Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Nature ; 627(8005): 873-879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418882

RESUMO

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Assuntos
Proteínas Nucleares , Nucleossomos , Nucleotidiltransferases , Proteólise , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Degrons , Infecções por Vírus de DNA/imunologia , Vírus de DNA/imunologia , Vírus de DNA/metabolismo , DNA Viral/imunologia , DNA Viral/metabolismo , Imunidade Inata , Reconhecimento da Imunidade Inata , Interferon Tipo I/imunologia , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação
2.
Nature ; 609(7929): 1048-1055, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104563

RESUMO

Telomeres, the ends of eukaryotic chromosomes, play pivotal parts in ageing and cancer and are targets of DNA damage and the DNA damage response1-5. Little is known about the structure of telomeric chromatin at the molecular level. Here we used negative stain electron microscopy and single-molecule magnetic tweezers to characterize 3-kbp-long telomeric chromatin fibres. We also obtained the cryogenic electron microscopy structure of the condensed telomeric tetranucleosome and its dinucleosome unit. The structure displayed close stacking of nucleosomes with a columnar arrangement, and an unusually short nucleosome repeat  length that comprised about 132 bp DNA wound in a continuous superhelix around histone octamers. This columnar structure is primarily stabilized by the H2A carboxy-terminal and histone amino-terminal tails in a synergistic manner. The columnar conformation results in exposure of the DNA helix, which may make it susceptible to both DNA damage and the DNA damage response. The conformation also exists in an alternative open state, in which one nucleosome is unstacked and flipped out, which exposes the acidic patch of the histone surface. The structural features revealed in this work suggest mechanisms by which protein factors involved in telomere maintenance can access telomeric chromatin in its compact form.


Assuntos
Cromatina , DNA , Histonas , Conformação Molecular , Telômero , Cromatina/química , Cromatina/genética , Cromatina/ultraestrutura , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Microscopia Eletrônica , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Imagem Individual de Molécula , Telômero/química , Telômero/genética , Telômero/ultraestrutura
3.
FEBS J ; 289(1): 199-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231305

RESUMO

The combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1 and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodelling module of the nucleosome remodelling and deacetylase (NuRD) complex. To date, mechanisms by which the MGCC module acquires paralogue-specific function and specificity have not been addressed. Understanding the protein-protein interaction (PPI) network of the MGCC subunits is essential for defining underlying mechanisms of gene regulation. Therefore, using pulldown followed by mass spectrometry analysis (PD-MS), we report a proteome-wide interaction network of the MGCC module in a paralogue-specific manner. Our data also demonstrate that the disordered C-terminal region of CHD3/4/5 is a gateway to incorporate remodelling activity into both ChAHP (CHD4, ADNP, HP1γ) and NuRD complexes in a mutually exclusive manner. We define a short aggregation-prone region (APR) within the C-terminal segment of GATAD2B that is essential for the interaction of CHD4 and CDK2AP1 with the NuRD complex. Finally, we also report an association of CDK2AP1 with the nuclear receptor co-repressor (NCOR) complex. Overall, this study provides insight into the possible mechanisms through which the MGCC module can achieve specificity and diverse biological functions.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Mapas de Interação de Proteínas/genética , Proteoma/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/ultraestrutura , Complexos Multiproteicos/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética
4.
Mol Cell ; 81(24): 4994-5006.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919819

RESUMO

PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.


Assuntos
Dano ao DNA , DNA/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Células Cultivadas , DNA/genética , DNA/ultraestrutura , Fibroblastos/enzimologia , Humanos , Camundongos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
5.
Nat Commun ; 12(1): 5280, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489435

RESUMO

Little is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions. Different histone types exhibit distinct binding modes to specific DNA regions. Using a comprehensive set of experimental nucleosome complexes, we find that the majority of them target mutually exclusive regions with histone tails on nucleosomal/linker DNA around the super-helical locations ± 1, ± 2, and ± 7, and histone tails H3 and H4 contribute most to this process. These findings are explained within competitive binding and tail displacement models. Finally, we demonstrate the crosstalk between different histone tail post-translational modifications and mutations; those which change charge, suppress tail-DNA interactions and enhance histone tail dynamics and DNA accessibility.


Assuntos
DNA/química , Histonas/química , Nucleossomos/ultraestrutura , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/química , Animais , Sítios de Ligação , DNA/genética , DNA/metabolismo , Genoma Humano , Histonas/genética , Histonas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Eletricidade Estática , Transcrição Gênica , Xenopus laevis
6.
Elife ; 102021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486521

RESUMO

The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Transporte/genética , Microscopia Crioeletrônica , DNA Helicases/genética , DNA Helicases/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Nature ; 596(7872): 438-443, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34321665

RESUMO

The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.


Assuntos
Proteína BRCA1/metabolismo , Nucleossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Microscopia Crioeletrônica , Reparo do DNA , Histonas/química , Histonas/metabolismo , Recombinação Homóloga , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Domínios Proteicos , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/ultraestrutura , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/ultraestrutura
8.
Nat Commun ; 12(1): 2953, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012049

RESUMO

Recent cryo-EM structures show the highly dynamic nature of the MLL1-NCP (nucleosome core particle) interaction. Functional implication and regulation of such dynamics remain unclear. Here we show that DPY30 and the intrinsically disordered regions (IDRs) of ASH2L work together in restricting the rotational dynamics of the MLL1 complex on the NCP. We show that DPY30 binding to ASH2L leads to stabilization and integration of ASH2L IDRs into the MLL1 complex and establishes new ASH2L-NCP contacts. The significance of ASH2L-DPY30 interactions is demonstrated by requirement of both ASH2L IDRs and DPY30 for dramatic increase of processivity and activity of the MLL1 complex. This DPY30 and ASH2L-IDR dependent regulation is NCP-specific and applies to all members of the MLL/SET1 family of enzymes. We further show that DPY30 is causal for de novo establishment of H3K4me3 in ESCs. Our study provides a paradigm of how H3K4me3 is regulated on chromatin and how H3K4me3 heterogeneity can be modulated by ASH2L IDR interacting proteins.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Técnicas In Vitro , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Espalhamento a Baixo Ângulo , Fatores de Transcrição/genética , Difração de Raios X
9.
J Mol Biol ; 433(6): 166881, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33617899

RESUMO

Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.


Assuntos
Montagem e Desmontagem da Cromatina , DNA/química , Histonas/química , Proteínas Intrinsicamente Desordenadas/química , Nucleossomos/ultraestrutura , Animais , DNA/genética , DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Eletricidade Estática , Xenopus laevis/genética , Xenopus laevis/metabolismo
10.
Nature ; 590(7846): 498-503, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361816

RESUMO

Histone methyltransferases of the nuclear receptor-binding SET domain protein (NSD) family, including NSD1, NSD2 and NSD3, have crucial roles in chromatin regulation and are implicated in oncogenesis1,2. NSD enzymes exhibit an autoinhibitory state that is relieved by binding to nucleosomes, enabling dimethylation of histone H3 at Lys36 (H3K36)3-7. However, the molecular basis that underlies this mechanism is largely unknown. Here we solve the cryo-electron microscopy structures of NSD2 and NSD3 bound to mononucleosomes. We find that binding of NSD2 and NSD3 to mononucleosomes causes DNA near the linker region to unwrap, which facilitates insertion of the catalytic core between the histone octamer and the unwrapped segment of DNA. A network of DNA- and histone-specific contacts between NSD2 or NSD3 and the nucleosome precisely defines the position of the enzyme on the nucleosome, explaining the specificity of methylation to H3K36. Intermolecular contacts between NSD proteins and nucleosomes are altered by several recurrent cancer-associated mutations in NSD2 and NSD3. NSDs that contain these mutations are catalytically hyperactive in vitro and in cells, and their ectopic expression promotes the proliferation of cancer cells and the growth of xenograft tumours. Together, our research provides molecular insights into the nucleosome-based recognition and histone-modification mechanisms of NSD2 and NSD3, which could lead to strategies for therapeutic targeting of proteins of the NSD family.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Biocatálise , Linhagem Celular Tumoral , Proliferação de Células , Microscopia Crioeletrônica , Xenoenxertos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/ultraestrutura , Histonas/ultraestrutura , Humanos , Metilação , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestrutura , Nucleossomos/ultraestrutura , Fenótipo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/ultraestrutura
11.
J Mol Biol ; 433(6): 166720, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33221335

RESUMO

Chromatin is the epigenomic platform for diverse nuclear processes such as DNA repair, replication, transcription, telomere, and centromere function. In cancer cells, mutations in key processes result in DNA amplification, chromosome translocations, and chromothripsis, severely distorting the natural chromatin state. In normal and diseased states, dozens of chromatin effectors alter the physical integrity and dynamics of chromatin at the level of both single nucleosomes and arrays of nucleosomes folded into 3-dimensional shapes. Integrating these length scales, from the 10 nm sized nucleosome to mitotic chromosomes, whilst jostling within the crowded environment of the cell, cannot yet be achieved by a single technology. In this review, we discuss tools that have proven powerful in the investigation of nucleosome and chromatin fiber dynamics. We also provide a deeper focus into atomic force microscopy (AFM) applications that can bridge diverse length and time scales. Using time course AFM, we observe that chromatin condensation by H1.5 is dynamic, whereas using nano-indentation force spectroscopy we observe that both histone variants and nucleosome binding partners alter material properties of individual nucleosomes. Finally, we demonstrate how high-speed AFM can visualize plasmid DNA dynamics, intermittent nucleosome-nucleosome contacts, and changes in nucleosome phasing along a contiguous chromatin fiber. Altogether, the development of innovative technologies holds the promise of revealing the secret lives of nucleosomes, potentially bridging the gaps in our understanding of how chromatin works within living cells and tissues.


Assuntos
DNA/química , Epigênese Genética , Genoma , Histonas/química , Microscopia de Força Atômica/métodos , Nucleossomos/ultraestrutura , Animais , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/metabolismo , Pinças Ópticas , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula/métodos
12.
FEBS J ; 288(10): 3231-3245, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283408

RESUMO

The multi-subunit nucleosome remodeling and deacetylase (NuRD) complex consists of seven subunits, each of which comprises two or three paralogs in vertebrates. These paralogs define mutually exclusive and functionally distinct complexes. In addition, several proteins in the complex are multimeric, which complicates structural studies. Attempts to purify sufficient amounts of endogenous complex or recombinantly reconstitute the complex for structural studies have proven quite challenging. Until now, only substructures of individual domains or proteins and low-resolution densities of (partial) complexes have been reported. In this study, we comprehensively investigated the relative orientation of different subunits within the NuRD complex using multiple cross-link IP mass spectrometry (xIP-MS) experiments. Our results confirm that the core of the complex is formed by MTA, RBBP, and HDAC proteins. Assembly of a copy of MBD and GATAD2 onto this core enables binding of the peripheral CHD and CDK2AP proteins. Furthermore, our experiments reveal that not only CDK2AP1 but also CDK2AP2 interacts with the NuRD complex. This interaction requires the C terminus of CHD proteins. Our data provide a more detailed understanding of the topology of the peripheral NuRD subunits relative to the core complex. DATABASE: Proteomics data are available in the PRIDE database under the accession numbers PXD017244 and PXD017378.


Assuntos
Quinases Ciclina-Dependentes/química , Fatores de Transcrição GATA/química , Histona Desacetilases/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Nucleossomos/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Células HeLa , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Espectrometria de Massas/métodos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Modelos Moleculares , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Nucleic Acids Res ; 48(22): 12972-12982, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264408

RESUMO

Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Repressoras/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Transativadores/genética , Sequência de Aminoácidos/genética , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/ultraestrutura , Histona Desacetilase 1/genética , Histona Desacetilase 1/ultraestrutura , Histona Desacetilases/genética , Histona Desacetilases/ultraestrutura , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/ultraestrutura , Nucleossomos/genética , Nucleossomos/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Repressoras/ultraestrutura , Proteína 4 de Ligação ao Retinoblastoma/ultraestrutura , Transativadores/ultraestrutura
14.
PLoS One ; 15(11): e0240932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33141820

RESUMO

Poly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Microscopia Crioeletrônica , Humanos , Técnicas In Vitro , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Mutação Puntual , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Nature ; 585(7826): 609-613, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939087

RESUMO

Breaks in DNA strands recruit the protein PARP1 and its paralogue PARP2 to modify histones and other substrates through the addition of mono- and poly(ADP-ribose) (PAR)1-5. In the DNA damage responses, this post-translational modification occurs predominantly on serine residues6-8 and requires HPF1, an accessory factor that switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine9,10. Poly(ADP) ribosylation (PARylation) is important for subsequent chromatin decompaction and provides an anchor for the recruitment of downstream signalling and repair factors to the sites of DNA breaks2,11. Here, to understand the molecular mechanism by which PARP enzymes recognize DNA breaks within chromatin, we determined the cryo-electron-microscopic structure of human PARP2-HPF1 bound to a nucleosome. This showed that PARP2-HPF1 bridges two nucleosomes, with the broken DNA aligned in a position suitable for ligation, revealing the initial step in the repair of double-strand DNA breaks. The bridging induces structural changes in PARP2 that signal the recognition of a DNA break to the catalytic domain, which licenses HPF1 binding and PARP2 activation. Our data suggest that active PARP2 cycles through different conformational states to exchange NAD+ and substrate, which may enable PARP enzymes to act processively while bound to chromatin. The processes of PARP activation and the PARP catalytic cycle we describe can explain mechanisms of resistance to PARP inhibitors and will aid the development of better inhibitors as cancer treatments12-16.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Biocatálise , Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , DNA/metabolismo , Reparo do DNA , Ativação Enzimática , Humanos , Modelos Moleculares , NAD/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Nucleossomos/química , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/ultraestrutura , Domínios Proteicos
16.
Nature ; 587(7835): 668-672, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911482

RESUMO

The DNA sensor cyclic GMP-AMP synthase (cGAS) initiates innate immune responses following microbial infection, cellular stress and cancer1. Upon activation by double-stranded DNA, cytosolic cGAS produces 2'3' cGMP-AMP, which triggers the induction of inflammatory cytokines and type I interferons 2-7. cGAS is also present inside the cell nucleus, which is replete with genomic DNA8, where chromatin has been implicated in restricting its enzymatic activity9. However, the structural basis for inhibition of cGAS by chromatin remains unknown. Here we present the cryo-electron microscopy structure of human cGAS bound to nucleosomes. cGAS makes extensive contacts with both the acidic patch of the histone H2A-H2B heterodimer and nucleosomal DNA. The structural and complementary biochemical analysis also find cGAS engaged to a second nucleosome in trans. Mechanistically, binding of the nucleosome locks cGAS into a monomeric state, in which steric hindrance suppresses spurious activation by genomic DNA. We find that mutations to the cGAS-acidic patch interface are sufficient to abolish the inhibitory effect of nucleosomes in vitro and to unleash the activity of cGAS on genomic DNA in living cells. Our work uncovers the structural basis of the interaction between cGAS and chromatin and details a mechanism that permits self-non-self discrimination of genomic DNA by cGAS.


Assuntos
Microscopia Crioeletrônica , Nucleossomos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Células HeLa , Histonas/metabolismo , Humanos , Modelos Moleculares , Mutação , Nucleossomos/química , Nucleossomos/ultraestrutura , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura
17.
J Cell Physiol ; 235(12): 9601-9608, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32385931

RESUMO

The hominidae-specific histone variant H4G is expressed in breast cancer patients in a stage-dependent manner. H4G localizes primarily in the nucleoli via its interaction with nucleophosmin (NPM1). H4G is involved in rDNA transcription and ribosome biogenesis, which facilitates breast cancer cell proliferation. However, the molecular mechanism underlying this process remains unknown. Here, we show that H4G is not stably incorporated into nucleolar chromatin, even with the chaperoning assistance of NPM1. H4G likely form transient nucleosome-like-structure that undergoes rapid dissociation. In addition, the nucleolar chromatin in H4GKO cells is more compact than WT cells. Altogether, our results suggest that H4G relaxes the nucleolar chromatin and enhances rRNA transcription by forming destabilized nucleosome in breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Histonas/genética , Proteínas Nucleares/genética , Transcrição Gênica , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Proliferação de Células/genética , Cromatina/genética , Cromatina/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Variação Genética/genética , Humanos , Nucleofosmina , Nucleossomos/genética , Nucleossomos/ultraestrutura , RNA Ribossômico/genética
18.
Nature ; 579(7799): 452-455, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188938

RESUMO

The chromatin-remodelling complex SWI/SNF is highly conserved and has critical roles in various cellular processes, including transcription and DNA-damage repair1,2. It hydrolyses ATP to remodel chromatin structure by sliding and evicting histone octamers3-8, creating DNA regions that become accessible to other essential factors. However, our mechanistic understanding of the remodelling activity is hindered by the lack of a high-resolution structure of complexes from this family. Here we report the cryo-electron microscopy structure of Saccharomyces cerevisiae SWI/SNF bound to a nucleosome, at near-atomic resolution. In the structure, the actin-related protein (Arp) module is sandwiched between the ATPase and the rest of the complex, with the Snf2 helicase-SANT associated (HSA) domain connecting all modules. The body contains an assembly scaffold composed of conserved subunits Snf12 (also known as SMARCD or BAF60), Snf5 (also known as SMARCB1, BAF47 or INI1) and an asymmetric dimer of Swi3 (also known as SMARCC, BAF155 or BAF170). Another conserved subunit, Swi1 (also known as ARID1 or BAF250), resides in the core of SWI/SNF, acting as a molecular hub. We also observed interactions between Snf5 and the histones at the acidic patch, which could serve as an anchor during active DNA translocation. Our structure enables us to map and rationalize a subset of cancer-related mutations in the human SWI/SNF complex and to propose a model for how SWI/SNF recognizes and remodels the +1 nucleosome to generate nucleosome-depleted regions during gene activation9.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Nucleossomos/química , Nucleossomos/ultraestrutura , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Fatores de Transcrição/ultraestrutura , Sequência de Aminoácidos , Animais , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Camundongos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/metabolismo , Xenopus
19.
Nature ; 579(7799): 448-451, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188943

RESUMO

Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and -1 nucleosomes that flank NDRs8,9. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity5. The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.


Assuntos
Microscopia Crioeletrônica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Animais , Transporte Biológico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Drosophila melanogaster , Humanos , Camundongos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Nucleossomos/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Xenopus laevis
20.
Nat Commun ; 10(1): 5540, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804488

RESUMO

Mixed lineage leukemia (MLL) family histone methyltransferases are enzymes that deposit histone H3 Lys4 (K4) mono-/di-/tri-methylation and regulate gene expression in mammals. Despite extensive structural and biochemical studies, the molecular mechanisms whereby the MLL complexes recognize histone H3K4 within nucleosome core particles (NCPs) remain unclear. Here we report the single-particle cryo-electron microscopy (cryo-EM) structure of the NCP-bound human MLL1 core complex. We show that the MLL1 core complex anchors to the NCP via the conserved RbBP5 and ASH2L, which interact extensively with nucleosomal DNA and the surface close to the N-terminal tail of histone H4. Concurrent interactions of RbBP5 and ASH2L with the NCP uniquely align the catalytic MLL1SET domain at the nucleosome dyad, thereby facilitating symmetrical access to both H3K4 substrates within the NCP. Our study sheds light on how the MLL1 complex engages chromatin and how chromatin binding promotes MLL1 tri-methylation activity.


Assuntos
Microscopia Crioeletrônica/métodos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Nucleossomos/metabolismo , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/ultraestrutura , Humanos , Lisina/metabolismo , Metilação , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA