Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
1.
BMC Cancer ; 24(1): 551, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693472

RESUMO

OBJECTIVE: We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS: Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS: We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION: CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Neoplasias Ovarianas , Piroptose , Transdução de Sinais , Humanos , Feminino , Piroptose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Movimento Celular/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
2.
Retrovirology ; 21(1): 10, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778414

RESUMO

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Assuntos
HIV-1 , Imunidade Inata , Nucleotidiltransferases , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/imunologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fatores de Restrição Antivirais , Macrófagos/imunologia , Macrófagos/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células THP-1 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/imunologia , Evasão da Resposta Imune , Capsídeo/metabolismo , Capsídeo/imunologia , Replicação Viral , Vírion/metabolismo , Vírion/genética , Vírion/imunologia , Interações Hospedeiro-Patógeno/imunologia , DNA Viral/genética , Linhagem Celular
3.
Cell Rep Med ; 5(5): 101560, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729159

RESUMO

Stimulator of IFN genes (STING) is a promising target for adjuvants utilized in in situ cancer vaccination approaches. However, key barriers remain for clinical translation, including low cellular uptake and accessibility, STING variability necessitating personalized STING agonists, and interferon (IFN)-independent signals that can promote tumor growth. Here, we identify C100, a highly deacetylated chitin-derived polymer (HDCP), as an attractive alternative to conventional STING agonists. C100 promotes potent anti-tumor immune responses, outperforming less deacetylated HDCPs, with therapeutic efficacy dependent on STING and IFN alpha/beta receptor (IFNAR) signaling and CD8+ T cell mediators. Additionally, C100 injection synergizes with systemic checkpoint blockade targeting PD-1. Mechanistically, C100 triggers mitochondrial stress and DNA damage to exclusively activate the IFN arm of the cGAS-STING signaling pathway and elicit sustained IFNAR signaling. Altogether, these results reveal an effective STING- and IFNAR-dependent adjuvant for in situ cancer vaccines with a defined mechanism and distinct properties that overcome common limitations of existing STING therapeutics.


Assuntos
Adjuvantes Imunológicos , Linfócitos T CD8-Positivos , Quitina , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta , Transdução de Sinais , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Feminino , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Neoplasias/imunologia , Neoplasias/terapia
4.
Commun Biol ; 7(1): 587, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755254

RESUMO

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Assuntos
Apresentação de Antígeno , Citidina , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Citidina/análogos & derivados , Citidina/farmacologia , Apresentação de Antígeno/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Humanos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino
5.
Sci Rep ; 14(1): 11593, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773213

RESUMO

Multiple myeloma (MM) progression involves diminished tumor antigen presentation and an immunosuppressive microenvironment, characterized by diminished expression of major histocompatibility complexes (MHC) class I molecule and elevated programmed death ligand 1 (PDL1) in MM cells, along with an enriched population of regulatory T cells (Tregs). To investigate Treg's influence on MM cells, we established a co-culture system using Tregs from MM patients and the MM cell lines (MM.1S and SK-MM-1) in vitro and assessed the effects of intervening in the relevant pathways connecting Tregs and MM cells in vivo. In vitro, Tregs induced transforming growth factor beta-1 (TGF-ß1) production, downregulated MHC I members, and increased PDL1 expression in MM cells. Treg-derived TGF-ß1 suppressed the cGAS-STING pathway, contributing to the loss of MHC I molecule expression and PDL1 upregulation. Correspondingly, neutralizing TGF-ß1 or activating the cGAS-STING pathway restored MHC I and PDL1 expression, effectively countering the pro-tumorigenic effect of Tregs on MM cells in vivo. These data elucidated how Tregs influence tumor antigen presentation and immunosuppressive signal in MM cells, potentially providing therapeutic strategies, such as neutralizing TGF-ß1 or activating the cGAS-STING pathway, to address the immune escape and immunosuppressive dynamics in MM.


Assuntos
Antígeno B7-H1 , Antígenos de Histocompatibilidade Classe I , Proteínas de Membrana , Mieloma Múltiplo , Nucleotidiltransferases , Transdução de Sinais , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1 , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Fator de Crescimento Transformador beta1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Animais , Regulação para Baixo , Camundongos , Feminino , Técnicas de Cocultura , Masculino , Regulação Neoplásica da Expressão Gênica
6.
Mol Biol Rep ; 51(1): 487, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578532

RESUMO

The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.


Assuntos
Imunoterapia , Neoplasias , Nucleotidiltransferases , Humanos , Antivirais , DNA/genética , Imunidade Inata , Interferons , Neoplasias/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
7.
Cell Mol Biol Lett ; 29(1): 61, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671352

RESUMO

BACKGROUND: Macrophage proinflammatory activation contributes to the pathology of severe acute pancreatitis (SAP) and, simultaneously, macrophage functional changes, and increased pyroptosis/necrosis can further exacerbate the cellular immune suppression during the process of SAP, where cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) plays an important role. However, the function and mechanism of cGAS-STING in SAP-induced lung injury (LI) remains unknown. METHODS: Lipopolysaccharide (LPS) was combined with caerulein-induced SAP in wild type, cGAS -/- and sting -/- mice. Primary macrophages were extracted via bronchoalveolar lavage and peritoneal lavage. Ana-1 cells were pretreated with LPS and stimulated with nigericin sodium salt to induce pyroptosis in vitro. RESULTS: SAP triggered NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation-mediated pyroptosis of alveolar and peritoneal macrophages in mouse model. Knockout of cGAS/STING could ameliorate NLRP3 activation and macrophage pyroptosis. In addition, mitochondrial (mt)DNA released from damaged mitochondria further induced macrophage STING activation in a cGAS- and dose-dependent manner. Upregulated STING signal can promote NLRP3 inflammasome-mediated macrophage pyroptosis and increase serum interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α levels and, thus, exacerbate SAP-associated LI (SAP-ALI). Downstream molecules of STING, IRF7, and IRF3 connect the mtDNA-cGAS-STING axis and the NLRP3-pyroptosis axis. CONCLUSIONS: Negative regulation of any molecule in the mtDNA-cGAS-STING-IRF7/IRF3 pathway can affect the activation of NLRP3 inflammasomes, thereby reducing macrophage pyroptosis and improving SAP-ALI in mouse model.


Assuntos
DNA Mitocondrial , Fator Regulador 3 de Interferon , Lesão Pulmonar , Macrófagos , Proteínas de Membrana , Nucleotidiltransferases , Pancreatite , Piroptose , Transdução de Sinais , Animais , Piroptose/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Pancreatite/metabolismo , Pancreatite/genética , Pancreatite/patologia , Pancreatite/induzido quimicamente , Macrófagos/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos/metabolismo , Lipopolissacarídeos , Masculino , Modelos Animais de Doenças
8.
Cell Rep Med ; 5(5): 101528, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38677283

RESUMO

Stimulator of interferon genes (STING)-dependent signaling is requisite for effective anti-microbial and anti-tumor activity. STING signaling is commonly defective in cancer cells, which enables tumor cells to evade the immunosurveillance system. We evaluate here whether intrinsic STING signaling in such tumor cells could be reconstituted by creating recombinant herpes simplex viruses (rHSVs) that express components of the STING signaling pathway. We observe that rHSVs expressing STING and/or cGAS replicate inefficiently yet retain in vivo anti-tumor activity, independent of oncolytic activity requisite on the trans-activation of extrinsic STING signaling in phagocytes by engulfed microbial dsDNA species. Accordingly, the in vivo effects of virotherapy could be simulated by nanoparticles incorporating non-coding dsDNA species, which comparably elicit the trans-activation of phagocytes and augment the efficacy of established cancer treatments including checkpoint inhibition and radiation therapy. Our results help elucidate mechanisms of virotherapeutic anti-tumor activity as well as provide alternate strategies to treat cancer.


Assuntos
DNA , Fagócitos , Animais , Fagócitos/imunologia , Fagócitos/metabolismo , Humanos , Camundongos , DNA/metabolismo , DNA/imunologia , DNA/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/genética , Simplexvirus/genética , Simplexvirus/imunologia , Camundongos Endogâmicos C57BL , Terapia Viral Oncolítica/métodos
9.
Viruses ; 16(4)2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675916

RESUMO

DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Transdução de Sinais , Vírus de DNA Tumorais/genética , Vírus de DNA Tumorais/imunologia , Interações Hospedeiro-Patógeno/imunologia
10.
Cell Death Dis ; 15(4): 300, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684648

RESUMO

The treatment of hepatocellular carcinoma (HCC) is particularly challenging due to the inherent tumoral heterogeneity and easy resistance towards chemotherapy and immunotherapy. Arsenic trioxide (ATO) has emerged as a cytotoxic agent effective for treating solid tumors, including advanced HCC. However, its effectiveness in HCC treatment remains limited, and the underlying mechanisms are still uncertain. Therefore, this study aimed to characterize the effects and mechanisms of ATO in HCC. By evaluating the susceptibilities of human and murine HCC cell lines to ATO treatment, we discovered that HCC cells exhibited a range of sensitivity to ATO treatment, highlighting their inherent heterogeneity. A gene signature comprising 265 genes was identified to distinguish ATO-sensitive from ATO-insensitive cells. According to this signature, HCC patients have also been classified and exhibited differential features of ATO response. Our results showed that ATO treatment induced reactive oxygen species (ROS) accumulation and the activation of multiple cell death modalities, including necroptosis and ferroptosis, in ATO-sensitive HCC cells. Meanwhile, elevated tumoral immunogenicity was also observed in ATO-sensitive HCC cells. Similar effects were not observed in ATO-insensitive cells. We reported that ATO treatment induced mitochondrial injury and mtDNA release into the cytoplasm in ATO-sensitive HCC tumors. This subsequently activated the cGAS-STING-IFN axis, facilitating CD8+ T cell infiltration and activation. However, we found that the IFN pathway also induced tumoral PD-L1 expression, potentially antagonizing ATO-mediated immune attack. Additional anti-PD1 therapy promoted the anti-tumor response of ATO in ATO-sensitive HCC tumors. In summary, our data indicate that heterogeneous ATO responses exist in HCC tumors, and ATO treatment significantly induces immunogenic cell death (ICD) and activates the tumor-derived mtDNA-STING-IFN axis. These findings may offer a new perspective on the clinical treatment of HCC and warrant further study.


Assuntos
Trióxido de Arsênio , Carcinoma Hepatocelular , Morte Celular Imunogênica , Neoplasias Hepáticas , Proteínas de Membrana , Nucleotidiltransferases , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Morte Celular Imunogênica/efeitos dos fármacos , Linhagem Celular Tumoral , Interferons/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL
11.
Free Radic Biol Med ; 216: 80-88, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494142

RESUMO

In various hyperproliferative disorders, damaged mitochondria can release mitochondrial DNA (mtDNA) into the cytoplasm, activating the cGAS-STING signaling pathway and subsequent immune imbalances. Our previous research has demonstrated that hypoxia plays a role in the development of adenomyosis (AM) by inducing mitochondrial dysfunction. However, the precise involvement of the cGAS-STING signaling pathway and mtDNA in AM remains unclear. Therefore, this study aims to investigate the relationship between mtDNA secretion, changes in the cGAS-STING signaling pathway, and the abnormal cellular proliferation observed in AM. We found the cGAS, STING, TBK1, p-TBK1, IRF3, and p-IRF3 proteins levels were significantly elevated in the tissues of patients with AM compared to the control group. Additionally, there was an increase in the expression of the pro-inflammatory cytokines IL-6 and IFN-α in the AM tissues. Hypoxia-induced an increase in the proliferation and migration abilities of endometrial stromal cells (ESCs), accompanied by the activation of the cGAS-STING signaling pathway and elevated levels of IFN-α. Furthermore, hypoxia promoted the leakage of mtDNA into the cytoplasm in AM ESCs, and the deletion of mtDNA reduced the activation of the cGAS-STING pathway. Moreover, knockdown of the STING gene inhibited the expression of TBK1, p-TBK1, IRF3, and p-IRF3 and suppressed the secretion of the inflammatory cytokines IL-6 and IFN-α. Furthermore, the migration and invasion abilities of AM ESCs were significantly diminished after STING knockdown. These findings provide valuable insights into the role of mtDNA release and the cGAS-STING signaling pathway in the pathogenesis of AM.


Assuntos
Adenomiose , DNA Mitocondrial , Feminino , Humanos , Adenomiose/metabolismo , Adenomiose/patologia , Citocinas/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Hipóxia/metabolismo , Interleucina-6/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498709

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , DNA , Apoptose/genética , Proteína 1 Homóloga a MutL/genética
13.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(3): 252-258, 2024 Mar 12.
Artigo em Chinês | MEDLINE | ID: mdl-38448178

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a DNA receptor that produces the second messenger cyclic GMP-AMP (cGAMP). cGAMP activates stimulator of interferon genes (STING), which initiates a signaling cascade leading to immune and inflammatory responses. This intricate molecular pathway plays a pivotal role in the pathogenesis and progression of diverse respiratory ailments, including respiratory infection, lung cancer, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, asthma, and acute lung injury. Consequently, the cGAS-STING signaling pathway has emerged as a promising novel therapeutic target, opening up new avenues for the diagnosis and treatment of respiratory disorders. This review focuses on recent advances in our understanding of the cGAS-STING signaling pathway and its intricate involvement in respiratory system diseases.


Assuntos
Nucleotídeos Cíclicos , Transtornos Respiratórios , Infecções Respiratórias , Humanos , Nucleotidiltransferases/genética , Interferons
14.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488012

RESUMO

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Idoso , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envelhecimento , Senescência Celular , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Disco Intervertebral/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
15.
Adv Sci (Weinh) ; 11(16): e2308009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381090

RESUMO

Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Membrana , Nucleotidiltransferases , RecQ Helicases , Transdução de Sinais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Animais , RecQ Helicases/genética , RecQ Helicases/metabolismo , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Tolerância a Radiação/genética , Linhagem Celular Tumoral
16.
Int J Cancer ; 154(12): 2106-2120, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353495

RESUMO

Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.


Assuntos
Distúrbios no Reparo do DNA , Histonas , Criança , Humanos , Histonas/genética , Nucleotidiltransferases/genética , Imunidade , DNA
17.
Esophagus ; 21(2): 165-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324215

RESUMO

BACKGROUND: Chemotherapy has the potential to induce CD8+ T-cell infiltration in the tumor microenvironment (TME) and activate the anti-tumor immune response in several cancers including esophageal squamous cell carcinoma (ESCC). The tumor cell-intrinsic cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been known as a critical component for regulating immune cell activation in the TME. However, its effect on the infiltration of immune cells induced by chemotherapy in the ESCC TME has not been investigated. METHODS: We examined the effect of the tumor-cell intrinsic cGAS-STING pathway on the infiltration of CD8+ T cells induced by chemotherapy in ESCC using ESCC cell lines and surgically resected ESCC specimens from patients who received neoadjuvant chemotherapy (NAC). RESULTS: We found that chemotherapeutic agents, including 5-fluorouracil (5-FU) and cisplatin (CDDP), activated the cGAS-STING pathway, consequently inducing the expression of type I interferon and T-cell-attracting chemokines in ESCC cells. Moreover, the tumor cell-intrinsic expression of cGAS-STING was significantly and positively associated with the density of CD8+ T cells in ESCC after NAC. However, the tumor cell-intrinsic expression of cGAS-STING did not significantly impact clinical outcomes in patients with ESCC after NAC. CONCLUSION: Our findings suggest that the tumor cell-intrinsic cGAS-STING pathway might contribute to chemotherapy-induced immune cell activation in the ESCC TME.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Interferon Tipo I , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Linfócitos T CD8-Positivos , Neoplasias Esofágicas/tratamento farmacológico , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/uso terapêutico , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Microambiente Tumoral
18.
Nucleic Acids Res ; 52(7): 3740-3760, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321962

RESUMO

It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.


Assuntos
Dano ao DNA , DNA Polimerase iota , Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Reparo do DNA , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , DNA Primase/metabolismo , DNA Primase/genética , Tolerância ao Dano no DNA
19.
Trends Cancer ; 10(3): 177-179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355355

RESUMO

Mammalian cells react to the accumulation of double-stranded (ds)DNA in the cytosol by secreting antiviral and proinflammatory cytokines, notably type I interferon (IFN). Recent data reported by Tani et al. demonstrate that overactivation of this pathway is prevented by an adaptive feedback mechanism elicited by type I IFN receptors and executed by the exonuclease three prime repair exonuclease 1 (TREX1).


Assuntos
Citocinas , Exodesoxirribonucleases , Fosfoproteínas , Animais , DNA , Mamíferos/genética , Mamíferos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
20.
Sci Adv ; 10(9): eadj2102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416816

RESUMO

Cytosolic double-stranded DNA surveillance by cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) signaling triggers cellular senescence, autophagy, biased mRNA translation, and interferon-mediated immune responses. However, detailed mechanisms and physiological relevance of STING-induced senescence are not fully understood. Here, we unexpectedly found that interferon regulatory factor 3 (IRF3), activated during innate DNA sensing, forms substantial endogenous complexes in the nucleus with retinoblastoma (RB), a key cell cycle regulator. The IRF3-RB interaction attenuates cyclin-dependent kinase 4/6 (CDK4/6)-mediated RB hyperphosphorylation that mobilizes RB to deactivate E2 family (E2F) transcription factors, thereby driving cells into senescence. STING-IRF3-RB signaling plays a notable role in hepatic stellate cells (HSCs) within various murine models, pushing activated HSCs toward senescence. Accordingly, IRF3 global knockout or conditional deletion in HSCs aggravated liver fibrosis, a process mitigated by the CDK4/6 inhibitor. These findings underscore a straightforward yet vital mechanism of cGAS-STING signaling in inducing cellular senescence and unveil its unexpected biology in limiting liver fibrosis.


Assuntos
Neoplasias da Retina , Retinoblastoma , Camundongos , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Interferons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA