Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(2): 935-951, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610787

RESUMO

Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.


Assuntos
Chloroflexi , Glicosídeo Hidrolases , Nucleosídeo Q , Humanos , Guanina/metabolismo , Micronutrientes , Nucleosídeo Q/metabolismo , Proteínas , RNA de Transferência/metabolismo , Glicosídeo Hidrolases/química , Chloroflexi/enzimologia
2.
Anal Chem ; 94(37): 12828-12835, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069705

RESUMO

Queuosine (Q) modification on tRNA plays an essential role in protein synthesis, participating in many tRNA functions such as folding, stability, and decoding. Appropriate analytical tools for the measurement of tRNA Q modifications are essential for the exploration of new roles of Q-modified tRNAs and the rationalization of their exact mechanisms. However, conventional methods for Q modification analysis suffer from apparent disadvantages, such as destructive cells, tedious procedure, and low sensitivity, which much hamper in-depth studies of Q modification-related biological questions. In this study, we developed a new approach called plasmonic affinity sandwich assay that allows for facile and sensitive determination of Q-modified tRNAs in single living cells. This method relies on the combination of plasmon-enhanced Raman scattering detection, base-paring affinity in-cell microextraction, and a set of boronate affinity and molecularly imprinted labeling nanotags for selective recognition of individual Q modifications, including queuosine, galactosyl queuosine (Gal-Q), and mannosyl queuosine (Man-Q). The developed method exhibited high affinity extraction and high specificity recognition. It allowed for the measurement of tRNA Q modifications in not only Q-rich cultured tumor cells but also Q-deficient primary tumor cells. Usefulness of this approach for investigation of the change of the Q modification level in single cells under oxidative stress was demonstrated. Because of its significant advantages over conventional methods, this approach provides a promising analytical tool for the exploration of more roles of Q-modified tRNAs and elucidation of their mechanisms.


Assuntos
Nucleosídeo Q , RNA de Transferência , Humanos , Masculino , Nucleosídeo Q/análise , Nucleosídeo Q/genética , Nucleosídeo Q/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo
3.
Nat Commun ; 12(1): 3877, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162884

RESUMO

Methylation is a prevalent post-transcriptional modification encountered in coding and non-coding RNA. For RNA methylation, cells use methyltransferases and small organic substances as methyl-group donors, such as S-adenosylmethionine (SAM). SAM and other nucleotide-derived cofactors are viewed as evolutionary leftovers from an RNA world, in which riboswitches have regulated, and ribozymes have catalyzed essential metabolic reactions. Here, we disclose the thus far unrecognized direct link between a present-day riboswitch and its inherent reactivity for site-specific methylation. The key is O6-methyl pre-queuosine (m6preQ1), a potentially prebiotic nucleobase which is recognized by the native aptamer of a preQ1 class I riboswitch. Upon binding, the transfer of the ligand's methyl group to a specific cytidine occurs, installing 3-methylcytidine (m3C) in the RNA pocket under release of pre-queuosine (preQ1). Our finding suggests that nucleic acid-mediated methylation is an ancient mechanism that has offered an early path for RNA epigenetics prior to the evolution of protein methyltransferases. Furthermore, our findings may pave the way for the development of riboswitch-descending methylation tools based on rational design as a powerful alternative to in vitro selection approaches.


Assuntos
Conformação de Ácido Nucleico , Nucleosídeo Q/química , RNA/química , Riboswitch , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Cinética , Metilação , Estrutura Molecular , Nucleosídeo Q/metabolismo , RNA/genética , RNA/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
4.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30093495

RESUMO

Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q-tRNA levels promote Dnmt2-mediated methylation of tRNA Asp and control translational speed of Q-decoded codons as well as at near-cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ-free mice fed with a queuosine-deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.


Assuntos
Estresse do Retículo Endoplasmático , Alimentos Formulados , Nucleosídeo Q/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Ácido Aspártico/metabolismo , Resposta a Proteínas não Dobradas , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células HCT116 , Células HeLa , Humanos , Camundongos , Nucleosídeo Q/genética , RNA de Transferência de Ácido Aspártico/genética
5.
Sci Rep ; 8(1): 8880, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29892076

RESUMO

Dnmt2 methylates cytosine at position 38 of tRNAAsp in a variety of eukaryotic organisms. A correlation between the presence of the hypermodified nucleoside queuosine (Q) at position 34 of tRNAAsp and the Dnmt2 dependent C38 methylation was recently found in vivo for S. pombe and D. discoideum. We demonstrate a direct effect of the Q-modification on the methyltransferase catalytic efficiency in vitro, as Vmax/K0.5 of purified S. pombe Dnmt2 shows an increase for in vitro transcribed tRNAAsp containing Q34 to 6.27 ∗ 10-3 s-1 µM-1 compared to 1.51 ∗ 10-3 s-1 µM-1 for the unmodified substrate. Q34tRNAAsp exhibits an only slightly increased affinity for Dnmt2 in comparison to unmodified G34tRNA. In order to get insight into the structural basis for the Q-dependency, the crystal structure of S. pombe Dnmt2 was determined at 1.7 Å resolution. It closely resembles the known structures of human and E. histolytica Dnmt2, and contains the entire active site loop. The interaction with tRNA was analyzed by means of mass-spectrometry using UV cross-linked Dnmt2-tRNA complex. These cross-link data and computational docking of Dnmt2 and tRNAAsp reveal Q34 positioned adjacent to the S-adenosylmethionine occupying the active site, suggesting that the observed increase of Dnmt2 catalytic efficiency by queuine originates from optimal positioning of the substrate molecules and residues relevant for methyl transfer.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Ativadores de Enzimas/metabolismo , Nucleosídeo Q/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Espectrometria de Massas , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
6.
ACS Chem Biol ; 12(3): 844-851, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28128549

RESUMO

The reduction of epoxyqueuosine (oQ) is the last step in the synthesis of the tRNA modification queuosine (Q). While the epoxyqueuosine reductase (EC 1.17.99.6) enzymatic activity was first described 30 years ago, the encoding gene queG was only identified in Escherichia coli in 2011. Interestingly, queG is absent from a large number of sequenced genomes that harbor Q synthesis or salvage genes, suggesting the existence of an alternative epoxyqueuosine reductase in these organisms. By analyzing phylogenetic distributions, physical gene clustering, and fusions, members of the Domain of Unknown Function 208 (DUF208) family were predicted to encode for an alternative epoxyqueuosine reductase. This prediction was validated with genetic methods. The Q modification is present in Lactobacillus salivarius, an organism missing queG but harboring the duf208 gene. Acinetobacter baylyi ADP1 is one of the few organisms that harbor both QueG and DUF208, and deletion of both corresponding genes was required to observe the absence of Q and the accumulation of oQ in tRNA. Finally, the conversion oQ to Q was restored in an E. coli queG mutant by complementation with plasmids harboring duf208 genes from different bacteria. Members of the DUF208 family are not homologous to QueG enzymes, and thus, duf208 is a non-orthologous replacement of queG. We propose to name DUF208 encoding genes as queH. While QueH contains conserved cysteines that could be involved in the coordination of a Fe/S center in a similar fashion to what has been identified in QueG, no cobalamin was identified associated with recombinant QueH protein.


Assuntos
Genômica , Nucleosídeo Q/análogos & derivados , Oxirredutases/metabolismo , Lactobacillus/enzimologia , Lactobacillus/genética , Nucleosídeo Q/metabolismo
7.
Nutrients ; 7(4): 2897-929, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884661

RESUMO

Micronutrients from the diet and gut microbiota are essential to human health and wellbeing. Arguably, among the most intriguing and enigmatic of these micronutrients is queuine, an elaborate 7-deazaguanine derivative made exclusively by eubacteria and salvaged by animal, plant and fungal species. In eubacteria and eukaryotes, queuine is found as the sugar nucleotide queuosine within the anticodon loop of transfer RNA isoacceptors for the amino acids tyrosine, asparagine, aspartic acid and histidine. The physiological requirement for the ancient queuine molecule and queuosine modified transfer RNA has been the subject of varied scientific interrogations for over four decades, establishing relationships to development, proliferation, metabolism, cancer, and tyrosine biosynthesis in eukaryotes and to invasion and proliferation in pathogenic bacteria, in addition to ribosomal frameshifting in viruses. These varied effects may be rationalized by an important, if ill-defined, contribution to protein translation or may manifest from other presently unidentified mechanisms. This article will examine the current understanding of queuine uptake, tRNA incorporation and salvage by eukaryotic organisms and consider some of the physiological consequence arising from deficiency in this elusive and lesser-recognized micronutrient.


Assuntos
Guanina/análogos & derivados , Micronutrientes/metabolismo , Envelhecimento , Animais , Modelos Animais de Doenças , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Guanina/metabolismo , Guanina/farmacocinética , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Nucleosídeo Q/metabolismo , RNA de Transferência/metabolismo , Traduções
8.
ACS Chem Biol ; 7(1): 197-209, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21999246

RESUMO

The biosynthesis of GTP derived metabolites such as tetrahydrofolate (THF), biopterin (BH(4)), and the modified tRNA nucleosides queuosine (Q) and archaeosine (G(+)) relies on several enzymes of the Tunnel-fold superfamily. A subset of these proteins includes the 6-pyruvoyltetrahydropterin (PTPS-II), PTPS-III, and PTPS-I homologues, all members of the COG0720 family that have been previously shown to transform 7,8-dihydroneopterin triphosphate (H(2)NTP) into different products. PTPS-II catalyzes the formation of 6-pyruvoyltetrahydropterin in the BH(4) pathway, PTPS-III catalyzes the formation of 6-hydroxylmethyl-7,8-dihydropterin in the THF pathway, and PTPS-I catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin in the Q pathway. Genes of these three enzyme families are often misannotated as they are difficult to differentiate by sequence similarity alone. Using a combination of physical clustering, signature motif, phylogenetic codistribution analyses, in vivo complementation studies, and in vitro enzymatic assays, a complete reannotation of the COG0720 family was performed in prokaryotes. Notably, this work identified and experimentally validated dual function PTPS-I/III enzymes involved in both THF and Q biosynthesis. Both in vivo and in vitro analyses showed that the PTPS-I family could tolerate a translation of the active site cysteine and was inherently promiscuous, catalyzing different reactions on the same substrate or the same reaction on different substrates. Finally, the analysis and experimental validation of several archaeal COG0720 members confirmed the role of PTPS-I in archaeosine biosynthesis and resulted in the identification of PTPS-III enzymes with variant signature sequences in Sulfolobus species. This study reveals an expanded versatility of the COG0720 family members and illustrates that for certain protein families extensive comparative genomic analysis beyond homology is required to correctly predict function.


Assuntos
Proteínas Arqueais/metabolismo , Biopterinas/metabolismo , Guanosina Trifosfato/metabolismo , Neopterina/análogos & derivados , Fósforo-Oxigênio Liases/metabolismo , Sulfolobus/enzimologia , Motivos de Aminoácidos , Proteínas Arqueais/genética , Biopterinas/genética , Teste de Complementação Genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Neopterina/genética , Neopterina/metabolismo , Nucleosídeo Q/metabolismo , Fósforo-Oxigênio Liases/genética , Filogenia , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus/genética , Tetra-Hidrofolatos/metabolismo
9.
Acc Chem Res ; 44(12): 1380-8, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21615108

RESUMO

Five decades of research have identified more than 100 ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. However, the cellular and functional dynamics of RNA modification remain largely unexplored, mostly because of the lack of functional hypotheses and experimental methods for quantification and large-scale analysis. Many RNA modifications are not essential for life, which parallels the observation that many well-characterized protein and DNA modifications are not essential for life. Instead, increasing evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some examples of RNA modification that are dynamically controlled in cells. We also discuss some recently developed methods that have enhanced the ability to study the cellular dynamics of RNA modification. We discuss four specific examples of RNA modification in detail here. We begin with 4-thio uridine (s(4)U), which can act as a cellular sensor of near-UV light. Then we consider queuosine (Q), which is a potential biomarker for malignancy. Next we examine N(6)-methyl adenine (m(6)A), which is the prevalent modification in eukaryotic messenger RNAs (mRNAs). Finally, we discuss pseudouridine (ψ), which is inducible by nutrient deprivation. We then consider two recent technical advances that have stimulated the study of the cellular dynamics in modified ribonucleosides. The first is a genome-wide method that combines primer extension with a microarray. It was used to study the N(1)-methyl adenine (m(1)A) hypomodification in human transfer RNA (tRNA). The second is a quantitative mass spectrometric method used to investigate dynamic changes in a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic regulation of RNA modifications as well as hypotheses for discovering potential RNA demodification enzymes. We conclude by highlighting the need to develop new tools and to generate additional hypotheses for how these modifications function in cells. The study of the cellular dynamics of modified RNA remains a largely open area for new development, which underscores the rich potential for important advances as researchers drive this emerging field to the next level.


Assuntos
Processamento Pós-Transcricional do RNA , RNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Epigênese Genética , Células HeLa , Humanos , Nucleosídeo Q/química , Nucleosídeo Q/metabolismo , RNA/genética , RNA de Transferência/metabolismo , Raios Ultravioleta
10.
J Biol Chem ; 286(22): 19354-63, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21487017

RESUMO

Queuosine is a modified pyrrolopyrimidine nucleoside found in the anticodon loop of transfer RNA acceptors for the amino acids tyrosine, asparagine, aspartic acid, and histidine. Because it is exclusively synthesized by bacteria, higher eukaryotes must salvage queuosine or its nucleobase queuine from food and the gut microflora. Previously, animals made deficient in queuine died within 18 days of withdrawing tyrosine, a nonessential amino acid, from the diet (Marks, T., and Farkas, W. R. (1997) Biochem. Biophys. Res. Commun. 230, 233-237). Here, we show that human HepG2 cells deficient in queuine and mice made deficient in queuosine-modified transfer RNA, by disruption of the tRNA guanine transglycosylase enzyme, are compromised in their ability to produce tyrosine from phenylalanine. This has similarities to the disease phenylketonuria, which arises from mutation in the enzyme phenylalanine hydroxylase or from a decrease in the supply of its cofactor tetrahydrobiopterin (BH4). Immunoblot and kinetic analysis of liver from tRNA guanine transglycosylase-deficient animals indicates normal expression and activity of phenylalanine hydroxylase. By contrast, BH4 levels are significantly decreased in the plasma, and both plasma and urine show a clear elevation in dihydrobiopterin, an oxidation product of BH4, despite normal activity of the salvage enzyme dihydrofolate reductase. Our data suggest that queuosine modification limits BH4 oxidation in vivo and thereby potentially impacts on numerous physiological processes in eukaryotes.


Assuntos
Nucleosídeo Q/genética , Nucleosídeo Q/metabolismo , Pterinas/metabolismo , Tirosina/biossíntese , Tirosina/genética , Animais , Células Hep G2 , Humanos , Camundongos , Oxirredução , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
11.
Biosci Rep ; 30(2): 135-48, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19925456

RESUMO

tRNAs possess a high content of modified nucleosides, which display an incredible structural variety. These modified nucleosides are conserved in their sequence and have important roles in tRNA functions. Most often, hypermodified nucleosides are found in the wobble position of tRNAs, which play a direct role in maintaining translational efficiency and fidelity, codon recognition, etc. One of such hypermodified base is queuine, which is a base analogue of guanine, found in the first anticodon position of specific tRNAs (tyrosine, histidine, aspartate and asparagine tRNAs). These tRNAs of the 'Q-family' originally contain guanine in the first position of anticodon, which is post-transcriptionally modified with queuine by an irreversible insertion during maturation. Queuine is ubiquitously present throughout the living system from prokaryotes to eukaryotes, including plants. Prokaryotes can synthesize queuine de novo by a complex biosynthetic pathway, whereas eukaryotes are unable to synthesize either the precursor or queuine. They utilize salvage system and acquire queuine as a nutrient factor from their diet or from intestinal microflora. The tRNAs of the Q-family are completely modified in terminally differentiated somatic cells. However, hypomodification of Q-tRNA (queuosine-modified tRNA) is closely associated with cell proliferation and malignancy. The precise mechanisms of queuine- and Q-tRNA-mediated action are still a mystery. Direct or indirect evidence suggests that queuine or Q-tRNA participates in many cellular functions, such as inhibition of cell proliferation, control of aerobic and anaerobic metabolism, bacterial virulence, etc. The role of Q-tRNA modification in cellular machinery and the signalling pathways involved therein is the focus of this review.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nucleosídeo Q/metabolismo , RNA de Transferência/metabolismo , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Pentosiltransferases/metabolismo , RNA de Transferência/química , Transdução de Sinais/efeitos dos fármacos
12.
J Biosci ; 32(4): 747-54, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17762147

RESUMO

Queuosine (Q), a hypermodified nucleoside,occurs at the wobble position of transfer RNAs (tRNAs)with GUN anticodons. In eubacteria, absence of Q affects messenger RNA (mRNA) translation and reduces the virulence of certain pathogenic strains. In animal cells,changes in the abundance of Q have been shown to correlate with diverse phenomena including stress tolerance, cell proliferation and tumour growth but the function of Q in animals is poorly understood. Animals are thought to obtain Q (or its analogues) as a micronutrient from dietary sources such as gut micro flora. However,the difficulty of maintaining animals under bacteria-free conditions on Q-deficient diets has severely hampered the study of Q metabolism and function in animals. In this study,we show that as in higher animals, tRNAs in the nematode Caenorhabditis elegans are modified by Q and its sugar derivatives. When the worms were fed on Q-deficient Escherichia coli, Q modification was absent from the worm tRNAs suggesting that C.elegans lacks a de novo pathway of Q biosynthesis. The inherent advantages of C.elegans as a model organism, and the simplicity of conferring a Q-deficient phenotype on it make it an ideal system to investigate the function of Q modification in tRNA.


Assuntos
Caenorhabditis elegans/metabolismo , Dieta , Nucleosídeo Q/metabolismo , RNA de Transferência/metabolismo , Animais , Caenorhabditis elegans/genética , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , RNA de Transferência/isolamento & purificação
13.
RNA Biol ; 2(4): 143-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17114931

RESUMO

Queuosine is a highly modified nucleoside analogue of guanosine. It is present only in the first position of anticodon loop of specific tRNA i.e., tRNA(his), tRNA(asp), tRNA(asn) and tRNA(tyr) and post transcriptionally modified with base-for-base exchange of guanine to queuine. The transfer RNA modifying enzyme transfer RNA guanine transglycosylase (TGTase) catalyzes the modification of tRNAs. Transfer RNA is completely modified with respect to queuosine in mature tissue, however modification is often incomplete in mitotically active cells. Hypomodification of transfer RNA is correlated with cell proliferation and malignancy. In the present study queuosine modification of transfer RNA and TGTase activity is compared in normal, Dalton's lymphoma ascites transplanted (DLAT) cancerous and queuine treated DLAT cancerous mouse liver. Transfer RNA of cancerous mouse is hypomodified in terms of queuosine modification. TGTase activity of cancerous mouse is found to decrease to less then half of enzyme activity of normal mouse; suggesting that the enzyme may be responsible for transfer RNA hypomodification. Exogenous treatment of queuine during development of cancer improves the queuosine modification of transfer RNA. The activators NaPP and ATP enhance TGTase activity of normal and DLAT cancerous mouse, where as 7mG inhibits the TGTase activity.


Assuntos
Linfoma/metabolismo , Nucleosídeo Q/metabolismo , RNA de Transferência/metabolismo , Animais , Feminino , Linfoma/genética , Masculino , Camundongos , Camundongos Endogâmicos AKR
14.
Trends Biochem Sci ; 29(10): 519-22, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15450604

RESUMO

The activation and charging of amino acids onto the acceptor stems of their cognate tRNAs are the housekeeping functions of aminoacyl-tRNA synthetases. The availability of whole genome sequences has revealed the existence of synthetase-like proteins that have other functions linked to different aspects of cell metabolism and physiology. In eubacteria, a paralog of glutamyl-tRNA synthetase, which lacks the tRNA-binding domain, was found to aminoacylate tRNA(Asp) not on the 3'-hydroxyl group of the acceptor stem but on a cyclopentene diol of the modified nucleoside queuosine present at the wobble position of anticodon loop. This modified nucleoside might be a relic of an ancient code.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/metabolismo , Acilação , Adenosina/metabolismo , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Modelos Químicos , Estrutura Molecular , Nucleosídeo Q/análogos & derivados , Nucleosídeo Q/biossíntese , Nucleosídeo Q/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo
15.
Proc Natl Acad Sci U S A ; 101(20): 7536-41, 2004 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15096612

RESUMO

Aminoacyl-tRNA synthetases are modular enzymes composed of a central active site domain to which additional functional domains were appended in the course of evolution. Analysis of bacterial genome sequences revealed the presence of many shorter aminoacyl-tRNA synthetase paralogs. Here we report the characterization of a well conserved glutamyl-tRNA synthetase (GluRS) paralog (YadB in Escherichia coli) that is present in the genomes of >40 species of proteobacteria, cyanobacteria, and actinobacteria. The E. coli yadB gene encodes a truncated GluRS that lacks the C-terminal third of the protein and, consequently, the anticodon binding domain. Generation of a yadB disruption showed the gene to be dispensable for E. coli growth in rich and minimal media. Unlike GluRS, the YadB protein was able to activate glutamate in presence of ATP in a tRNA-independent fashion and to transfer glutamate onto tRNA(Asp). Neither tRNA(Glu) nor tRNA(Gln) were substrates. In contrast to canonical aminoacyl-tRNA, glutamate was not esterified to the 3'-terminal adenosine of tRNA(Asp). Instead, it was attached to the 2-amino-5-(4,5-dihydroxy-2-cyclopenten-1-yl) moiety of queuosine, the modified nucleoside occupying the first anticodon position of tRNA(Asp). Glutamyl-queuosine, like canonical Glu-tRNA, was hydrolyzed by mild alkaline treatment. Analysis of tRNA isolated under acidic conditions showed that this novel modification is present in normal E. coli tRNA; presumably it previously escaped detection as the standard conditions of tRNA isolation include an alkaline deacylation step that also causes hydrolysis of glutamyl-queuosine. Thus, this aminoacyl-tRNA synthetase fragment contributes to standard nucleotide modification of tRNA.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutamato-tRNA Ligase/metabolismo , RNA/metabolismo , Adenosina/metabolismo , Aminoacil-tRNA Sintetases/genética , Ácido Aspártico/metabolismo , Proteínas de Escherichia coli/genética , Ácido Glutâmico/metabolismo , Nucleosídeo Q/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo
16.
Biochemistry ; 42(18): 5312-20, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12731872

RESUMO

The bacterial enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) catalyzes the unprecedented transfer and isomerization of the ribosyl moiety of S-adenosylmethionine (AdoMet) to a modified tRNA nucleoside in the biosynthesis of the hypermodified nucleoside queuosine. The complexity of this reaction makes it a compelling problem in fundamental mechanistic enzymology, and as part of our mechanistic studies of the QueA-catalyzed reaction, we report here the elucidation of the steady-state kinetic mechanism. Bi-substrate kinetic analysis gave initial velocity patterns indicating a sequential mechanism, and provided the following kinetic constants: K (M)(tRNA)= 1.9 +/- 0.7 microM and K (M)(AdoMet)= 98 +/- 5.0 microM. Dead-end inhibition studies with the substrate analogues S-adenosylhomocysteine and sinefungin gave competitive inhibition patterns against AdoMet and noncompetitive patterns against preQ(1)-tRNA(Tyr), with K(i) values of 133 +/- 18 and 4.6 +/- 0.5 microM for sinefungin and S-adenosylhomocysteine, respectively. Product inhibition by adenine was noncompetitive against both substrates under conditions with a subsaturating cosubstrate concentration and uncompetitive against preQ(1)-tRNA(Tyr) when AdoMet was saturating. Inhibition by the tRNA product (oQ-tRNA(Tyr)) was competitive and noncompetitive against the substrates preQ(1)-tRNA(Tyr) and AdoMet, respectively. Inhibition by methionine was uncompetitive versus preQ(1)-tRNA(Tyr), but noncompetitive against AdoMet. However, when methionine inhibition was investigated at high AdoMet concentrations, the pattern was uncompetitive. Taken together, the data are consistent with a fully ordered sequential bi-ter kinetic mechanism in which preQ(1)-tRNA(Tyr) binds first followed by AdoMet, with product release in the order adenine, methionine, and oQ-tRNA. The chemical mechanism that we previously proposed for the QueA-catalyzed reaction [Daoud Kinzie, S., Thern, B., and Iwata-Reuyl, D. (2000) Org. Lett. 2, 1307-1310] is consistent with the constraints imposed by the kinetic mechanism determined here, and we suggest that the magnitude of the inhibition constants for the dead-end inhibitors may provide insight into the catalytic strategy employed by the enzyme.


Assuntos
Adenosina/análogos & derivados , Escherichia coli/enzimologia , Pentosiltransferases/química , Pentosiltransferases/metabolismo , RNA de Transferência/metabolismo , S-Adenosilmetionina/química , Adenosina/química , Adenosina/farmacologia , Ligação Competitiva , Catálise , Isomerases , Cinética , Espectroscopia de Ressonância Magnética , Nucleosídeo Q/metabolismo , Pentosiltransferases/antagonistas & inibidores , Ribose/metabolismo , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/farmacologia , S-Adenosilmetionina/farmacologia
17.
J Biochem ; 129(1): 13-7, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11134952

RESUMO

Queuosine is a modified nucleoside located at the first position of the tRNA anticodon, which is synthesized by tRNA-guanine transglycosylase (TGT). Although the levels of queuosine in cancer cells have been reported to be lower than those in normal cells, the expression levels of TGT remain to be determined. We determined the expression levels of a subunit of TGT (TGT60KD). Contrary of our expectations, the results revealed higher levels of expression of TGT60KD than that in normal cells, and the level of queuosine in the tRNA fraction corresponded with that of TGT60KD expression. These results suggest the possibilities that the expression levels of TGT60KD regulate TGT activity and the levels of queuosine, and that TGT60KD plays significant roles in carcinogenesis. To our knowledge, this is a first report of increased expression levels of TGT60KD in human cancer cells.


Assuntos
Leucemia/enzimologia , Nucleosídeo Q/metabolismo , Pentosiltransferases/biossíntese , Humanos , Leucemia/metabolismo , Leucemia/patologia , Leucócitos Mononucleares/metabolismo , Nucleosídeo Q/deficiência , Células Tumorais Cultivadas
18.
Mol Genet Metab ; 68(1): 56-67, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10479483

RESUMO

Queuosine-deficient tRNAs are often observed in neoplastic cells. In order to determine possible sites for malfunction of the multistep queuosine modification system, comprehensive studies were performed on two human neoplastic cell lines, the HxGC(3) colon adenocarcinoma and the MCF-7 breast adenocarcinoma, which are 100 and 50-60% queuosine deficient, respectively. These results were compared with data obtained from normal human fibroblast (HFF) cultures which maintain 100% queuosine-modified tRNA populations. Queuine uptake in all three cell types was similar and each demonstrated activation by protein kinase C (PKC). However, incorporation of queuine into tRNA by tRNA:guanine ribosyltransferase (TGRase; E.C. 2.4.2.24) and PKC-catalyzed activation of this enzyme occurred only in HFF and MCF-7 cells. The HxGC(3) cell line exhibited no TGRase activity as was expected. Treatment with 5-azacytidine (5-azaC) induced TGRase activity to a level 20% of that in HFF and MCF-7 cells; however, this 5-azaC-induced TGRase activity was not regulated by PKC. Salvage of the queuine base from tRNA degradation products has been shown in mammalian cells and was measured in the HFF cells. However, salvage activity in the MCF-7 cell line was deficient. Therefore, it was shown by direct measurements that the HxGC(3) cell line is completely lacking in queuosine-modified tRNA due to loss of functional TGRase, while the MCF-7 cell line has an inefficient queuine salvage mechanism resulting in a significant deficiency of queuosine-modified tRNA. These techniques can be applied to any cultured cell types to determine specific lesions of the queuosine modification system, which have been suggested to be associated with neoplastic progression.


Assuntos
Nucleosídeo Q/metabolismo , RNA de Transferência/metabolismo , Azacitidina/farmacologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , Guanina/metabolismo , Guanina/farmacocinética , Humanos , Masculino , Nucleosídeo Q/química , Nucleosídeo Q/genética , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Estaurosporina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo
19.
Biochemistry ; 32(30): 7811-7, 1993 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-8347586

RESUMO

Queuosine (Q) [7-(((4,5-cis-dihydroxy-2-cyclopenten-1-yl)amino)methyl)-7-deaz agu anosine] usually occurs in the first position of the anticodon of tRNAs specifying the amino acids asparagine, aspartate, histidine, and tyrosine. The hypermodified nucleoside is found in eubacteria and eucaryotes. Q is synthesized de novo exclusively in eubacteria; for eucaryotes the compound is a nutrient factor. In Escherichia coli the Q precursor (oQ), carrying a 2,3-epoxy-4,5-dihydroxycyclopentane ring, is formed from tRNA precursors containing 7-(aminomethyl)-7-deazaguanine (preQ1) by the queA gene product. A genomic queA mutant accumulating preQ1 tRNA was constructed. The QueA enzyme was overexpressed as a fusion protein with the glutathione S-transferase from Schistosoma japonicum and purified to homogeneity by affinity and anion-exchange chromatography. The enzyme QueA synthesizes oQ from preQ1 in a single S-adenosylmethionine- (AdoMet-) requiring step, indicating that the ribosyl moiety of AdoMet is transferred and isomerized to the epoxycyclopentane residue of oQ. The identity of oQ was verified by HPLC and directly combined HPLC/mass spectrometry. The formation of oQ was reconstituted in vitro, applying a synthetic RNA. A 17-nucleotide microhelix (corresponding to the anticodon stem and loop of tRNA(Tyr) from E. coli) is sufficient to act as the RNA substrate for oQ synthesis. We propose that QueA is an S-adenosylmethionine:tRNA ribosyltransferase-isomerase.


Assuntos
Guanina/análogos & derivados , Nucleosídeo Q/biossíntese , Pentosiltransferases/metabolismo , S-Adenosilmetionina/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Guanina/metabolismo , Isomerases , Dados de Sequência Molecular , Nucleosídeo Q/análogos & derivados , Nucleosídeo Q/genética , Nucleosídeo Q/metabolismo , Pentosiltransferases/biossíntese , Pentosiltransferases/química , Pentosiltransferases/genética , RNA de Transferência de Tirosina/metabolismo , S-Adenosilmetionina/química , Schistosoma japonicum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA