Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Immunol ; 13: 835830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273611

RESUMO

CD8+ T cells have key protective roles in many viral infections. While an overall Th1-biased cellular immune response against SARS-CoV-2 has been demonstrated, most reports of anti-SARS-CoV-2 cellular immunity have evaluated bulk T cells using pools of predicted epitopes, without clear delineation of the CD8+ subset and its magnitude and targeting. In recently infected persons (mean 29.8 days after COVID-19 symptom onset), we confirm a Th1 bias (and a novel IL-4-producing population of unclear significance) by flow cytometry, which does not correlate to antibody responses against the receptor binding domain. Evaluating isolated CD8+ T cells in more detail by IFN-γ ELISpot assays, responses against spike, nucleocapsid, matrix, and envelope proteins average 396, 901, 296, and 0 spot-forming cells (SFC) per million, targeting 1.4, 1.5, 0.59, and 0.0 epitope regions respectively. Nucleocapsid targeting is dominant in terms of magnitude, breadth, and density of targeting. The magnitude of responses drops rapidly post-infection; nucleocapsid targeting is most sustained, and vaccination selectively boosts spike targeting. In SARS-CoV-2-naïve persons, evaluation of the anti-spike CD8+ T cell response soon after vaccination (mean 11.3 days) yields anti-spike CD8+ T cell responses averaging 2,463 SFC/million against 4.2 epitope regions, and targeting mirrors that seen in infected persons. These findings provide greater clarity on CD8+ T cell anti-SARS-CoV-2 targeting, breadth, and persistence, suggesting that nucleocapsid inclusion in vaccines could broaden coverage and durability.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Nucleocapsídeo/imunologia , SARS-CoV-2/fisiologia , Anticorpos Antivirais/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , Células Cultivadas , ELISPOT , Humanos , Terapia de Alvo Molecular , Peptídeos/genética , Peptídeos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Estados Unidos , Vacinação
2.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
Pathog Dis ; 80(1)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34994386

RESUMO

Given the emergence of SARS-CoV-2 virus as a life-threatening pandemic, identification of immunodominant epitopes of the viral structural proteins, particularly the nucleocapsid (NP) protein and receptor-binding domain (RBD) of spike protein, is important to determine targets for immunotherapy and diagnosis. In this study, epitope screening was performed using a panel of overlapping peptides spanning the entire sequences of the RBD and NP proteins of SARS-CoV-2 in the sera from 66 COVID-19 patients and 23 healthy subjects by enzyme-linked immunosorbent assay (ELISA). Our results showed that while reactivity of patients' sera with reduced recombinant RBD protein was significantly lower than the native form of RBD (P < 0.001), no significant differences were observed for reactivity of patients' sera with reduced and non-reduced NP protein. Pepscan analysis revealed weak to moderate reactivity towards different RBD peptide pools, which was more focused on peptides encompassing amino acids (aa) 181-223 of RBD. NP peptides, however, displayed strong reactivity with a single peptide covering aa 151-170. These findings were confirmed by peptide depletion experiments using both ELISA and western blotting. Altogether, our data suggest involvement of mostly conformational disulfide bond-dependent immunodominant epitopes in RBD-specific antibody response, while the IgG response to NP is dominated by linear epitopes. Identification of dominant immunogenic epitopes in NP and RBD of SARS-CoV-2 could provide important information for the development of passive and active immunotherapy as well as diagnostic tools for the control of COVID-19 infection.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Epitopos Imunodominantes/imunologia , Nucleocapsídeo/imunologia , Receptores Virais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Idoso , Motivos de Aminoácidos , Anticorpos Antivirais/sangue , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Epitopos Imunodominantes/química , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Pandemias , Peptídeos/imunologia , Ligação Proteica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Proteínas Virais/imunologia
4.
Sci Rep ; 11(1): 20323, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645907

RESUMO

This study aimed to develop a highly sensitive SARS-CoV-2 nucleocapsid antigen assay using the single molecule array (Simoa) technology and compare it with real time RT-PCR as used in routine clinical practice with the ambition to achieve a comparative technical and clinical sensitivity. Samples were available from 148 SARS-CoV-2 real time RT-PCR positive and 73 SARS-CoV-2 real time RT-PCR negative oropharyngeal swabs. For determination of technical sensitivity SARS-CoV-2 virus culture material was used. The samples were treated with lysis buffer and analyzed using both an in-house and a pre-commercial SARS-CoV-2 nucleocapsid antigen assay on Simoa. Both nucleocapsid antigen assays have a technical sensitivity corresponding to around 100 SARS-CoV-2 RNA molecules/mL. Using a cut-off at 0.1 pg/mL the pre-commercial SARS-CoV-2 nucleocapsid antigen assay had a sensitivity of 96% (95% CI 91.4-98.5%) and specificity of 100% (95% CI 95.1-100%). In comparison the in-house nucleocapsid antigen assay had sensitivity of 95% (95% CI 89.3-98.1%) and a specificity of 100% (95% CI 95.1-100%) using a cut-off at 0.01 pg/mL. The two SARS-CoV-2 nucleocapsid antigen assays correlated with r = 0.91 (P < 0.0001). The in-house and the pre-commercial SARS-CoV-2 nucleocapsid antigen assay demonstrated technical and clinical sensitivity comparable to real-time RT-PCR methods for identifying SARS-CoV-2 infected patients and thus can be used clinically as well as serve as a reference method for antigen Point of Care Testing.


Assuntos
COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Antígenos Virais/imunologia , Teste Sorológico para COVID-19/métodos , Proteínas do Nucleocapsídeo de Coronavírus/análise , Dinamarca , Testes Diagnósticos de Rotina , Humanos , Técnicas Imunoenzimáticas , Nasofaringe/virologia , Nucleocapsídeo/análise , Nucleocapsídeo/imunologia , Fosfoproteínas/análise , Fosfoproteínas/imunologia , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade , Imagem Individual de Molécula/métodos , Vírion/química
5.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081630

RESUMO

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Assuntos
Testes de Aglutinação/métodos , Formação de Anticorpos/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Epitopos de Linfócito B/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , COVID-19/sangue , COVID-19/mortalidade , Epitopos/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Humanos , Imunidade Humoral , Análise em Microsséries/métodos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Peptídeos/imunologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Emerg Microbes Infect ; 10(1): 852-864, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33870849

RESUMO

Upon infection of hepatocyte, Hepatitis B virus (HBV) genomic DNA in nucleocapsid is transported into the nucleus and converted into a covalently closed circular (ccc) DNA to serve as the template for transcription of viral RNAs. Viral DNA in the cytoplasmic progeny nucleocapsid is another resource to fuel cccDNA amplification. Apparently, nucleocapsid disassembly, or viral genomic DNA uncoating, is an essential step for cccDNA synthesis from both de novo infection and intracellular amplification pathways, and has a potential to activate DNA sensors and induce an innate immune response in infected hepatocytes. However, where and how the nucleocapsid disassembly occurs is not well understood. The work reported herein showed that the enhanced disassembly of progeny mature nucleocapsids in the cytoplasm supported cccDNA intracellular amplification, but failed to activate the cGAS-STING-mediated innate immune response in hepatocytes. Interestingly, while expression of a cytoplasmic exonuclease TREX1 in human hepatoma cells supporting HBV replication significantly reduced the amounts of cccDNA as well as its precursor, deproteinized relaxed circular (rc) DNA, expression of TREX1 in sodium taurocholate cotransporting polypeptide-expressing human hepatoma cells did not inhibit cccDNA synthesis from de novo HBV infection. The results from this cytoplasmic nuclease protection assay imply that the disassembly of progeny mature nucleocapsids and removal of viral DNA polymerase covalently linked to the 5' end of minus strand of rcDNA take place in the cytoplasm. On the contrary, the disassembly of virion-derived nucleocapsids during de novo infection may occur at a different subcellular compartment and possibly via distinct mechanisms.


Assuntos
DNA Circular/genética , Exodesoxirribonucleases/metabolismo , Vírus da Hepatite B/genética , Hepatócitos/virologia , Nucleocapsídeo/genética , Fosfoproteínas/metabolismo , Linhagem Celular , Citoplasma/genética , DNA Circular/imunologia , DNA Viral/genética , DNA Viral/imunologia , Exodesoxirribonucleases/genética , Células Hep G2 , Vírus da Hepatite B/imunologia , Hepatócitos/citologia , Hepatócitos/imunologia , Humanos , Imunidade Inata , Mutação , Nucleocapsídeo/imunologia , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética
7.
Emerg Microbes Infect ; 9(1): 2091-2093, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32930052

RESUMO

We studied plasma antibody responses of 35 patients about 1 month after SARS-CoV-2 infection. Titers of antibodies binding to the viral nucleocapsid and spike proteins were significantly higher in patients with severe disease. Likewise, mean antibody neutralization titers against SARS-CoV-2 pseudovirus and live virus were higher in the sicker patients, by ∼5-fold and ∼7-fold, respectively. These findings have important implications for those pursuing plasma therapy, isolation of neutralizing monoclonal antibodies, and determinants of immunity.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , Pneumonia Viral/imunologia , SARS-CoV-2 , Índice de Gravidade de Doença , Proteínas do Envelope Viral/imunologia
8.
Sci Rep ; 9(1): 834, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696898

RESUMO

Orthohantaviruses, previously known as hantaviruses, are zoonotic viruses that can cause hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS) in humans. The HPS-causing Andes virus (ANDV) and the HFRS-causing Hantaan virus (HTNV) have anti-apoptotic effects. To investigate if this represents a general feature of orthohantaviruses, we analysed the capacity of six different orthohantaviruses - belonging to three distinct phylogroups and representing both pathogenic and non-pathogenic viruses - to inhibit apoptosis in infected cells. Primary human endothelial cells were infected with ANDV, HTNV, the HFRS-causing Puumala virus (PUUV) and Seoul virus, as well as the putative non-pathogenic Prospect Hill virus and Tula virus. Infected cells were then exposed to the apoptosis-inducing chemical staurosporine or to activated human NK cells exhibiting a high cytotoxic potential. Strikingly, all orthohantaviruses inhibited apoptosis in both settings. Moreover, we show that the nucleocapsid (N) protein from all examined orthohantaviruses are potential targets for caspase-3 and granzyme B. Recombinant N protein from ANDV, PUUV and the HFRS-causing Dobrava virus strongly inhibited granzyme B activity and also, to certain extent, caspase-3 activity. Taken together, this study demonstrates that six different orthohantaviruses inhibit apoptosis, suggesting this to be a general feature of orthohantaviruses likely serving as a mechanism of viral immune evasion.


Assuntos
Apoptose/imunologia , Vírus Hantaan/imunologia , Evasão da Resposta Imune/imunologia , Orthohepadnavirus/imunologia , Virus Puumala/imunologia , Vírus Seoul/imunologia , Células A549 , Caspase 3/imunologia , Linhagem Celular Tumoral , Células Endoteliais/virologia , Granzimas/imunologia , Orthohantavírus/imunologia , Síndrome Pulmonar por Hantavirus/patologia , Síndrome Pulmonar por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/patologia , Febre Hemorrágica com Síndrome Renal/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Células K562 , Células Matadoras Naturais/virologia , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Orthohepadnavirus/classificação , Orthohepadnavirus/genética
9.
J Immunol Res ; 2015: 424860, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954763

RESUMO

Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Galinhas/virologia , Infecções por Coronavirus/virologia , Glicoproteínas/imunologia , Nucleocapsídeo/imunologia , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Vacinação , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas não Estruturais Virais/imunologia
10.
PLoS One ; 10(3): e0122160, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799314

RESUMO

Protein P7 is a component of the cystovirus viral polymerase complex. In the unpackaged procapsid, the protein is situated in close proximity to the viral directed RNA polymerase, P2. Cryo-electron microscopy difference maps from the species ϕ6 procapsid have demonstrated that P7 and P2 likely interact prior to viral RNA packaging. The location of P7 in the post-packaged nucleocapsid (NC) remains unknown. P7 may translocate closer to the five-fold axis of a filled procapsid but this has not been directly visualized. We propose that monoclonal antibodies (Mabs) can be selected that serve as probe- reagents for viral assembly and structure. A set of Mabs have been isolated that recognize and bind to the ϕ6 P7. The antibody set contains five unique Mabs, four of which recognize a linear epitope and one which recognizes a conformational epitope. The four unique Mabs that recognize a linear epitope display restricted utilization of Vκ and VH genes. The restricted genetic range among 4 of the 5 antibodies implies that the antibody repertoire is limited. The limitation could be the consequence of a paucity of exposed antigenic sites on the ϕ6 P7 surface. It is further demonstrated that within ϕ6 nucleocapsids that are primed for early-phase transcription, P7 is partially accessible to the Mabs, indicating that the nucleocapsid shell (protein P8) has undergone partial disassembly exposing the protein's antigenic sites.


Assuntos
Anticorpos Antivirais/imunologia , Cystoviridae/genética , Cystoviridae/imunologia , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Transcrição Gênica , Proteínas Virais/genética , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos/imunologia , Cystoviridae/classificação , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Nucleocapsídeo/ultraestrutura , Ligação Proteica/imunologia , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
11.
J Virol Methods ; 217: 36-41, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25745958

RESUMO

Nucleocapsid (N) protein gene of turkey coronavirus (TCoV) was expressed in a prokaryotic system and used to develop an enzyme-linked immunosorbent assay (ELISA) for detection of antibody to TCoV. Anti-TCoV hyperimmune turkey serum and normal turkey serum were used as positive or negative controls for optimization of the ELISA. Goat anti-turkey IgG (H+L) conjugated with horseradish peroxidase was used as detector antibody. Three hundred and twenty two turkey sera from the field were used to evaluate the performance of ELISA and determine the cut-off point of ELISA. The established ELISA was also examined with serum samples obtained from turkeys experimentally infected with TCoV. Those serum samples were collected at various time intervals from 1 to 63 days post-infection. The optimum conditions for differentiation between anti-TCoV hyperimmune serum and normal turkey serum were recombinant TCoV N protein concentration at 20 µg/ml, serum dilution at 1:800, and conjugate dilution at 1:10,000. Of the 322 sera from the field, 101 were positive for TCoV by immunofluorescent antibody assay (IFA). The sensitivity and specificity of the ELISA relative to IFA test were 86.0% and 96.8%, respectively, using the optimum cut-off point of 0.2 as determined by logistic regression method. Reactivity of anti-rotavirus, anti-reovirus, anti-adenovirus, or anti-enterovirus antibodies with the recombinant N protein coated on the ELISA plates was not detected. These results indicated that the established antibody-capture ELISA in conjunction with recombinant TCoV N protein as the coating protein can be utilized for detection of antibodies to TCoV in turkey flocks.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Infecções por Coronavirus/veterinária , Coronavirus do Peru/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Nucleocapsídeo/imunologia , Doenças das Aves Domésticas/diagnóstico , Animais , Antígenos Virais/genética , Infecções por Coronavirus/diagnóstico , Reações Cruzadas , Nucleocapsídeo/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Perus
12.
Cell Host Microbe ; 17(3): 309-319, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25704008

RESUMO

The cytoplasmic RNA helicase RIG-I mediates innate sensing of RNA viruses. The genomes of influenza A virus (FLUAV) are encapsidated by the nucleoprotein and associated with RNA polymerase, posing potential barriers to RIG-I sensing. We show that RIG-I recognizes the 5'-triphosphorylated dsRNA on FLUAV nucleocapsids but that polymorphisms at position 627 of the viral polymerase subunit PB2 modulate RIG-I sensing. Compared to mammalian-adapted PB2-627K, avian FLUAV nucleocapsids possessing PB2-627E are prone to increased RIG-I recognition, and RIG-I-deficiency partially restores PB2-627E virus infection of mammalian cells. Heightened RIG-I sensing of PB2-627E nucleocapsids correlates with previously established lower affinity of 627E-containing PB2 for nucleoprotein and is increased by further nucleocapsid instability. The effect of RIG-I on PB2-627E nucleocapsids is independent of antiviral signaling, suggesting that RIG-I-nucleocapsid binding alone can inhibit infection. These results indicate that RIG-I is a direct avian FLUAV restriction factor and highlight nucleocapsid disruption as an antiviral strategy.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/imunologia , Nucleocapsídeo/imunologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Proteína DEAD-box 58 , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleocapsídeo/genética , Nucleocapsídeo/fisiologia , Orthomyxoviridae , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Receptores Imunológicos , Replicação Viral
13.
PLoS One ; 9(5): e98397, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24857988

RESUMO

BACKGROUND: Puumala virus (PUUV) is the most important hantavirus species in Central Europe. Nephropathia epidemica (NE), caused by PUUV, is characterized by acute renal injury (AKI) with thrombocytopenia and frequently gastrointestinal symptoms. METHODS: 456 patients with serologically and clinically confirmed NE were investigated at time of follow-up in a single clinic. The course of the NE was investigated using medical reports. We identified patients who had endoscopy with intestinal biopsy during acute phase of NE. Histopathological, immunohistochemical and molecular analyses of the biopsies were performed. RESULTS: Thirteen patients underwent colonoscopy or gastroscopy for abdominal pain, diarrhea, nausea and vomiting during acute phase of NE. Immunohistochemistry (IHC) revealed PUUV nucleocapsid antigen in 11 biopsies from 8 patients; 14 biopsies from 5 patients were negative for PUUV nucleocapsid antigen. IHC localized PUUV nucleocapsid antigen in endothelial cells of capillaries or larger vessels in the lamina propria. Rate of AKI was not higher and severity of AKI was not different in the PUUV-positive compared to the PUUV-negative group. All IHC positive biopsies were positive for PUUV RNA using RT-PCR. Phylogenetic reconstruction revealed clustering of all PUUV strains from this study with viruses previously detected from the South-West of Germany. Long-term outcome was favorable in both groups. CONCLUSIONS: In patients with NE, PUUV nucleocapsid antigen and PUUV RNA was detected frequently in the intestine. This finding could explain frequent GI-symptoms in NE patients, thus demonstration of a more generalized PUUV infection. The RT-PCR was an effective and sensitive method to detect PUUV RNA in FFPE tissues. Therefore, it can be used as a diagnostic and phylogenetic approach also for archival materials. AKI was not more often present in patients with PUUV-positive IHC. This last finding should be investigated in larger numbers of patients with PUUV infection.


Assuntos
Antígenos Virais/imunologia , Febre Hemorrágica com Síndrome Renal/imunologia , Intestinos/imunologia , Intestinos/virologia , Virus Puumala/imunologia , Doença Aguda , Adulto , Idoso , Biópsia , Feminino , Seguimentos , Alemanha , Febre Hemorrágica com Síndrome Renal/genética , Febre Hemorrágica com Síndrome Renal/patologia , Humanos , Intestinos/patologia , Masculino , Pessoa de Meia-Idade , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Virus Puumala/genética , RNA Viral/genética , RNA Viral/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Nanobiotechnology ; 11: 10, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23556511

RESUMO

BACKGROUND: The ever-present threat of infectious disease, e.g. influenza pandemics, and the increasing need for new and effective treatments in immunotherapy are the driving forces that motivate research into new and innovative vaccine platforms. Ideally, such platforms should trigger an efficient CTL response, be safe, and easy to manufacture. We recently developed a novel nanoparticle adjuvant comprised of papaya mosaic virus (PapMV) coat protein (CP) assembled around an RNA. The PapMV nanoparticle is an efficient vaccine platform in which the peptide antigen is fused to the C-terminus of the PapMV CP, leading to nanoparticles presenting surface-exposed epitope. The fusion stabilizes the epitope and improves its immunogenicity. We found recently that C-terminal fusions are not always efficient, depending on the nature of the peptide fused to the platform. RESULTS: We chose a CTL epitope derived from the nucleocapsid (NP) of influenza virus (NP147₋155) for this proof-of-concept demonstration. Recombinant nanoparticles harbouring a fusion at the N-terminus were more efficient in triggering a CTL response. Efficacy appeared to be linked to the stability of the nanoparticles at 37°C. We also showed that discs--smaller than nanoparticles--made of 20 subunits of PapMV CP are less efficient for induction of a CTL response in mice, revealing that assembly of the recombinant PapMV CP into nanoparticles is crucial to triggering an efficient CTL response. CONCLUSION: The point of fusion on the PapMV vaccine platform is critical to triggering an efficient CTL response. Efficacy is linked to nanoparticle stability; nanoparticles must be stable at 37°C but remain susceptible to cellular proteases to ensure efficient processing of the CTL epitope by cells of the immune system. The results of this study improve our understanding of the PapMV vaccine platform, which will facilitate the design of efficient vaccines to various infectious threats.


Assuntos
Epitopos de Linfócito T/imunologia , Vírus da Influenza A/imunologia , Vírus do Mosaico/metabolismo , Nanopartículas/química , Nucleocapsídeo/imunologia , Adjuvantes Imunológicos , Sequência de Aminoácidos , Animais , Carica/virologia , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Epitopos de Linfócito T/química , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Nucleocapsídeo/química , Peptídeos/imunologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes , Linfócitos T Citotóxicos/imunologia
15.
Cell Host Microbe ; 13(3): 336-46, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23498958

RESUMO

Host defense to RNA viruses depends on rapid intracellular recognition of viral RNA by two cytoplasmic RNA helicases: RIG-I and MDA5. RNA transfection experiments indicate that RIG-I responds to naked double-stranded RNAs (dsRNAs) with a triphosphorylated 5' (5'ppp) terminus. However, the identity of the RIG-I stimulating viral structures in an authentic infection context remains unresolved. We show that incoming viral nucleocapsids containing a 5'ppp dsRNA "panhandle" structure trigger antiviral signaling that commences with RIG-I, is mediated through the adaptor protein MAVS, and terminates with transcription factor IRF-3. Independent of mammalian cofactors or viral polymerase activity, RIG-I bound to viral nucleocapsids, underwent a conformational switch, and homo-oligomerized. Enzymatic probing and superresolution microscopy suggest that RIG-I interacts with the panhandle structure of the viral nucleocapsids. These results define cytoplasmic entry of nucleocapsids as the proximal RIG-I-sensitive step during infection and establish viral nucleocapsids with a 5'ppp dsRNA panhandle as a RIG-I activator.


Assuntos
RNA Helicases DEAD-box/imunologia , Nucleocapsídeo/imunologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Polifosfatos/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/química , Vírus de RNA/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , Receptores Imunológicos , Transdução de Sinais
16.
J Invertebr Pathol ; 112 Suppl: S44-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22465629

RESUMO

The Musca domestica hytrosavirus (MdHV), a member of the family Hyrosaviridae, is a large, dsDNA, enveloped virus that infects adult house flies and causes a diagnostic hypertrophy of the salivary gland. Herein, studies were directed at identifying key structural components of the viral envelope and nucleocapsid. SDS-PAGE of detergent-treated virus fractions identified protein bands unique to the envelope and nucleocapsid components. Using prior LC-MSMS data we identified the viral ORF associated with the major envelope band, cloned and expressed recombinant viral antigens, and prepared a series of polyclonal sera. Western blots confirmed that antibodies recognized the target viral antigen and provided evidence that the viral protein MdHV96 underwent post-translational processing; antibodies bound to the target high molecular weight parent molecule as well as distinct sets of smaller bands. Immuno gold electron microscopy demonstrated that the anti-MdHV96 sera recognized target antigens associated with the envelope. The nucleocapsids migrated from the virogenic stroma in the nucleus through the nuclear membrane into the cytoplasm, where they acquired an initial envelope that contained MdHV96. This major envelope protein, appeared to incorporate into intracellular membranes of both the caniculi and rough endoplasmic reticulum membranes and mediate binding to the nucleocapsids. Oral infection bioassays demonstrated that the anti-HV96 polyclonal sera acted as neutralizing agents in suppressing the levels of orally acquired infections.


Assuntos
Vírus de DNA/metabolismo , Moscas Domésticas/virologia , Vírus de Insetos/metabolismo , Proteínas do Envelope Viral/análise , Animais , Western Blotting , Vírus de DNA/imunologia , Moscas Domésticas/imunologia , Imuno-Histoquímica , Vírus de Insetos/imunologia , Microscopia Eletrônica de Transmissão , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
17.
J Virol ; 86(14): 7625-36, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22573868

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects macrophages/dendritic cells and modulates cytokine expression in these cells. Interleukin-15 (IL-15) is a pleiotropic cytokine involved in wide range of biological activities. It has been shown to be essential for the generation, activation, and proliferation of NK and NKT cells and for the survival and activation of CD8(+) effector and memory T cells. In this study, we discovered that PRRSV infection upregulated IL-15 production at both the mRNA and protein levels in porcine alveolar macrophages (PAMs), blood monocyte-derived macrophages (BMo), and monocyte-derived dendritic cells (DCs). We subsequently demonstrated that the NF-κB signaling pathway was essential for PRRSV infection-induced IL-15 production. First, addition of an NF-κB inhibitor drastically reduced PRRSV infection-induced IL-15 production. We then found that NF-κB was indeed activated upon PRRSV infection, as evidenced by IκB phosphorylation and degradation. Moreover, we revealed an NF-κB binding motif in the cloned porcine IL-15 (pIL-15) promoter, deletion of which abrogated the pIL-15 promoter activity in PRRSV-infected alveolar macrophages. In addition, we demonstrated that PRRSV nucleocapsid (N) protein had the ability to induce IL-15 production in porcine alveolar macrophage cell line CRL2843 by transient transfection, which was mediated by its multiple motifs, and it also activated NF-κB. These data indicated that PRRSV infection-induced IL-15 production was likely through PRRSV N protein-mediated NF-κB activation. Our findings provide new insights into the molecular mechanisms underling the IL-15 production induced by PRRSV infection.


Assuntos
Células Dendríticas/metabolismo , Interleucina-15/biossíntese , Macrófagos/metabolismo , NF-kappa B/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/virologia , Proteínas I-kappa B/metabolismo , Interleucina-15/genética , Macrófagos/imunologia , Macrófagos/virologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Nucleocapsídeo/imunologia , Fosforilação , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Regiões Promotoras Genéticas , Proteína Quinase C/metabolismo , RNA Mensageiro/biossíntese , Deleção de Sequência , Transdução de Sinais , Suínos
18.
J Gen Virol ; 93(Pt 6): 1204-1214, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22398317

RESUMO

The interplay of different inflammatory cytokines induced during dengue virus infection plays a role in either protection or increased disease severity. In this sense, vaccine strategies incorporating whole virus are able to elicit both functional and pathological responses. Therefore, an ideal tetravalent vaccine candidate against dengue should be focused on serotype-specific sequences. In the present work, a new formulation of nucleocapsid-like particles (NLPs) obtained from the recombinant dengue-2 capsid protein was evaluated in mice to determine the level of protection against homologous and heterologous viral challenge and to measure the cytotoxicity and cytokine-secretion profiles induced upon heterologous viral stimulation. As a result, a significant protection rate was achieved after challenge with lethal dengue-2 virus, which was dependent on CD4(+) and CD8(+) cells. In turn, no protection was observed after heterologous challenge. In accordance, in vitro-stimulated spleen cells from mice immunized with NLPs from the four dengue serotypes showed a serotype-specific response of gamma interferon- and tumour necrosis factor alpha-secreting cells. A similar pattern was detected when spleen cells from dengue-immunized animals were stimulated with the capsid protein. Taking these data together, we can assert that NLPs constitute an attractive vaccine candidate against dengue. They induce a functional immune response mediated by CD4(+) and CD8(+) cells in mice, which is protective against viral challenge. In turn, they are potentially safe due to two important facts: induction of serotype specific cell-mediated immunity and lack of induction of antiviral antibodies. Further studies in non-human primates or humanized mice should be carried out to elucidate the usefulness of the NLPs as a potential vaccine candidate against dengue disease.


Assuntos
Proteínas do Capsídeo/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Imunidade Celular , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas do Capsídeo/genética , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Feminino , Humanos , Imunização , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Especificidade da Espécie , Vacinas Virais/genética , Vacinas Virais/imunologia
19.
Arch Virol ; 155(10): 1587-95, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20640909

RESUMO

In this study, we evaluate in mice a novel formulation containing nucleocapsid-like particles of dengue-2 virus (recNLP) co-immunized with a chimeric protein composed of the dengue-4 envelope domain III fused twice within the meningococcal P64k protein of Neisseria meningitidis (PD24). The animals receiving the PD24-recNLP mixture showed the highest levels of antiviral antibodies. Similar results were obtained for IFNγ secretion levels, indicating a functional Th1 cellular response. Consistently, the percentage of mice surviving after viral challenge was significantly higher for those immunized with the mixture than for those inoculated with PD24 protein alone. In addition, in vivo depletion experiments demonstrated the decisive role of CD4(+) and CD8(+) cells in the protection conferred by immunization with PD24-recNLP. In conclusion, this report demonstrates for the first time the adjuvant capacity of dengue-2 virus recNLP. Additionally, the evidence presented highlights the potential of these particles for enhancing the immune response against heterologous recombinant proteins.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Nucleocapsídeo/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Proteínas da Membrana Bacteriana Externa/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Dengue/imunologia , Feminino , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Células Th1/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
20.
J Virol ; 81(23): 13230-4, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881436

RESUMO

The icosahedral capsid of duck hepatitis B virus (DHBV) is formed by a single core protein species (DHBc). DHBc is much larger than HBc from human HBV, and no high-resolution structure is available. In an accompanying study (M. Nassal, I. Leifer, I. Wingert, K. Dallmeier, S. Prinz, and J. Vorreiter, J. Virol. 81:13218-13229, 2007), we used extensive mutagenesis to derive a structural model for DHBc. For independent validation, we here mapped the epitopes of seven anti-DHBc monoclonal antibodies. Using numerous recombinant DHBc proteins and authentic nucleocapsids from different avihepadnaviruses as test antigens, plus a panel of complementary assays, particle-specific and exposed plus buried linear epitopes were revealed. These data fully support key features of the model.


Assuntos
Avihepadnavirus/química , Vírus da Hepatite B do Pato/química , Nucleocapsídeo/química , Proteínas do Core Viral/química , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Avihepadnavirus/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Vírus da Hepatite B do Pato/imunologia , Modelos Moleculares , Nucleocapsídeo/imunologia , Estrutura Terciária de Proteína , Proteínas do Core Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA