Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Virology ; 597: 110163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959724

RESUMO

To gain insight into the functional relationship between the nucleocapsid (NC) domains of the Gag polyproteins of feline and simian immunodeficiency viruses, FIV and SIV, respectively, we generated two FIV Gag chimeric proteins containing different SIV NC and gag sequences. A chimeric FIV Gag protein (NC1) containing the SIV two zinc fingers motifs was incapable of assembling into virus-like particles. By contrast, another Gag chimera (NC2) differing from NC1 by the replacement of the C-terminal region of the FIV NC with SIV SP2 produced particles as efficiently as wild-type FIV Gag. Of note, when the chimeric NC2 Gag polyprotein was expressed in the context of the proviral DNA in feline CrFK cells, wild-type levels of virions were produced which encapsidated 50% of genomic RNA when compared to the wild-type virus.


Assuntos
Produtos do Gene gag , Vírus da Imunodeficiência Felina , Vírus da Imunodeficiência Símia , Montagem de Vírus , Dedos de Zinco , Animais , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/metabolismo , Vírus da Imunodeficiência Felina/fisiologia , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Produtos do Gene gag/química , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Gatos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Linhagem Celular , Nucleocapsídeo/metabolismo , Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Fenótipo
2.
Dev Comp Immunol ; 156: 105160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38485065

RESUMO

The lacking of stable and susceptible cell lines has hampered research on pathogenic mechanism of crustacean white spot syndrome virus (WSSV). To look for the suitable cell line which can sustain WSSV infection, we performed the studies on WSSV infection in the Spodoptera frugiperda (Sf9) insect cells. In consistent with our previous study in vitro in crayfish hematopoietic tissue cells, the WSSV envelope was detached from nucleocapsid around 2 hpi in Sf9 cells, which was accompanied with the cytoplasmic transport of nucleocapsid toward the cell nucleus within 3 hpi. Furthermore, the expression profile of both gene and protein of WSSV was determined in Sf9 cells after viral infection, in which a viral immediate early gene IE1 and an envelope protein VP28 exhibited gradually increased presence from 3 to 24 hpi. Similarly, the significant increase of WSSV genome replication was found at 3-48 hpi in Sf9 cells after infection with WSSV, indicating that Sf9 cells supported WSSV genome replication. Unfortunately, no assembled progeny virion was observed at 24 and 48 hpi in Sf9 cell nuclei as determined by transmission electron microscope, suggesting that WSSV progeny could not be assembled in Sf9 cell line as the viral structural proteins could not be transported into cell nuclei. Collectively, these findings provide a cell model for comparative analysis of WSSV infection mechanism with crustacean cells.


Assuntos
Spodoptera , Vírion , Montagem de Vírus , Replicação Viral , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Spodoptera/virologia , Células Sf9 , Vírion/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Nucleocapsídeo/metabolismo , Nucleocapsídeo/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Genoma Viral , Linhagem Celular
3.
J Glob Antimicrob Resist ; 31: 371-378, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396043

RESUMO

OBJECTIVES: As a host restriction factor, apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G) has been shown to suppress the replication of several viruses including hepatitis B virus (HBV). Recently, we reported that IMB-Z, a N-phenylbenzamide derivative, could inhibit Enterovirus 71 replication, and A3G mediated its antiviral activity. Whether IMB-Z exhibits an inhibitory effect on HBV replication has not been investigated. MATERIAL AND METHODS: HBV DNA, pregenomic RNA (pgRNA), core protein, and capsid levels were determined by a qPCR assay or Southern blot, Northern blot, Western blot, and particle gel assay, respectively. Mutation analysis of HBV DNAs was conducted by a differential DNA denaturation PCR assay. A3G encapsidation into HBV nucleocapsids was examined by Western blot analysis after ultracentrifugation and a co-immunoprecipitation (IP) assay between HBV core and A3G proteins. RESULTS: In the present study, we found that IMB-Z could considerably inhibit HBV replication in HepAD38 cells. Interestingly, IMB-Z did not alter the HBV pgRNA production but could reduce the level of core protein, viral nucleocapsids, and core-associated DNA, as well as cccDNA intracellular amplification. Similar to the action of IMB-Z's inhibition of Enterovirus 71 replication, we found that IMB-Z's inhibition of HBV replication was associated with increased level of A3G. Mechanistically, we demonstrated that the inhibitory effect of IMB-Z is independent of the cytidine deaminase activity of A3G and is exerted by increasing its incorporation into viral nucleocapsids. CONCLUSIONS: Our results indicate that IMB-Z inhibits HBV through pharmacological induction A3G expression and incorporation into HBV nucleocapsids.


Assuntos
Desaminase APOBEC-3G , Antivirais , Vírus da Hepatite B , Hepatite B , Humanos , Antivirais/química , Antivirais/farmacologia , Desaminase APOBEC-3G/efeitos dos fármacos , Desaminase APOBEC-3G/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Citidina Desaminase/farmacologia , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/genética , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Replicação Viral
4.
Viruses ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337013

RESUMO

Retroviruses package two copies of their genomic RNA (gRNA) as non-covalently linked dimers. Many studies suggest that the retroviral nucleocapsid protein (NC) plays an important role in gRNA dimerization. The upper part of the L3 RNA stem-loop in the 5' leader of the avian leukosis virus (ALV) is converted to the extended dimer by ALV NC. The L3 hairpin contains three stems and two internal loops. To investigate the roles of internal loops and stems in the NC-mediated extended dimer formation, we performed site-directed mutagenesis, gel electrophoresis, and analysis of thermostability of dimeric RNAs. We showed that the internal loops are necessary for efficient extended dimer formation. Destabilization of the lower stem of L3 is necessary for RNA dimerization, although it is not involved in the linkage structure of the extended dimer. We found that NCs from ALV, human immunodeficiency virus type 1 (HIV-1), and Moloney murine leukemia virus (M-MuLV) cannot promote the formation of the extended dimer when the apical stem contains ten consecutive base pairs. Five base pairs correspond to the maximum length for efficient L3 dimerization induced by the three NCs. L3 dimerization was less efficient with M-MuLV NC than with ALV NC and HIV-1 NC.


Assuntos
Vírus da Leucose Aviária , HIV-1 , Animais , Vírus da Leucose Aviária/genética , Sequência de Bases , Dimerização , HIV-1/genética , Humanos , Camundongos , Vírus da Leucemia Murina de Moloney , Conformação de Ácido Nucleico , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA Guia de Cinetoplastídeos , RNA Viral/metabolismo
5.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
6.
J Proteome Res ; 21(1): 142-150, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779632

RESUMO

COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Cromatografia Líquida , Humanos , Nucleocapsídeo/genética , Peptídeos , Proteômica , Espectrometria de Massas em Tandem
7.
BMB Rep ; 54(11): 551-556, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34353428

RESUMO

In this study, we investigated how Staufen1 influences the HIV-1 production. The overexpression of Staufen1 increased virus production without any negative affect on the viral infectivity. This increase was not caused by transcriptional activation; but by influencing post-transcriptional steps. Using multiple Gag protein derivatives, we confirmed that the zinc-finger domains of the HIV-1 nucleocapsid (NC) are important for its interaction with Staufen1. We also found that Staufen1 colocalized in stress granules with the mature form of the HIV-1 NC protein. [BMB Reports 2021; 54(11): 551-556].


Assuntos
Proteínas do Citoesqueleto/metabolismo , Produtos do Gene gag/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Nucleocapsídeo/metabolismo , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse/metabolismo , Replicação Viral , Proteínas do Citoesqueleto/genética , Produtos do Gene gag/genética , Células HeLa , Humanos , Nucleocapsídeo/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/genética
8.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081630

RESUMO

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Assuntos
Testes de Aglutinação/métodos , Formação de Anticorpos/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Epitopos de Linfócito B/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , COVID-19/sangue , COVID-19/mortalidade , Epitopos/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Humanos , Imunidade Humoral , Análise em Microsséries/métodos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Peptídeos/imunologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
J Virol ; 95(14): e0058921, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952642

RESUMO

Negative-stranded RNA (NSR) viruses include both animal- and plant-infecting viruses that often cause serious diseases in humans and livestock and in agronomic crops. Rice stripe tenuivirus (RSV), a plant NSR virus with four negative-stranded/ambisense RNA segments, is one of the most destructive rice pathogens in many Asian countries. Due to the lack of a reliable reverse-genetics technology, molecular studies of RSV gene functions and its interaction with host plants are severely hampered. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV gene functional analysis in Nicotiana benthamiana. We first developed a mini-replicon system expressing an RSV genomic RNA3 enhanced green fluorescent protein (eGFP) reporter [MR3(-)eGFP], a nucleocapsid (NP), and a codon usage-optimized RNA-dependent RNA polymerase (RdRpopt). Using this mini-replicon system, we determined that RSV NP and RdRpopt are indispensable for the eGFP expression from MR3(-)eGFP. The expression of eGFP from MR3(-)eGFP can be significantly enhanced in the presence of four viral suppressors of RNA silencing (VSRs), NSs, and P19-HcPro-γb. In addition, NSvc4, the movement protein of RSV, facilitated eGFP trafficking between cells. We also developed an antigenomic RNA3-based replicon in N. benthamiana. However, we found that the RSV NS3 coding sequence acts as a cis element to regulate viral RNA expression. Finally, we made mini-replicons representing all four RSV genomic RNAs. This is the first mini-replicon-based reverse-genetics system for monocot-infecting tenuivirus. We believe that the mini-replicon system described here will allow studies of the RSV replication, transcription, cell-to-cell movement, and host machinery underpinning RSV infection in plants. IMPORTANCE Plant-infecting segmented negative-stranded RNA (NSR) viruses are grouped into three genera: Orthotospovirus, Tenuivirus, and Emaravirus. Reverse-genetics systems have been established for members of the genera Orthotospovirus and Emaravirus. However, there is still no reverse-genetics system available for Tenuivirus. Rice stripe virus (RSV) is a monocot-infecting tenuivirus with four negative-stranded/ambisense RNA segments. It is one of the most destructive rice pathogens and causes significant damage to the rice industry in Asian countries. Due to the lack of a reliable reverse-genetics system, molecular characterizations of RSV gene functions and the host machinery underpinning RSV infection in plants are extremely difficult. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV in Nicotiana benthamiana. This is the first mini-replicon-based reverse-genetics system for tenuivirus. We consider that this system will provide researchers a new working platform to elucidate the molecular mechanisms dictating segmented tenuivirus infections in plants.


Assuntos
Genes Fúngicos/fisiologia , Nicotiana/virologia , Replicon , Genética Reversa , Tenuivirus/genética , Regulação Viral da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Movimento , Nucleocapsídeo/genética , Interferência de RNA , Proteínas não Estruturais Virais/genética
10.
Emerg Microbes Infect ; 10(1): 852-864, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33870849

RESUMO

Upon infection of hepatocyte, Hepatitis B virus (HBV) genomic DNA in nucleocapsid is transported into the nucleus and converted into a covalently closed circular (ccc) DNA to serve as the template for transcription of viral RNAs. Viral DNA in the cytoplasmic progeny nucleocapsid is another resource to fuel cccDNA amplification. Apparently, nucleocapsid disassembly, or viral genomic DNA uncoating, is an essential step for cccDNA synthesis from both de novo infection and intracellular amplification pathways, and has a potential to activate DNA sensors and induce an innate immune response in infected hepatocytes. However, where and how the nucleocapsid disassembly occurs is not well understood. The work reported herein showed that the enhanced disassembly of progeny mature nucleocapsids in the cytoplasm supported cccDNA intracellular amplification, but failed to activate the cGAS-STING-mediated innate immune response in hepatocytes. Interestingly, while expression of a cytoplasmic exonuclease TREX1 in human hepatoma cells supporting HBV replication significantly reduced the amounts of cccDNA as well as its precursor, deproteinized relaxed circular (rc) DNA, expression of TREX1 in sodium taurocholate cotransporting polypeptide-expressing human hepatoma cells did not inhibit cccDNA synthesis from de novo HBV infection. The results from this cytoplasmic nuclease protection assay imply that the disassembly of progeny mature nucleocapsids and removal of viral DNA polymerase covalently linked to the 5' end of minus strand of rcDNA take place in the cytoplasm. On the contrary, the disassembly of virion-derived nucleocapsids during de novo infection may occur at a different subcellular compartment and possibly via distinct mechanisms.


Assuntos
DNA Circular/genética , Exodesoxirribonucleases/metabolismo , Vírus da Hepatite B/genética , Hepatócitos/virologia , Nucleocapsídeo/genética , Fosfoproteínas/metabolismo , Linhagem Celular , Citoplasma/genética , DNA Circular/imunologia , DNA Viral/genética , DNA Viral/imunologia , Exodesoxirribonucleases/genética , Células Hep G2 , Vírus da Hepatite B/imunologia , Hepatócitos/citologia , Hepatócitos/imunologia , Humanos , Imunidade Inata , Mutação , Nucleocapsídeo/imunologia , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética
11.
Biomed J ; 44(1): 101-104, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33736952

RESUMO

The current coronavirus disease 2019 (COVID-19) pandemic has caused significant challenges throughout the world and a rapid, reliable diagnostic test is in high demand. Real-time reverse transcription polymerase chain reaction (RT-PCR) was one of the most quickly established methods of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection and is considered to be the gold standard. In this report, we share our experience of using two different testing platforms: the cobas 6800 SARS-CoV-2 test, an automated system that was recently granted Emergency Use Authorization by the FDA, and a laboratory-developed test based on the protocol from the Taiwan Centers for Disease Control (CDC). There was an overall 96.2% agreement between the two platforms. However, the positive agreement between the two platforms was only 80.0%. We found 3 instances of discordance between the two systems and this emphasized the need for timely diagnosis with a reliable testing platform.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , SARS-CoV-2/genética , Teste de Ácido Nucleico para COVID-19 , Protocolos Clínicos , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Humanos , Nucleocapsídeo/genética , Taiwan , Proteínas do Envelope Viral/genética
12.
Viruses ; 12(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823718

RESUMO

The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.


Assuntos
HIV-1/genética , Interações entre Hospedeiro e Microrganismos/genética , Nucleocapsídeo/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Nucleocapsídeo/genética , Ligação Proteica , Transporte Proteico , Vírion , Montagem de Vírus , Replicação Viral
13.
Viruses ; 12(5)2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344834

RESUMO

Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play distinct roles in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structures, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a complementary RNA hairpin. In contrast, during viral assembly, NC, as a domain of the group-specific antigen (Gag) polyprotein, binds the genomic RNA and facilitates packaging into new virions. It is not clear how the same protein, alone or as part of Gag, performs such different RNA binding functions in the viral life cycle. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium stability and unfolding barrier for TAR RNA. Comparing measured results with a model of discrete protein binding allows us to localize affected binding sites, in addition to quantifying hairpin stability. We find that, while both NCp7 and GagDp6 destabilize the TAR hairpin, GagDp6 binding is localized to two sites in the stem, while NCp7 targets sites near the top loop. Unlike GagDp6, NCp7 destabilizes this loop, shifting the location of the reaction barrier toward the folded state and increasing the natural rate of hairpin opening by ~104. Thus, our results explain why Gag cleavage and NC release is an essential prerequisite for reverse transcription within the virion.


Assuntos
HIV-1/metabolismo , RNA Viral/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Conformação de Ácido Nucleico , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Estabilidade de RNA , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Reversa , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
14.
PLoS Pathog ; 16(3): e1008459, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226051

RESUMO

Hepatitis B virus (HBV) delivers a partially double-stranded, relaxed circular (RC) DNA genome in complete virions to the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, which establishes and sustains viral infection. An overlength pregenomic RNA (pgRNA) is then transcribed from CCC DNA and packaged into immature nucleocapsids (NCs) by the viral core (HBc) protein. pgRNA is reverse transcribed to produce RC DNA in mature NCs, which are then enveloped and secreted as complete virions, or delivered to the nucleus to replenish the nuclear CCC DNA pool. RC DNA, whether originating from extracellular virions or intracellular mature NCs, must be released upon NC disassembly (uncoating) for CCC DNA formation. HBc is known to undergo dynamic phosphorylation and dephosphorylation at its C-terminal domain (CTD) to facilitate pgRNA packaging and reverse transcription. Here, two putative phosphorylation sites in the HBc N-terminal domain (NTD), S44 and S49, were targeted for genetic and biochemical analysis to assess their potential roles in viral replication. The NTD mutant that mimics the non-phosphorylated state (N2A) was competent in all steps of viral replication tested from capsid assembly, pgRNA packaging, reverse transcription, to virion secretion, except for a decrease in CCC DNA formation. On the other hand, the phosphor-mimetic mutant N2E showed a defect in the early step of pgRNA packaging but enhanced the late step of mature NC uncoating and consequently, increased CCC DNA formation. N2E also enhanced phosphorylation in CTD and possibly elsewhere in HBc. Furthermore, inhibition of the cyclin-dependent kinase 2 (CDK2), which is packaged into viral capsids, could block CCC DNA formation. These results prompted us to propose a model whereby rephosphorylation of HBc at both NTD and CTD by the packaged CDK2, following CTD dephosphorylation during NC maturation, facilitates uncoating and CCC DNA formation by destabilizing mature NCs.


Assuntos
DNA Circular/metabolismo , DNA Viral/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/metabolismo , Modelos Biológicos , Nucleocapsídeo/metabolismo , Desenvelopamento do Vírus , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , DNA Circular/genética , DNA Viral/genética , Células HEK293 , Células Hep G2 , Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Nucleocapsídeo/genética , Fosforilação , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
15.
J Gen Virol ; 101(1): 59-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682220

RESUMO

Dengue virus assembly involves the encapsidation of genomic RNA by the capsid protein (C) and the acquisition of an envelope comprising the premembrane (prM) and envelope (E) glycoproteins. This rapid process, lacking in detectable nucleocapsid intermediates, may impose authentic C-prM-E arrangement as a prerequisite for efficient particle assembly. A mosquito cell-based complementation system was employed in this study to investigate the possibility that expression of the three structural proteins in trans allows the efficient production of a partially C-deleted dengue virus as compared to the presence of C alone. Following the transfection of ΔC56-capped RNA transcripts into C6/36 cells transiently expressing C or CprME, the production of the single-cycle virus was comparable. Subsequent propagation in the stable CprME-expressing clone, however, supported virus adaptation leading to acquisition of the L29P and S101F (PF) dual mutations in the C protein. The triple mutant, ΔC56(PF), exhibited enhanced levels of virus replication, specific infectivity and frequent increases of intracellular C dimer, as compared with ΔC56 in the CprME-clone. The PF mutations were associated with the accumulation of truncated CprM in ΔC56(PF)-infected cells, and uncleaved CprM as well as reduced intracellular C-dimer when the dual mutations were introduced into the wild-type dengue virus genetic background. These results indicate that the PF mutations may exert a replication-enhancing effect for the triple mutant virus by relieving the interference of trans-complementing structural proteins during viral assembly and suggest that the C-prM-E arrangement may be advantageous for pseudoinfectious virus production.


Assuntos
Vírus da Dengue/genética , Nucleocapsídeo/genética , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Montagem de Vírus/genética , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Chlorocebus aethiops , Culicidae/virologia , Dengue/virologia , RNA Viral/genética , Células Vero , Replicação Viral/genética
16.
Virology ; 534: 64-71, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31200103

RESUMO

We described a novel baculovirus isolated from the polyphagous insect pest Rachiplusia nu. The virus presented pyramidal-shaped occlusion bodies (OBs) with singly-embed nucleocapsids and a dose mortality response of 6.9 × 103 OBs/ml to third-instar larvae of R. nu. The virus genome is 128,587 bp long with a G + C content of 37.9% and 134 predicted ORFs. The virus is an alphabaculovirus closely related to Trichoplusia ni single nucleopolyhedrovirus, Chrysodeixis chalcites nucleopolyhedrovirus, and Chrysodeixis includens single nucleopolyhedrovirus and may constitute a new species. Surprisingly, we found co-evolution among the related viruses and their hosts at species level. Besides, auxiliary genes with homologs in other baculoviruses were found, e.g. a CPD-photolyase. The gene seemed to be result of a single event of horizontal transfer from lepidopterans to alphabaculovirus, followed by a transference from alpha to betabaculovirus. The predicted protein appears to be an active enzyme that ensures likely DNA protection from sunlight.


Assuntos
Desoxirribodipirimidina Fotoliase/genética , Genoma Viral , Mariposas/virologia , Nucleopoliedrovírus/genética , Proteínas Virais/genética , Animais , Baculoviridae/classificação , Baculoviridae/enzimologia , Baculoviridae/genética , Composição de Bases , Sequência de Bases , Desoxirribodipirimidina Fotoliase/metabolismo , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/enzimologia , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Proteínas Virais/metabolismo , Vírion/classificação , Vírion/genética , Vírion/isolamento & purificação
17.
Sci Rep ; 9(1): 834, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696898

RESUMO

Orthohantaviruses, previously known as hantaviruses, are zoonotic viruses that can cause hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS) in humans. The HPS-causing Andes virus (ANDV) and the HFRS-causing Hantaan virus (HTNV) have anti-apoptotic effects. To investigate if this represents a general feature of orthohantaviruses, we analysed the capacity of six different orthohantaviruses - belonging to three distinct phylogroups and representing both pathogenic and non-pathogenic viruses - to inhibit apoptosis in infected cells. Primary human endothelial cells were infected with ANDV, HTNV, the HFRS-causing Puumala virus (PUUV) and Seoul virus, as well as the putative non-pathogenic Prospect Hill virus and Tula virus. Infected cells were then exposed to the apoptosis-inducing chemical staurosporine or to activated human NK cells exhibiting a high cytotoxic potential. Strikingly, all orthohantaviruses inhibited apoptosis in both settings. Moreover, we show that the nucleocapsid (N) protein from all examined orthohantaviruses are potential targets for caspase-3 and granzyme B. Recombinant N protein from ANDV, PUUV and the HFRS-causing Dobrava virus strongly inhibited granzyme B activity and also, to certain extent, caspase-3 activity. Taken together, this study demonstrates that six different orthohantaviruses inhibit apoptosis, suggesting this to be a general feature of orthohantaviruses likely serving as a mechanism of viral immune evasion.


Assuntos
Apoptose/imunologia , Vírus Hantaan/imunologia , Evasão da Resposta Imune/imunologia , Orthohepadnavirus/imunologia , Virus Puumala/imunologia , Vírus Seoul/imunologia , Células A549 , Caspase 3/imunologia , Linhagem Celular Tumoral , Células Endoteliais/virologia , Granzimas/imunologia , Orthohantavírus/imunologia , Síndrome Pulmonar por Hantavirus/patologia , Síndrome Pulmonar por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/patologia , Febre Hemorrágica com Síndrome Renal/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Células K562 , Células Matadoras Naturais/virologia , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Orthohepadnavirus/classificação , Orthohepadnavirus/genética
18.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651360

RESUMO

Following its entry into cells, pseudorabies virus (PRV) utilizes microtubules to deliver its nucleocapsid to the nucleus. Previous studies have shown that PRV VP1/2 is an effector of dynein-mediated capsid transport. However, the mechanism of PRV for recruiting microtubule motor proteins for successful neuroinvasion and neurovirulence is not well understood. Here, we provide evidence that PRV pUL21 is an inner tegument protein. We tested its interaction with the cytoplasmic light chains using a bimolecular fluorescence complementation (BiFC) assay and observed that PRV pUL21 interacts with Roadblock-1. This interaction was confirmed by coimmunoprecipitation (co-IP) assays. We also determined the efficiency of retrograde and anterograde axonal transport of PRV strains in explanted neurons using a microfluidic chamber system and investigated pUL21's contribution to PRV neuroinvasion in vivo Further data showed that the carboxyl terminus of pUL21 is essential for its interaction with Roadblock-1, and this domain contributes to PRV retrograde axonal transport in vitro and in vivo Our findings suggest that the carboxyl terminus of pUL21 contributes to PRV neuroinvasion.IMPORTANCE Herpesviruses are a group of DNA viruses that infect both humans and animals. Alphaherpesviruses are distinguished by their ability to establish latent infection in peripheral neurons. After entering neurons, the herpesvirus capsid interacts with cellular motor proteins and undergoes retrograde transport on axon microtubules. This elaborate process is vital to the herpesvirus lifecycle, but the underlying mechanism remains poorly understood. Here, we determined that pUL21 is an inner tegument protein of pseudorabies virus (PRV) and that it interacts with the cytoplasmic dynein light chain Roadblock-1. We also observed that pUL21 promotes retrograde transport of PRV in neuronal cells. Furthermore, our findings confirm that pUL21 contributes to PRV neuroinvasion in vivo Importantly, the carboxyl terminus of pUL21 is responsible for interaction with Roadblock-1, and this domain contributes to PRV neuroinvasion. This study offers fresh insights into alphaherpesvirus neuroinvasion and the interaction between virus and host during PRV infection.


Assuntos
Proteínas do Capsídeo/genética , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/patogenicidade , Neurônios/virologia , Transporte Axonal/genética , Axônios/virologia , Linhagem Celular , Linhagem Celular Tumoral , Dineínas/genética , Células HEK293 , Células HeLa , Humanos , Microtúbulos/genética , Microtúbulos/virologia , Nucleocapsídeo/genética , Replicação Viral/genética
19.
J Biol Chem ; 293(42): 16261-16276, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30217825

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus that has conclusively been shown to cause human diseases. In HIV-1, specific interactions between the nucleocapsid (NC) domain of the Gag protein and genomic RNA (gRNA) mediate gRNA dimerization and selective packaging; however, the mechanism for gRNA packaging in HTLV-1, a deltaretrovirus, is unclear. In other deltaretroviruses, the matrix (MA) and NC domains of Gag are both involved in gRNA packaging, but MA binds nucleic acids with higher affinity and has more robust chaperone activity, suggesting that this domain may play a primary role. Here, we show that the MA domain of HTLV-1, but not the NC domain, binds short hairpin RNAs derived from the putative gRNA packaging signal. RNA probing of the HTLV-1 5' leader and cross-linking studies revealed that the primer-binding site and a region within the putative packaging signal form stable hairpins that interact with MA. In addition to a previously identified palindromic dimerization initiation site (DIS), we identified a new DIS in HTLV-1 gRNA and found that both palindromic sequences bind specifically the NC domain. Surprisingly, a mutant partially defective in dimer formation in vitro exhibited a significant increase in RNA packaging into HTLV-1-like particles, suggesting that efficient RNA dimerization may not be strictly required for RNA packaging in HTLV-1. Moreover, the lifecycle of HTLV-1 and other deltaretroviruses may be characterized by NC and MA functions that are distinct from those of the corresponding HIV-1 proteins, but together provide the functions required for viral replication.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Dimerização , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Nucleocapsídeo/genética , Proteínas de Ligação a RNA/fisiologia , Replicação Viral
20.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30135126

RESUMO

During viral RNA synthesis by the viral RNA-dependent RNA polymerase (vRdRp) of vesicular stomatitis virus, the sequestered RNA genome must be released from the nucleocapsid in order to serve as the template. Unveiling the sequestered RNA by interactions of vRdRp proteins, the large subunit (L) and the phosphoprotein (P), with the nucleocapsid protein (N) must not disrupt the nucleocapsid assembly. We noticed that a flexible structural motif composed of an α-helix and a loop in the N protein may act as the access gate to the sequestered RNA. This suggests that local conformational changes in this structural motif may be induced by interactions with the polymerase to unveil the sequestered RNA, without disrupting the nucleocapsid assembly. Mutations of several residues in this structural motif-Glu169, Phe171, and Leu174-to Ala resulted in loss of viral RNA synthesis in a minigenome assay. After implementing these mutations in the viral genome, mutant viruses were recovered by reverse genetics and serial passages. Sequencing the genomes of the mutant viruses revealed that compensatory mutations in L, P, and N were required to restore the viral viability. Corresponding mutations were introduced in L, P, and N, and their complementarity to the N mutations was confirmed by the minigenome assay. Introduction of the corresponding mutations is also sufficient to rescue the mutant viruses. These results suggested that the interplay of the N structural motif with the L protein may play a role in accessing the nucleotide template without disrupting the overall structure of the nucleocapsid.IMPORTANCE During viral RNA synthesis of a negative-strand RNA virus, the viral RNA-dependent RNA polymerase (vRdRp) must gain access to the sequestered RNA in the nucleocapsid to use it as the template, but at the same time may not disrupt the nucleocapsid assembly. Our structural and mutagenesis studies showed that a flexible structural motif acts as a potential access gate to the sequestered RNA and plays an essential role in viral RNA synthesis. Interactions of this structural motif within the vRdRp may be required for unveiling the sequestered RNA. This mechanism of action allows the sequestered RNA to be released locally without disrupting the overall structure of the nucleocapsid. Since this flexible structural motif is present in the N proteins of many NSVs, release of the sequestered RNA genome by local conformational changes in the N protein may be a general mechanism in NSV viral RNA synthesis.


Assuntos
Proteínas do Nucleocapsídeo/genética , Fosfoproteínas/genética , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/genética , Vírus da Estomatite Vesicular Indiana/genética , Proteínas Virais/genética , Proteínas Estruturais Virais/genética , Animais , Linhagem Celular , Cricetinae , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Mutação/genética , Nucleocapsídeo/biossíntese , Nucleocapsídeo/genética , Nucleocapsídeo/ultraestrutura , RNA Viral/genética , Vírus da Estomatite Vesicular Indiana/crescimento & desenvolvimento , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA