the different effects of the peptide along with the development of agonists and antagonists.


Assuntos
Hipotálamo/metabolismo , Nucleobindinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
18.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361082

RESUMO

Cancer is a heterogeneous disease, and even tumors with similar clinicopathological characteristics show different biology, behavior, and treatment responses. As a result, there is an urgent need to define new prognostic and predictive markers to make treatment options more personalized. According to the latest findings, nucleobindin-2/nesfatin-1 (NUCB2/NESF-1) is an important factor in cancer development and progression. Nucleobindin-2 is a precursor protein of nesfatin-1. As NUCB2 and nesfatin-1 are colocalized in each tissue, their expression is often analyzed together as NUCB2. The metabolic function of NUCB2/NESF-1 is related to food intake, glucose metabolism, and the regulation of immune, cardiovascular and endocrine systems. Recently, it has been demonstrated that high expression of NUCB2/NESF-1 is associated with poor outcomes and promotes cell proliferation, migration, and invasion in, e.g., breast, colon, prostate, endometrial, thyroid, bladder cancers, or glioblastoma. Interestingly, nesfatin-1 is also considered an inhibitor of the proliferation of human adrenocortical carcinoma and ovarian epithelial carcinoma cells. These conflicting results make NUCB2/NESF-1 an interesting target of study in the context of cancer progression. The present review is the first to describe NUCB2/NESF-1 as a new prognostic and predictive marker in cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/patologia , Nucleobindinas/metabolismo , Humanos , Neoplasias/metabolismo
19.
Mol Cell Endocrinol ; 536: 111401, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302909

RESUMO

Nucleobindin (NUCB)-derived peptides, nesfatin-1 (NES-1) and nesfatin-1-like peptide (NLP) have several physiological roles in vertebrates. While NES-1 is implicated in stress, whether NUCB1/NLP and NUCB2/NES-1 have any effect on proopiomelanocortin (POMC) remains unknown. The main aim of this study was to determine if NES-1 and/or NLP affect POMC synthesis in mouse corticotrophs. Immunocytochemistry was employed to target NUCB colocalization with POMC in immortalized mouse tumoral corticotrophs (AtT-20 cells). The ability of NES-1 and NLP to modulate POMC mRNA and protein in AtT-20 cells was assessed by qPCR and Western blot, respectively. Moreover, cell-signaling molecules mediating the effect of NES-1 and NLP on POMC synthesis in mouse tumoral corticotrophs were studied using pharmacological blockers. Mouse tumoral corticotrophs showed immunoreactivity for both NUCB1/NLP and NUCB2/NES-1. Both NES-1 and NLP exerted a stimulatory effect on POMC transcript abundance and protein expression in a dose- and time-dependent manner. This effect was comparable to corticotropin-releasing factor (CRF, positive control) stimulation of POMC. Incubation of mouse tumoral corticotrophs with NES-1 or NLP upregulated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). The stimulatory effect of these peptides on POMC transcript abundance and protein expression was blocked by the PKA inhibitor, H89, and an adenylate cyclase inhibitor, 2',3'-dideoxyadenosine (DDA). These pharmacological studies indicate that NES-1 and NLP act through the cAMP/PKA/CREB cellular pathway to stimulate POMC synthesis. Our results provide molecular evidence to support a stimulatory role for nucleobindin-derived peptides on POMC synthesis from corticotrophs. Collectively, this research indicates that corticotrophs produce NUCBs, and the encoded peptides NES-1 and NLP could elicit a direct action to stimulate the pituitary stress hormone. This stimulatory effect is mediated by an uncharacterized G protein-coupled receptor (GPCR) that utilizes the cAMP/PKA/CREB pathway.


Assuntos
Corticotrofos/citologia , Nucleobindinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Corticotrofos/efeitos dos fármacos , Corticotrofos/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Didesoxiadenosina/farmacologia , Regulação da Expressão Gênica , Isoquinolinas/farmacologia , Camundongos , Nucleobindinas/química , Nucleobindinas/genética , Pró-Opiomelanocortina/genética , Transdução de Sinais , Sulfonamidas/farmacologia , Células Tumorais Cultivadas
20.
J Physiol Sci ; 71(1): 18, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134629

RESUMO

We examined whether the chemogenetic activation of endogenous arginine vasopressin (AVP) affects central nesfatin-1/NucB2 neurons, using a transgenic rat line that was previously generated. Saline (1 mL/kg) or clozapine-N-oxide (CNO, 1 mg/mL/kg), an agonist for hM3Dq, was subcutaneously administered in adult male AVP-hM3Dq-mCherry transgenic rats (300-370 g). Food and water intake were significantly suppressed after subcutaneous (s.c.) injection of CNO, with aberrant circadian rhythmicity. The percentages of Fos expression in nesfatin-1/NucB2-immunoreactive neurons were significantly increased in the hypothalamus and brainstem at 120 min after s.c. injection of CNO. Suppressed food intake that was induced by chemogenetic activation of endogenous AVP was ablated after intracerebroventricularly administered nesfatin-1/NucB2-neutralizing antibody in comparison with vehicle, without any alteration of water intake nor circadian rhythmicity. These results suggest that chemogenetic activation of endogenous AVP affects, at least in part, central nesfatin-1/NucB2 neurons and may exert anorexigenic effects in the transgenic rats.


Assuntos
Depressores do Apetite/farmacologia , Arginina Vasopressina/fisiologia , Clozapina/análogos & derivados , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Nucleobindinas/metabolismo , Transdução de Sinais , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Clozapina/farmacologia , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Masculino , Nucleobindinas/fisiologia , Ratos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA