Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Cancer ; 24(1): 624, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778317

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has a high mortality rate, and the mechanisms underlying tumor development and progression remain unclear. However, inactivated tumor suppressor genes might play key roles. DNA methylation is a critical regulatory mechanism for inactivating tumor suppressor genes in HCC. Therefore, this study investigated methylation-related tumor suppressors in HCC to identify potential biomarkers and therapeutic targets. METHODS: We assessed genome-wide DNA methylation in HCC using whole genome bisulfite sequencing (WGBS) and RNA sequencing, respectively, and identified the differential expression of methylation-related genes, and finally screened phosphodiesterase 7B (PDE7B) for the study. The correlation between PDE7B expression and clinical features was then assessed. We then analyzed the changes of PDE7B expression in HCC cells before and after DNA methyltransferase inhibitor treatment by MassArray nucleic acid mass spectrometry. Furthermore, HCC cell lines overexpressing PDE7B were constructed to investigate its effect on HCC cell function. Finally, GO and KEGG were applied for the enrichment analysis of PDE7B-related pathways, and their effects on the expression of pathway proteins and EMT-related factors in HCC cells were preliminarily explored. RESULTS: HCC exhibited a genome-wide hypomethylation pattern. We screened 713 hypomethylated and 362 hypermethylated mCG regions in HCC and adjacent normal tissues. GO analysis showed that the main molecular functions of hypermethylation and hypomethylation were "DNA-binding transcriptional activator activity" and "structural component of ribosomes", respectively, whereas KEGG analysis showed that they were enriched in "bile secretion" and "Ras-associated protein-1 (Rap1) signaling pathway", respectively. PDE7B expression was significantly down-regulated in HCC tissues, and this low expression was negatively correlated with recurrence and prognosis of HCC. In addition, DNA methylation regulates PDE7B expression in HCC. On the contrary, overexpression of PDE7B inhibited tumor proliferation and metastasis in vitro. In addition, PDE7B-related genes were mainly enriched in the PI3K/ATK signaling pathway, and PDE7B overexpression inhibited the progression of PI3K/ATK signaling pathway-related proteins and EMT. CONCLUSION: PDE7B expression in HCC may be regulated by promoter methylation. PDE7B can regulate the EMT process in HCC cells through the PI3K/AKT pathway, which in turn affects HCC metastasis and invasion.


Assuntos
Carcinoma Hepatocelular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7 , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Genes Supressores de Tumor , Masculino , Proliferação de Células/genética , Feminino , Metástase Neoplásica , Movimento Celular/genética
2.
Inflammopharmacology ; 30(6): 2051-2061, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272040

RESUMO

Neurodegenerative illness develops as a result of genetic defects that cause changes at numerous levels, including genomic products and biological processes. It entails the degradation of cyclic nucleotides, cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP). PDE7 modulates intracellular cAMP signalling, which is involved in numerous essential physiological and pathological processes. For the therapy of neurodegenerative illnesses, the normalization of cyclic nucleotide signalling through PDE inhibition remains intriguing. In this article, we shall examine the role of PDEs in neurodegenerative diseases. Alzheimer's disease, Multiple sclerosis, Huntington's disease, Parkinson's disease, Stroke, and Epilepsy are related to alterations in PDE7 expression in the brain. Earlier, animal models of neurological illnesses including Alzheimer's disease, Parkinson's disease, and multiple sclerosis have had significant results to PDE7 inhibitors, i.e., VP3.15; VP1.14. In addition, modulation of CAMP/CREB/GSK/PKA signalling pathways involving PDE7 in neurodegenerative diseases has been addressed. To understand the etiology, treatment options of these disorders mediated by PDE7 and its subtypes can be the focus of future research.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Esclerose Múltipla/tratamento farmacológico
3.
Neuropharmacology ; 196: 108694, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245775

RESUMO

Phosphodiesterase 7 (PDE7), one of the 11 phosphodiesterase (PDE) families, specifically hydrolyzes cyclic 3', 5'-adenosine monophosphate (cAMP). PDE7 is involved in many important functional processes in physiology and pathology by regulating intracellular cAMP signaling. Studies have demonstrated that PDE7 is widely expressed in the central nervous system (CNS) and potentially related to pathogenesis of many CNS diseases. Here, we summarized the classification and distribution of PDE7 in the brain and its functional roles in the mediation of CNS diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), and schizophrenia. It is expected that the findings collected here will not only lead to a better understanding of the mechanisms by which PDE7 mediates CNS function and diseases, but also aid in the development of novel drugs targeting PDE7 for treatment of CNS diseases.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Esclerose Múltipla/metabolismo , Doença de Parkinson/metabolismo , Esquizofrenia/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Humanos , Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Isoformas de Proteínas
4.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854348

RESUMO

Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP-a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.


Assuntos
Doenças Autoimunes/imunologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Doenças Respiratórias/imunologia , Linfócitos T/metabolismo , Processamento Alternativo , Animais , Doenças Autoimunes/tratamento farmacológico , Divisão Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Humanos , Ativação Linfocitária , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Doenças Respiratórias/tratamento farmacológico , Linfócitos T/efeitos dos fármacos
5.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503342

RESUMO

Phosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g., roflumilast, are already recommended for clinical use. Due to numerous reports indicating that elevated intracellular cAMP levels may contribute to the alleviation of inflammation and airway fibrosis, new and effective PDE inhibitors are constantly being sought. Recently, a group of 7,8-disubstituted purine-2,6-dione derivatives, representing a novel and prominent pan-PDE inhibitors has been synthesized. Some of them were reported to modulate transient receptor potential ankyrin 1 (TRPA1) ion channels as well. In this study, we investigated the effect of selected derivatives (832-a pan-PDE inhibitor, 869-a TRPA1 modulator, and 145-a pan-PDE inhibitor and a weak TRPA1 modulator) on cellular responses related to airway remodeling using MRC-5 human lung fibroblasts. Compound 145 exerted the most considerable effect in limiting fibroblast to myofibroblasts transition (FMT) as well as proliferation, migration, and contraction. The effect of this compound appeared to depend mainly on its strong PDE inhibitory properties, and not on its effects on TRPA1 modulation. The strong anti-remodeling effects of 145 required activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway leading to inhibition of transforming growth factor type ß1 (TGF-ß1) and Smad-dependent signaling in MRC-5 cells. These data suggest that the TGF-ß pathway is a major target for PDE inhibitors leading to inhibitory effects on cell responses involved in airway remodeling. These potent, pan-PDE inhibitors from the group of 7,8-disubstituted purine-2,6-dione derivatives, thus represent promising anti-remodeling drug candidates for further research.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Cálcio/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo
6.
PLoS One ; 15(1): e0227279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999703

RESUMO

Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the α subunit of the G protein-coupled receptor complex (Gsα). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (GsαR201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the GsαR201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Cromograninas/genética , Displasia Fibrosa Óssea/patologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células-Tronco/fisiologia , Proteínas ADAM/metabolismo , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Cromograninas/metabolismo , Simulação por Computador , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Conjuntos de Dados como Assunto , Displasia Fibrosa Óssea/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteogênese/genética , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Estromais/fisiologia , Regulação para Cima
7.
Mol Neurobiol ; 57(2): 806-822, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31473904

RESUMO

Parkinson's disease is characterized by a loss of dopaminergic neurons in the ventral midbrain. This disease is diagnosed when around 50% of these neurons have already died; consequently, therapeutic treatments start too late. Therefore, an urgent need exists to find new targets involved in the onset and progression of the disease. Phosphodiesterase 7 (PDE7) is a key enzyme involved in the degradation of intracellular levels of cyclic adenosine 3', 5'-monophosphate in different cell types; however, little is known regarding its role in neurodegenerative diseases, and specifically in Parkinson's disease. We have previously shown that chemical as well as genetic inhibition of this enzyme results in neuroprotection and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson's disease. Here, we have used in vitro and in vivo models of Parkinson's disease to study the regulation of PDE7 protein levels. Our results show that PDE7 is upregulated after an injury both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures and after lipopolysaccharide or 6-hidroxydopamine injection in the Substantia nigra pars compacta of adult mice. PDE7 increase takes place mainly in degenerating dopaminergic neurons and in microglia cells. This enhanced expression appears to be direct since 6-hydroxydopamine and lipopolysaccharide increase the expression of a 962-bp fragment of its promoter. Taking together, these results reveal an essential function for PDE7 in the pathways leading to neurodegeneration and inflammatory-mediated brain damage and suggest novel roles for PDE7 in neurodegenerative diseases, specifically in PD, opening the door for new therapeutic interventions.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Animais , Apoptose , Linhagem Celular , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Embrião de Mamíferos/enzimologia , Humanos , Masculino , Mesencéfalo/enzimologia , Mesencéfalo/patologia , Neuroglia/enzimologia , Neuroglia/patologia , Oxidopamina , Regiões Promotoras Genéticas/genética , Ratos Wistar , Substância Negra/enzimologia , Substância Negra/patologia
8.
Bull Exp Biol Med ; 167(4): 467-469, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31493257

RESUMO

Second messengers cAMP and cGMP play an important role in synaptic plasticity and memory consolidation. The inhibitors of phosphodiesterases, enzymes hydrolyzing these cyclic nucleotides, are actively studied as potential drugs for the treatment of various cognitive disorders and depression. We studied the effects of a new inhibitor of phosphodiesterase 7 AGF2.20 on the formation of long-term potentiation in hippocampal slices. Administration of AGF2.20 (10 nM) in 90 min after weak tetanization prevented a decrease in the amplitude of excitatory post-synaptic potentials and stabilized long-term potentiation. These data attest to the involvement of phosphodiesterase 7 in the development of synaptic plasticity in the hippocampus. The inhibitor AGF2.20 is considered for the further analysis as a promising substance for the treatment of cognitive impairments.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Inibidores Enzimáticos/farmacologia , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos
9.
Endocrinology ; 159(5): 2142-2152, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608743

RESUMO

Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Ovulação/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Feminino , Meiose/efeitos dos fármacos , Camundongos , Oócitos/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Rolipram/farmacologia
10.
Alzheimers Res Ther ; 10(1): 24, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458418

RESUMO

BACKGROUND: The phosphodiesterase (PDE) 7 inhibitor S14 is a cell-permeable small heterocyclic molecule that is able to cross the blood-brain barrier. We previously found that intraperitoneal treatment with S14 exerted neuroprotection in an Alzheimer's disease (AD) model (in APP/PS1 mice). The objective of this study was to investigate the neurogenic and cellular effects of oral administration of S14 on amyloid ß (Aß) overload. METHODS: We orally administered the PDE7 inhibitor S14 (15 mg/kg/day) or vehicle in 6-month-old APP/PS1 mice. After 5 weeks of S14 treatment, we evaluated cognitive functions and brain tissues. We also assessed the effects of S14 on the Aß-treated human neuroblastome SH-SY5Y cell line. RESULTS: Targeting the cyclic adenosine monophosphate (cAMP)/cAMP-response element binding protein (CREB) pathway, S14 rescued cognitive decline by improving hippocampal neurogenesis in APP/PS1 transgenic mice. Additionally, S14 treatment reverted the Aß-induced reduction in mitochondrial mass in APP/PS1 mice and in the human neuroblastoma SH-SY5Y cells co-exposed to Aß. The restoration of the mitochondrial mass was found to be a dual effect of S14: a rescue of the mitochondrial biogenesis formerly slowed down by Aß overload, and a reduction in the Aß-increased mitochondrial clearance mechanism of mitophagy. CONCLUSIONS: Here, we show new therapeutic effects of the PDE7 inhibitor, confirming S14 as a potential therapeutic drug for AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/enzimologia , Hipocampo/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Quinazolinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Humanos , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dinâmica Mitocondrial/genética , Neurogênese/genética , Inibidores de Fosfodiesterase/uso terapêutico , Quinazolinas/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Stem Cells ; 35(2): 458-472, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27538853

RESUMO

The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.


Assuntos
Envelhecimento/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Hipocampo/enzimologia , Hipocampo/crescimento & desenvolvimento , Ventrículos Laterais/enzimologia , Ventrículos Laterais/crescimento & desenvolvimento , Neurogênese , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Giro Denteado/citologia , Hipocampo/efeitos dos fármacos , Ventrículos Laterais/efeitos dos fármacos , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Inibidores de Fosfodiesterase/farmacologia , Ratos Wistar , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
12.
Br J Pharmacol ; 172(17): 4277-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994655

RESUMO

BACKGROUND AND PURPOSE: cAMP plays an important role in the transduction of signalling pathways involved in neuroprotection and immune regulation. Control of the levels of this nucleotide by inhibition of cAMP-specific PDEs such as PDE7 may affect the pathological processes of neuroinflammatory diseases like multiple sclerosis (MS). In the present study, we evaluated the therapeutic potential of the selective PDE7 inhibitor, TC3.6, in a model of primary progressive multiple sclerosis (PPMS), a rare and severe variant of MS. EXPERIMENTAL APPROACH: Theiler's murine encephalomyelitis virus-induced demyelinated disease (TMEV-IDD) is one of the models used to validate the therapeutic efficacy of new drugs in MS. As recent studies have analysed the effect of PDE7 inhibitors in the EAE model of MS, here the TMEV-IDD model was used to test their efficacy in a progressive variant of MS. Mice were subjected to two protocols of TC3.6 administration: on the pre-symptomatic phase and once the disease was established. KEY RESULTS: Treatment with TC3.6 ameliorated the disease course and improved motor deficits of infected mice. This was associated with down-regulation of microglial activation and reduced cellular infiltrates. Decreased expression of pro-inflammatory mediators such as COX-2 and the cytokines, IL-1ß, TNF-α, IFN-γ and IL-6 in the spinal cord of TMEV-infected mice was also observed after TC3.6 administration. CONCLUSION: These findings support the importance of PDE7 inhibitors, and specifically TC3.6, as a novel class of agents with therapeutic potential for PPMS. Preclinical studies are needed to determine whether their effects translate into durable clinical benefits.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Modelos Animais de Doenças , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Animais Recém-Nascidos , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Feminino , Camundongos , Esclerose Múltipla Crônica Progressiva/enzimologia , Esclerose Múltipla Crônica Progressiva/patologia , Células PC12 , Inibidores de Fosfodiesterase/farmacologia , Ratos
13.
PLoS One ; 9(9): e107397, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203500

RESUMO

Cell-cell interactions between tumor cells and constituents of their microenvironment are critical determinants of tumor tissue biology and therapeutic responses. Interactions between glioblastoma (GBM) cells and endothelial cells (ECs) establish a purported cancer stem cell niche. We hypothesized that genes regulated by these interactions would be important, particularly as therapeutic targets. Using a computational approach, we deconvoluted expression data from a mixed physical co-culture of GBM cells and ECs and identified a previously undescribed upregulation of the cAMP specific phosphodiesterase PDE7B in GBM cells in response to direct contact with ECs. We further found that elevated PDE7B expression occurs in most GBM cases and has a negative effect on survival. PDE7B overexpression resulted in the expansion of a stem-like cell subpopulation in vitro and increased tumor growth and aggressiveness in an in vivo intracranial GBM model. Collectively these studies illustrate a novel approach for studying cell-cell interactions and identifying new therapeutic targets like PDE7B in GBM.


Assuntos
Comunicação Celular/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Nicho de Células-Tronco/fisiologia
14.
ACS Chem Neurosci ; 5(3): 194-204, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24437940

RESUMO

Chronic neuroinflammation has been increasingly recognized as a primary mechanism underlying acute brain injury and neurodegenerative diseases. Enhanced expression of diverse pro-inflammatory agents in glial cells has been shown to contribute to the cell death that takes place in these disorders. Previous data from our group have shown that different inhibitors of the cyclic adenosine monophosphate (cAMP) specific phosphodiesterase 7 (PDE7) and glycogen synthase kinase-3 (GSK-3) enzymes are potent anti-inflammatory agents in different models of brain injury. In this study, we investigated cross-talk between PDE7 and GSK-3, two relevant therapeutic targets for neurological disorders, using a chemical approach. To this end, we compared specific inhibitors of GSK-3 and PDE7 with dual inhibitors of both enzymes with regard to anti-inflammatory effects in primary cultures of glial cells treated with lipopolysaccharide. Our results show that the GSK-3 inhibitors act exclusively by inhibition of this enzyme. By contrast, PDE7 inhibitors exert their effects via inhibition of PDE7 to increase intracellular cAMP levels but also through indirect inhibition of GSK-3. Activation of protein kinase A by cAMP results in phosphorylation of Ser9 of GSK-3 and subsequent inhibition. Our results indicate that the indirect inhibition of GSK-3 by PDE7 inhibitors is an important mechanism that should be considered in the future development of pharmacological treatments.


Assuntos
Córtex Cerebral/enzimologia , Córtex Cerebral/imunologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neuroglia/enzimologia , Neuroglia/imunologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/imunologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Immunoblotting , Imuno-Histoquímica , Lipopolissacarídeos/toxicidade , Neuroglia/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Nitritos/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
15.
PLoS One ; 7(10): e47826, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094097

RESUMO

BACKGROUND: We investigated the role of cyclic nucleotide phosphodiesterases (PDEs) in the spatiotemporal control of intracellular cAMP concentrations in rat aortic smooth muscle cells (RASMCs). METHODOLOGY/PRINCIPAL FINDINGS: The rank order of PDE families contributing to global cAMP-PDE activity was PDE4> PDE3  =  PDE1. PDE7 mRNA expression but not activity was confirmed. The Fluorescence Resonance Energy Transfer (FRET)-based cAMP sensor, Epac1-camps, was used to monitor the time course of cytosolic cAMP changes. A pulse application of the ß-adrenoceptor (ß-AR) agonist isoproterenol (Iso) induced a transient FRET signal. Both ß(1)- and ß(2)-AR antagonists decreased the signal amplitude without affecting its kinetics. The non-selective PDE inhibitor (IBMX) dramatically increased the amplitude and delayed the recovery phase of Iso response, in agreement with a role of PDEs in degrading cAMP produced by Iso. Whereas PDE1, PDE3 and PDE7 blockades [with MIMX, cilostamide (Cil) and BRL 50481 (BRL), respectively] had no or minor effect on Iso response, PDE4 inhibition [with Ro-20-1724 (Ro)] strongly increased its amplitude and delayed its recovery. When Ro was applied concomitantly with MIMX or Cil (but not with BRL), the Iso response was drastically further prolonged. PDE4 inhibition similarly prolonged both ß(1)- and ß(2)-AR-mediated responses. When a membrane-targeted FRET sensor was used, PDE3 and PDE4 acted in a synergistic manner to hydrolyze the submembrane cAMP produced either at baseline or after ß-AR stimulation. CONCLUSION/SIGNIFICANCE: Our study underlines the importance of cAMP-PDEs in the dynamic control of intracellular cAMP signals in RASMCs, and demonstrates the prominent role of PDE4 in limiting ß-AR responses. PDE4 inhibition unmasks an effect of PDE1 and PDE3 on cytosolic cAMP hydrolyzis, and acts synergistically with PDE3 inhibition at the submembrane compartment. This suggests that mixed PDE4/PDE1 or PDE4/PDE3 inhibitors would be attractive to potentiate cAMP-related functions in vascular cells.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Transferência Ressonante de Energia de Fluorescência , Isoproterenol/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Inibidores de Fosfodiesterase/farmacologia , Cultura Primária de Células , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Tempo
17.
J Hum Genet ; 56(9): 676-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21796143

RESUMO

Expression of cyclic adenosine monophosphate-specific phosphodiesterase 7B (PDE7B) mRNA is increased in patients with chronic lymphocytic leukemia (CLL), thus suggesting that variation may occur in the PDE7B gene in CLL. As genetic variation in other PDE family members has been shown to associate with numerous clinical disorders (reviewed in this manuscript), we sought to identify single-nucleotide polymorphisms (SNPs) in the PDE7B gene promoter and coding region of 93 control subjects and 154 CLL patients. We found that the PDE7B gene has a 5' non-coding region SNP -347C>T that occurs with similar frequency in CLL patients (1.9%) and controls (2.7%). Tested in vitro, -347C>T has less promoter activity than a wild-type construct. The low frequency of this 5' untranslated region variant indicates that it does not explain the higher PDE7B expression in patients with CLL but it has the potential to influence other settings that involve a role for PDE7B.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Leucemia Linfocítica Crônica de Células B/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões 5' não Traduzidas/genética , Adulto , Idoso , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Feminino , Frequência do Gene , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
PLoS One ; 6(4): e18136, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21494592

RESUMO

Phosphodiesterases (PDEs) modulate the cellular proliferation involved in the pathophysiology of pulmonary hypertension (PH) by hydrolyzing cAMP and cGMP. The present study was designed to determine whether any of the recently identified PDEs (PDE7-PDE11) contribute to progressive pulmonary vascular remodeling in PH. All in vitro experiments were performed with lung tissue or pulmonary arterial smooth muscle cells (PASMCs) obtained from control rats or monocrotaline (MCT)-induced pulmonary hypertensive (MCT-PH) rats, and we examined the effects of the PDE10 inhibitor papaverine (Pap) and specific small interfering RNA (siRNA). In addition, papaverine was administrated to MCT-induced PH rats from day 21 to day 35 by continuous intravenous infusion to examine the in vivo effects of PDE10A inhibition. We found that PDE10A was predominantly present in the lung vasculature, and the mRNA, protein, and activity levels of PDE10A were all significantly increased in MCT PASMCs compared with control PASMCs. Papaverine and PDE10A siRNA induced an accumulation of intracellular cAMP, activated cAMP response element binding protein and attenuated PASMC proliferation. Intravenous infusion of papaverine in MCT-PH rats resulted in a 40%-50% attenuation of the effects on pulmonary hypertensive hemodynamic parameters and pulmonary vascular remodeling. The present study is the first to demonstrate a central role of PDE10A in progressive pulmonary vascular remodeling, and the results suggest a novel therapeutic approach for the treatment of PH.


Assuntos
Pulmão/irrigação sanguínea , Pulmão/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Regulação para Cima , Animais , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Pulmão/fisiopatologia , Masculino , Monocrotalina , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Papaverina/farmacologia , Papaverina/uso terapêutico , Diester Fosfórico Hidrolases/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Doadores de Tecidos , Regulação para Cima/efeitos dos fármacos
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 19(1): 94-9, 2011 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-21362230

RESUMO

To investigate the expression level of cyclic nucleotide phosphodiesterase (PDE) 7B mRNA and its prognostic value in mantle cell lymphoma (MCL), the real-time quantitative RT-PCR (QPCR) was used to detect pde7b expression levels of bone marrow mononuclear cells from 20 newly diagnosed MCL patients with bone marrow involvement and peripheral blood mononuclear cells from 20 normal persons, the association of pde7b expression levels with prognostic indexes was analyzed by statistical software. The results showed that the median values of pde7b mRNA expression level in 20 MCL patients and normal controls were 8.7 × 10(-4) (4 × 10(-5) - 6.9 × 10(-3)) and 0.5 × 10(-4)(0.18 × 10(-4) - 1.7 × 10(-4)) respectively (p = 0.001). No association was found between pde7b expression and patients' clinical baseline information (gender and age), as well as certain prognostic factors, leukocyte count, lactate dehydrogenase level, CD38 expression and immunoglobulin heavy-chain variable region mutation status, but pde7b mRNA expression was significantly associated with cytogenetic abnormality, ß(2)-microglobulin level and ZAP-70 expression. It is concluded that the pde7b mRNA expression is obviously higher in MCL patients compared with normal controls and significantly correlates with unfavorable cytogenetic characteristics in MCL. The pde7b may be used as a novel prognostic indicator in MCL, and has important clinical significance.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Linfoma de Célula do Manto/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Feminino , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Prognóstico
20.
Int J Cancer ; 129(5): 1162-9, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21120911

RESUMO

A cost- and time-efficient means to define the prognosis of patients with chronic lymphocytic leukemia (CLL) is desirable but does not yet exist. On the basis of the evidence that CLL cells have enhanced expression of the cyclic nucleotide phosphodiesterase isoform 7B (PDE7B), we hypothesized that PDE7B expression might provide such information. We assessed PDE7B mRNA expression using quantitative real-time PCR in peripheral blood mononuclear cells isolated from 85 patients and 30 normal subjects. We compared PDE7B mRNA expression with that of other disease features to determine if its expression correlates with the prognosis of patients with CLL. We found that CLL patients with PDE7B mRNA levels in the top quartile (greater than ninefold elevation relative to normal controls) have a several-year shorter median time-to-treatment (TTT, 36 months) compared to that of patients whose CLL cells express lower levels of PDE7B mRNA (TTT, 77 months, p=0.001). High PDE7B mRNA expression correlates with expression of zeta-chain-associated protein kinase 70 (ZAP-70), unmutated immunoglobulin heavy chain variable (IGHV) region genes and ß2 microglobulin (ß2M), but use of a multivariate Cox model revealed that high PDE7B mRNA expression independently predicts a short TTT, even after adjusting for several other disease characteristics (ZAP-70 or CD38 expression, IGHV mutation status and Rai status). High expression of PDE7B is an unfavorable characteristic in CLL. Assessment of PDE7B mRNA expression thus appears to be a clinically useful biomarker to define the prognosis of patients with CLL.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Leucemia Linfocítica Crônica de Células B/genética , RNA Mensageiro/genética , Adulto , Idoso , Estudos de Casos e Controles , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Progressão da Doença , Feminino , Seguimentos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Fatores de Tempo , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA