Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
J Tradit Chin Med ; 44(3): 458-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767629

RESUMO

OBJECTIVE:To elucidate the mechanism by which Huoxue Jiedu Huayu recipe (, HJHR) regulates angiogenesis in the contralateral kidney of unilateral ureteral obstruction (UUO) rats and the mechanism by which it reduces of renal fibrosis. METHODS: Male Wistar rats were randomly divided into 4 groups: the sham group, UUO group (180 d of left ureter ligation), UUO plus eplerenone (EPL) group, and UUO plus HJHR group. After 180 d of oral drug administration, blood and contralateral kidneys were collected for analysis. Angiogenesis- and fibrosis-related indexes were detected. RESULTS: HJHR and EPL improved structural damage and renal interstitial fibrosis in the contralateral kidney and reduced the protein expression levels of α-smooth muscle actin (α-SMA), vimentin and collagen I. Moreover, these treatments could reduce the expression of vascular endothelial growth factor-A (VEGFA) by inhibiting the infiltration of macrophages. Furthermore, HJHR and EPL significantly reduced the expression of CD34 and CD105 by downregulating VEGFA production, which inhibited angiogenesis. Finally, the coexpressions of CD34, CD105 and α-SMA were decreased in the HJHR and EPL groups, indicating that endothelial-to-mesenchymal transition was inhibited. CONCLUSIONS: These findings confirm that HJHR alleviates contralateral renal fibrosis by inhibiting VEGFA-induced angiogenesis, encourage the use of HJHR against renal interstitial fibrosis and provide a theoretical basis for the clinical management of patients with CKD.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose , Rim , Macrófagos , Ratos Wistar , Obstrução Ureteral , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Obstrução Ureteral/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/etiologia , Nefropatias/genética , Angiogênese
2.
Discov Med ; 36(182): 604-612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531801

RESUMO

BACKGROUND: The hedgehog signaling pathway exerts vital functions in regulating epithelial-to-mesenchymal transition (EMT) in renal interstitial fibrosis (RIF). It was reported that lncRNA-maternally expressed gene 3 (lncRNA Meg3) can regulate hepatic fibrosis by regulating the expression of smoothened (Smo) in the hedgehog signaling pathway. However, the specific role of lncRNA Meg3 in renal fibrosis resulting from unilateral ureteral obstruction (UUO) by regulating the hedgehog signaling pathway has not been reported. Hence, this research aimed to expound the effects of lncRNA Meg3 on renal fibrosis induced by UUO in rats via the hedgehog pathway. METHODS: Peripheral blood was collected from patients with chronic kidney disease (CKD, CKD group) and healthy volunteers (Normal group) at the same period. In addition, 6-week-old male Sprague-Dawley (SD) rats were divided to Sham, UUO, UUO+shRNA Negative control (shNC), and UUO+sh-Meg3 groups, and their kidney tissues and serum were gathered. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was employed for detecting the lncRNA Meg3 expression level in the serum of patients and renal tissue of rats; kits for testing levels of blood urea nitrogen (BUN), creatinine (Cr), hydroxyproline (HYP), and 24-hour urine protein (24-up) in rats of each group; hematoxylin and eosin (HE) staining and Masson staining for observing kidney tissue and renal fibrosis level in rats; western blot for measuring levels of collagen type III (Col III), α-Smooth muscle actin (α-SMA), fibronectin, E-cadherin, sonic hedgehog (Shh), patched (Ptch) protein, smoothened (Smo) protein and glioma-associated oncogene homolog 1 (Gli1) protein expression. RESULTS: LncRNA Meg3 was highly expressed in CKD patients and UUO rats (p < 0.01). In contrast to the UUO+shNC group, knocking down lncRNA Meg3 improved renal injury, relieved pathological renal lesions, and reduced kidney fibrosis and related protein levels. It inhibited the hedgehog pathway in kidney tissues of UUO rats (p < 0.05 and p < 0.01). CONCLUSIONS: LncRNA Meg3 can aggravate UUO-induced rat renal fibrosis by activating the hedgehog pathway.


Assuntos
Nefropatias , RNA Longo não Codificante , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Masculino , Ratos , Fibrose , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Rim/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
3.
Ren Fail ; 46(1): 2331612, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38527916

RESUMO

BACKGROUND: Circular RNAs (CircRNAs) have been shown to be involved in the development of chronic kidney disease (CKD). This study aimed to investigate the role of Circ1647 in renal fibrosis, which is a hallmark of CKD. METHODS: In this study, we established a unilateral ureteral obstruction (UUO) model and delivered Circ1647 RfxCas13d knockdown plasmid into renal parenchymal cells via retrograde injection through the ureter followed by electroporation. After that, the pathological changes were determined by Hematoxylin and Eosin. Meanwhile, Immunohistochemistry, qRT-PCR and Western blot were conducted to assess the degree of fibrosis. In addition, overexpressing of Circ1647 in renal tubular epithelial cells (TCMK1) was performed to investigate the underlying mechanisms of Circ1647. RESULTS: Our results displayed that electroporation-mediated knockdown of Circ1647 by RfxCas13d knockdown plasmid significantly inhibited renal fibrosis in UUO mice as evidenced by reduced expression of fibronectin and α-SMA (alpha-smooth muscle actin). Conversely, overexpression of Circ1647 in TCMK1 cells promoted the fibrosis. In terms of mechanism, Circ1647 may mediate the PI3K/AKT Signaling Pathway as demonstrated by the balance of the phosphorylation of PI3K and AKT in vivo and the aggravated phosphorylation of PI3K and AKT in vitro. These observations were corroborated by the effects of the PI3K inhibitor LY294002, which mitigated fibrosis post Circ1647 overexpression. CONCLUSION: Our study suggests that Circ1647 plays a significant role in renal fibrosis by mediating the PI3K/AKT signaling pathway. RfxCas13d-mediated inhibition of Circ1647 may serve as a therapeutic target for renal fibrosis in CKD.


Assuntos
RNA Circular , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Fibrose , Rim/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , RNA Circular/genética , RNA Circular/metabolismo
4.
Am J Physiol Cell Physiol ; 326(3): C935-C947, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284121

RESUMO

The molecular basis of renal interstitial fibrosis, a major pathological feature of progressive kidney diseases, remains poorly understood. Autophagy has been implicated in renal fibrosis, but whether it promotes or inhibits fibrosis remains controversial. Moreover, it is unclear how autophagy is activated and sustained in renal fibrosis. The present study was designed to address these questions using the in vivo mouse model of unilateral ureteral obstruction and the in vitro model of hypoxia in renal tubular cells. Both models showed the activation of hypoxia-inducible factor-1 (HIF-1) and autophagy along with fibrotic changes. Inhibition of autophagy with chloroquine reduced renal fibrosis in unilateral ureteral obstruction model, whereas chloroquine and autophagy-related gene 7 knockdown decreased fibrotic changes in cultured renal proximal tubular cells, supporting a profibrotic role of autophagy. Notably, pharmacological and genetic inhibition of HIF-1 led to the suppression of autophagy and renal fibrosis in these models. Mechanistically, knock down of BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a downstream target gene of HIF, decreased autophagy and fibrotic changes during hypoxia in BUMPT cells. Together, these results suggest that HIF-1 may activate autophagy via BNIP3 in renal tubular cells to facilitate the development of renal interstitial fibrosis.NEW & NOTEWORTHY Autophagy has been reported to participate in renal fibrosis, but its role and underlying activation mechanism is unclear. In this study, we report the role of HIF-1 in autophagy activation in models of renal fibrosis and further investigate the underlying mechanism.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Fator 1 Induzível por Hipóxia , Nefropatias/patologia , Hipóxia , Autofagia/genética , Fibrose , Cloroquina/farmacologia
5.
Nephron ; 148(4): 245-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38142674

RESUMO

INTRODUCTION: Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD: Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT: In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION: CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.


Assuntos
Nefropatias Diabéticas , Rim/anormalidades , RNA Longo não Codificante , Obstrução Ureteral , Anormalidades Urogenitais , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Baixo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/farmacologia , Lipopolissacarídeos , Hibridização in Situ Fluorescente , Macrófagos/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , Nefropatias Diabéticas/metabolismo , Fibrose , Inflamação/genética , Inflamação/patologia
6.
PeerJ ; 11: e16301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953778

RESUMO

Background: Chronic kidney disease (CKD) is a significant global health issue characterized by progressive loss of kidney function. Renal interstitial fibrosis (TIF) is a common feature of CKD, but current treatments are seldom effective in reversing TIF. Nicotinamide N-methyltransferase (NNMT) has been found to increase in kidneys with TIF, but its role in renal fibrosis is unclear. Methods: Using mice with unilateral ureteral obstruction (UUO) and cultured renal interstitial fibroblast cells (NRK-49F) stimulated with transforming growth factor-ß1 (TGF-ß1), we investigated the function of NNMT in vivo and in vitro. Results: We performed single-cell transcriptome sequencing (scRNA-seq) on the kidneys of mice and found that NNMT increased mainly in fibroblasts of UUO mice compared to sham mice. Additionally, NNMT was positively correlated with the expression of renal fibrosis-related genes after UUO injury. Knocking down NNMT expression reduced fibroblast activation and was accompanied by an increase in DNA methylation of p53 and a decrease in its phosphorylation. Conclusions: Our findings suggest that chronic kidney injury leads to an accumulation of NNMT, which might decrease p53 methylation, and increase the expression and activity of p53. We propose that NNMT promotes fibroblast activation and renal fibrosis, making NNMT a novel target for preventing and treating renal fibrosis.


Assuntos
Nicotinamida N-Metiltransferase , Insuficiência Renal Crônica , Obstrução Ureteral , Fibrose , Rim/metabolismo , Nicotinamida N-Metiltransferase/genética , Insuficiência Renal Crônica/genética , Proteína Supressora de Tumor p53/metabolismo , Obstrução Ureteral/genética , Animais , Camundongos
7.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893447

RESUMO

Background and Objectives: Congenital ureteral stenosis is one of the leading causes of impaired urinary drainage and subsequent dilatation of the urinary collecting system, known as hydronephrosis or ureterohydronephrosis. The mechanism that leads to obstruction is not clearly known. Multiple studies in rat models have shown increased angiotensin II and TGFß levels in obstructed ureteral tissue. The aim of the study is to investigate the expression of fibrosis-related genes in obstructive and normal ureteral tissue. Material and Methods: It is a monocentric pilot study in which nineteen patients were selected prospectively. 17 patients underwent Hynes-Anderson pyeloplasty due to the PUJO; two patients underwent ureteroneocystostomy due to ureterovesical junction obstruction (UVJO); and six patients were chosen for the control group: five underwent nephrectomies due to the kidney tumor and one underwent upper pole heminephrectomy due to the duplex kidney with normal pyeloureteric junctions in all. Tissue RNA was chemically extracted after freezing the biopsy samples in liquid nitrogen, with cDNA synthesis performed immediately after nucleic acid isolation. qPCR was performed to evaluate the relative expression of Tgfb1, Mmp1, Timp1, Pai1, Ctgf, and Vegfa. Expression levels of the Gapdh and Gpi genes (geometric average) were used to calculate the relative expression of the investigated genes. Outliers were removed prior to calculating confidence intervals for the experimental groups, and a Wilcoxon rank-sum test was performed to determine the statistical significance of the differences. Results: Significant differences between healthy and stenotic tissue samples in Ctgf gene expression levels were observed, with the samples from afflicted tissue showing lower expression. No statistical difference in expression levels of Tgfb1, Timp1, Vegfa, Mmp1, and Pai1 was found. Conclusions: These findings suggest that tissue fibrosis, similar to other tissues and organs, is not the leading cause of stenosis, at least at the moment of surgery. Decreased CTGF expression is indicative of the developmental origin of obstruction.


Assuntos
Hidronefrose , Obstrução Ureteral , Humanos , Ratos , Animais , Metaloproteinase 1 da Matriz/genética , Projetos Piloto , Constrição Patológica , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/cirurgia
8.
Kidney Int ; 104(4): 769-786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482091

RESUMO

Tubulointerstitial fibrosis is considered the final convergent pathway of progressive chronic kidney diseases (CKD) regardless of etiology. However, mechanisms underlying kidney injury-induced fibrosis largely remain unknown. Recent studies have indicated that transcriptional intermediary factor 1γ (TIF1γ) inhibits the progression of fibrosis in other organs. Here, we found that TIF1γ was highly expressed in the cytoplasm and nucleus of the kidney proximal tubule. Interestingly, we found tubular TIF1γ expression was decreased in patients with CKD, including those with diabetes, hypertension, and IgA nephropathy, and in mouse models with experimental kidney fibrosis (unilateral ureteral obstruction [UUO], folic acid nephropathy [FAN], and aristolochic acid-induced nephrotoxicity). Tubule-specific knock out of TIF1γ in mice exacerbated UUO- and FAN-induced tubular cell polyploidy and subsequent fibrosis, whereas overexpression of kidney TIF1γ protected mice against kidney fibrosis. Mechanistically, in tubular epithelial cells, TIF1γ exerted an antifibrotic role via transforming growth factor-ß (TGF-ß)-dependent and -independent signaling. TIF1γ hindered TGF-ß signaling directly by inhibiting the formation and activity of the transcription factor Smad complex in tubular cells, and we discovered that TIF1γ suppressed epidermal growth factor receptor (EGFR) signaling upstream of TGF-ß signaling in tubular cells by ubiquitylating EGFR at its lysine 851/905 sites thereby promoting EGFR internalization and lysosomal degradation. Pharmacological inhibition of EGFR signaling attenuated exacerbated polyploidization and the fibrotic phenotype in mice with tubule deletion of TIF1γ. Thus, tubular TIF1γ plays an important role in kidney fibrosis by suppressing profibrotic EGFR and TGF-ß signaling. Hence, our findings suggest that maintaining homeostasis of tubular TIF1γ may be a new therapeutic option for treating tubulointerstitial fibrosis and subsequent CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Receptores ErbB/genética , Fibrose , Rim/metabolismo , Análise de Mediação , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166755, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196860

RESUMO

Renal fibrosis (RF) is a common pathway leading to chronic kidney disease (CKD), which lacks effective treatment. While estrogen receptor beta (ERß) is known to be present in the kidney, its role in RF remains unclear. The present study aimed to investigate the role and underlying mechanism of ERß during RF progression in patients and animal models with CKD. We found that ERß was highly expressed in the proximal tubular epithelial cells (PTECs) in healthy kidneys but its expression was largely lost in patients with immunoglobin A nephropathy (IgAN) and in mice with unilateral ureter obstruction (UUO) and subtotal nephrectomy (5/6Nx). ERß deficiency markedly exacerbated, whereas ERß activation by WAY200070 and DPN attenuated RF in both UUO and 5/6Nx mouse models, suggesting a protective role of ERß in RF. In addition, ERß activation inhibited TGF-ß1/Smad3 signaling, while loss of renal ERß was associated with overactivation of the TGF-ß1/Smad3 pathway. Furthermore, deletion or pharmacological inhibition of Smad3 prevented the loss of ERß and RF. Mechanistically, activation of ERß competitively inhibited the association of Smad3 with the Smad-binding element, thereby downregulating the transcription of the fibrosis-related genes without altering Smad3 phosphorylation in vivo and in vitro. In conclusion, ERß exerts a renoprotective role in CKD by blocking the Smad3 signaling pathway. Thus, ERß may represent as a promising therapeutic agent for RF.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fibrose , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
10.
Am J Physiol Renal Physiol ; 324(6): F581-F589, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141146

RESUMO

Chronic kidney disease (CKD) is a major health problem. Kidney fibrosis is a hallmark and final common pathway of CKD. The Hippo/yes-associated protein (YAP) pathway regulates organ size, inflammation, and tumorigenesis. Our previous study demonstrated tubular YAP activation by tubule-specific double knockout of mammalian STE20-like protein kinase 1/2 (Mst1/2) induced CKD in mice, but the underlying mechanisms remain to be fully elucidated. Activator protein (AP)-1 activation was found to promote tubular atrophy and tubulointerstitial fibrosis. Therefore, we studied whether YAP regulates AP-1 expression in the kidney. We found that expression of various AP-1 components was induced in kidneys subjected to unilateral ureteric obstruction and in Mst1/2 double knockout kidneys, and these inductions were blocked by deletion of Yap in tubular cells, with Fosl1 being most affected compared with other AP-1 genes. Inhibition of Yap also most highly suppressed Fosl1 expression among AP-1 genes in HK-2 and IMCD3 renal tubular cells. YAP bound to the Fosl1 promoter and promoted Fosl1 promoter-luciferase activity. Our results suggest that YAP controls AP-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.NEW & NOTEWORTHY Yes-associated protein (YAP) activation leads to tubular injury, renal inflammation, and fibrosis, but the underlying mechanisms are not fully understood. We now provide genetic evidence that YAP promotes activator protein-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais/metabolismo , Fibrose , Inflamação/metabolismo , Rim/metabolismo , Mamíferos/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Proteínas de Sinalização YAP
11.
Cell Cycle ; 22(4): 433-449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36196456

RESUMO

Severe hydronephrosis increases the risk of urinary tract infection and irretrievable renal fibrosis. While TGFß1-mediated fibrotic changes in proximal tubular epithelial cells and fatty acid oxidation (FAO) deregulation contribute to renal fibrosis and hydronephrosis. Firstly, a few elements were analyzed in this paper, including differentially-expressed long non-coding RNAs (lncRNAs), and miRNAs correlated to CPT1A, RXRA, and NCOA1. This paper investigated TGFß1 effects on lncRNA FABP5P3, CPT1A, RXRA, and NCOA1 expression and fibrotic changes in HK-2 cells and FABP5P3 overexpression effects on TGFß1-induced changes. Moreover, this paper predicted and proved that miR-22 binding to lncRNA FABP5P3, 3'UTR of CPT1A, RXRA, and NCOA1 was validated. The dynamic effects of the FABP5P3/miR-22 axis on TGFß1-induced changes were investigated. A Renal fibrosis model was established in unilateral ureteral obstruction (UUO) mice, and FABP5P3 effects were investigated. Eventually, this paper concluded that TGFß1 inhibited lncRNA FABP5P3, CPT1A, RXRA, and NCOA1 expression, induced fibrotic changes in HK-2 cells, and induced metabolic reprogramming within HK-2 cells, especially lower FAO. FABP5P3 overexpression partially reversed TGFß1-induced changes. miR-22 targeted lncRNA FABP5P3, CPT1A, RXRA, and NCOA1. LncRNA FABP5P3 counteracted miR-22 inhibition of CPT1A, NCOA1, and RXRA through competitive binding. TGFß1 stimulation induced the activation of TGFß/SMAD and JAG/Notch signaling pathways; Nocth2 knockdown reversed TGFß1 suppression on lncRNA FABP5P3. FABP5P3 overexpression attenuated renal fibrosis in unilateral ureteral obstruction mice. The LncRNA FABP5P3/miR-22 axis might be a potent target for improving the FAO deregulation and fibrotic changes in proximal TECs under TGFß1 stimulation.


Assuntos
Hidronefrose , Nefropatias , MicroRNAs , RNA Longo não Codificante , Obstrução Ureteral , Animais , Camundongos , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Hidronefrose/metabolismo , Hidronefrose/patologia , Nefropatias/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-36518326

RESUMO

Background: A novel collagen called type XXVIII collagen (COL28) is involved in cancer and lung fibrosis. Preliminary data showed that renal tubular epithelial cells could proliferate, migrate, and undergo an epithelial-mesenchymal transition (EMT) when COL28 was overexpressed; however, it is still unknown how this occurs and what the underlying mechanism is. Methods: We analyzed the differential expression of genes (DEGs) in the stable COL28 overexpression HK-2 cell lines by RNA-sequencing analysis, before which Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analyses were performed. Genes related to COL28 promoting HK-2 cell proliferation and EMT were screened and verified. By using western blot and immunofluorescence, the effects of COL28 on the expression of α-SMA, E-cadherin, Snail, HKDC1, and SREBP1 were detected. The effect of COL28 overexpression on renal fibrosis in unilateral ureteral obstruction (UUO) mice was detected by H&E and Masson staining. HKDC1 interference agent was synthesized and transfected into the HK-2 cell line stably overexpressing COL28. In HK-2 cells, the effects of HKDC1 interference on the expression of α-SMA, E-cadherin, and Snail were detected. Results: We screened and verified that HKDC1 was related to COL28 and promoted HK-2 cell proliferation and EMT. WB showed that in HK-2 cells, COL28 overexpression increased α-SMA, Snail, HKDC1, and SREBP1 expressions and decreased E-cadherin expression. Overexpression of COL28 aggravated renal interstitial fibrosis in UUO mice; upregulated α-SMA, Snail, HKDC1, and SREBP1 expressions; and decreased the E-cadherin protein expression in UUO mice. Interference of HKDC1 expression promoted the E-cadherin protein expression while inhibiting α-SMA, Snail, HKDC1, and SREBP1 protein expressions. Conclusion: Overexpression of COL28 can aggravate renal interstitial fibrosis by encouraging renal tubular epithelial cells to undergo EMT, and interference with HKDC1 expression can alleviate fibrosis by reversing EMT induced by COL28 overexpression.


Assuntos
Colágeno , Nefropatias , Obstrução Ureteral , Animais , Camundongos , Caderinas/metabolismo , Colágeno/genética , Transição Epitelial-Mesenquimal/genética , Fibrose , Hexoquinase/metabolismo , Nefropatias/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética
13.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430531

RESUMO

Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-ß1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.


Assuntos
Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Fibrose , Nefrite/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética , Inflamação/patologia , Insuficiência Renal Crônica/complicações , Metilases de Modificação do DNA , DNA/uso terapêutico
14.
Cell Mol Life Sci ; 79(12): 595, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394649

RESUMO

Fibrosis is a relentlessly progressive and irreversible cause of organ damage, as in chronic kidney disease (CKD), but its underlying mechanisms remain elusive. We found that a circular RNA, circPTPN14, is highly expressed in human kidneys with biopsy-proved chronic interstitial fibrosis, mouse kidneys subjected to ischemia/reperfusion (IR) or unilateral ureteral obstruction (UUO), and TGFß1-stimulated renal tubule epithelial cells (TECs). The intrarenal injection of circPTPN14 shRNA alleviated the progression of fibrosis in kidneys subjected to IR or UUO. Knockdown of circPTPN14 in TECs inhibited TGFß1-induced expression of profibrotic genes, whereas overexpressing circPTPN14 increased the profibrotic effect of TGFß1. The profibrotic action of circPTPN14 was ascribed to an increase in MYC transcription. The binding of circPTPN14 to the KH3 and KH4 domains of far upstream element (FUSE) binding protein 1 (FUBP1) enhanced the interaction between FUBP1 and FUSE domain, which was required for the initiation of MYC transcription. In human kidneys (n = 30) with biopsy-proved chronic interstitial fibrosis, the expression of circPTPN14 positively correlated with MYC expression. Taken together these studies show a novel mechanism in the pathogenesis of renal fibrosis, mediated by circPTPN14, which can be a target in the diagnosis and treatment of CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibrose , Rim/metabolismo , Proteínas Proto-Oncogênicas c-myc , Insuficiência Renal Crônica/patologia , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Transcrição Gênica
15.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232665

RESUMO

The global burden of chronic kidney disease is increasing, and the majority of these diseases are progressive. Special site-targeted drugs are emerging as alternatives to traditional drugs. Oligonucleotides (ODNs) have been proposed as effective therapeutic tools in specific molecular target therapies for several diseases. We designed ring-type non-coding RNAs (ncRNAs), also called mTOR ODNs to suppress mammalian target rapamycin (mTOR) translation. mTOR signaling is associated with excessive cell proliferation and fibrogenesis. In this study, we examined the effects of mTOR suppression on chronic renal injury. To explore the regulation of fibrosis and inflammation in unilateral ureteral obstruction (UUO)-induced injury, we injected synthesized ODNs via the tail vein of mice. The expression of inflammatory-related markers (interleukin-1ß, tumor necrosis factor-α), and that of fibrosis (α-smooth muscle actin, fibronectin), was decreased by synthetic ODNs. Additionally, ODN administration inhibited the expression of autophagy-related markers, microtubule-associated protein light chain 3, Beclin1, and autophagy-related gene 5-12. We confirmed that ring-type ODNs inhibited fibrosis, inflammation, and autophagy in a UUO mouse model. These results suggest that mTOR may be involved in the regulation of autophagy and fibrosis and that regulating mTOR signaling may be a therapeutic strategy against chronic renal injury.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Actinas/metabolismo , Animais , Autofagia/genética , Proteína Beclina-1/metabolismo , Modelos Animais de Doenças , Fibronectinas/metabolismo , Fibrose , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Rim/metabolismo , Mamíferos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Oligonucleotídeos/farmacologia , RNA não Traduzido/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
16.
Int J Biol Sci ; 18(15): 5897-5912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263179

RESUMO

Acidic nuclear phosphoprotein 32 family member e (Anp32e) has been reported to contribute to early mammalian development and cancer metastasis. However, the pathophysiological role of Anp32e in renal interstitial fibrosis (RIF) is poorly understood. Here, we demonstrated that Anp32e was highly expressed in the region of RIF in patients with IgA nephropathy, unilateral ureteral obstruction (UUO) mouse kidneys, and Boston University mouse proximal tubular (BUMPT) cells when treated with TGF-ß1; this upregulation was positively correlated with the total fibrotic area of the kidneys. The overexpression of Anp32e enhanced the TGF-ß1-induced production of fibrosis-related proteins (fibronectin (Fn) and collagen type I (Col-I)) in BUMPT cells whereas the knockdown of Anp32e suppressed the deposition of these fibrosis-related proteins in UUO mice and TGF-ß1-stimulated BUMPT cells. In particular, Anp32e overexpression alone induced the deposition of Fn and Col-I in both mouse kidneys and BUMPT cells without TGF-ß1 stimulation. Furthermore, we revealed that the overexpression of Anp32e induced the expression of TGF-ß1 and p-Smad3 while TGF-ß1 inhibitor SB431542 reversed the Anp32e-induced upregulation of Fn and Col-I in BUMPT cells without TGF-ß1 stimulation. Collectively, our data demonstrate that Anp32e promotes the deposition of fibrosis-related proteins by regulating the TGF-ß1/Smad3 pathway.


Assuntos
Nefropatias , Chaperonas Moleculares , Animais , Camundongos , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrose , Rim/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36185701

RESUMO

Introduction: Cardiovascular disease constitutes the leading cause of mortality in patients with chronic kidney disease (CKD), which is termed cardiorenal syndrome type 4 (CRS-4). Here, we report the development of pathological cardiac remodeling and fibrosis in unilateral urinary obstruction (UUO) rats. Methods: Hematoxylin and eosin (H&E) staining was performed to observe the pathology of myocardial tissue. The degree of myocardial tissue fibrosis was observed by Masson and Sirius red staining. Immunohistochemical staining was applied to detect the expression of CD34 and CD105 in myocardial tissue, and immunofluorescent staining was performed to examine the expression of CD34, collagen I/collagen III, and alpha smooth muscle actin (α-SMA). The expression of the signal pathway-related proteins vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), nuclear factor κB (NF-κB), and interleukin (IL)-1ß was tested by western blotting. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the mRNA levels of serum and glucocorticoid-inducible kinase (SGK)-1, NF-κB, and interleukin-1ß (IL-1ß). Results: The results showed the development of pathological cardiac remodeling and cardiac dysfunction in UUO rats. Moreover, there was more angiogenesis and endothelial-mesenchymal transition (End-MT) in the UUO group, and these effects were inhibited by eplerenone. Conclusions: The results indicated that this cardiac fibrosis was associated with angiogenesis and that End-MT was related to aldosterone and mineralocorticoid receptor (MR) activation. Moreover, in association with the MR/IL-1ß/VEGFA signaling pathway, early treatment with the MR antagonist eplerenone in rats with UUO-induced CKD may significantly attenuate MR activation and cardiac fibrosis.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Actinas/metabolismo , Aldosterona/metabolismo , Animais , Colágeno/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Eplerenona/farmacologia , Fibrose , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Interleucina-1beta , Rim/patologia , NF-kappa B/metabolismo , NF-kappa B/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Insuficiência Renal Crônica/complicações , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Remodelação Ventricular
18.
Cytokine ; 159: 156000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058192

RESUMO

BACKGROUND: Renal interstitial fibrosis (RIF) is the main pathological change of a variety of chronic kidney diseases (CKD). Epigenetic modifications of fibrosis-prone genes regulate RIF progression. This study aimed to investigate long non-coding RNA (lncRNA) N6-methyladenosine (m6A) modification and its role in regulating RIF progression. METHODS: Unilateral ureteral occlusion (UUO) was employed to construct the RIF in vivo model; and TGF-ß1-treated HK-2 and HKC-8 cells were used for in vitro experiments. The mRNA and protein expressions were assessed using qRT-PCR and western blot. The proliferation and migration were evaluated by EdU assay and transwell assay, respectively. In addition, levels of inflammatory cytokines were determined by ELISA assay and qRT-PCR. Moreover, lncRNA GAS5 m6A level was detected using Me-RIP assay. HE and Masson staining were employed to evaluate fibrotic lesions of the kidney. RESULTS: FTO expression was elevated in HK-2 and HKC-8 cells after TGF-ß1 treatment and mouse kidney tissue following UUO, and lncRNA GAS5 was downregulated. LncRNA GAS5 overexpression or FTO silencing suppressed TGF-ß1-induced the increase of EMT-related proteins (Vimentin, Snail and N-cadherin) and inflammatory cytokines (IL-6, IL-1ß and TNF-α) levels in HK-2 cells. FTO suppressed lncRNA GAS5 expression by reducing the m6A modification of lncRNA GAS5. Additionally, FTO knockdown could suppress EMT process and inflammation response induced by TGF-ß1 and UUO in vitro and in vivo. As expected, FTO knockdown abrogated the promotion effects of lncRNA GAS5 silencing on TGF-ß1-induced EMT process and inflammation response in HK-2 and HKC-8 cells. CONCLUSION: FTO promoted EMT process and inflammation response through reducing the m6A modification of lncRNA GAS5.


Assuntos
RNA Longo não Codificante , Insuficiência Renal Crônica , Obstrução Ureteral , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Caderinas , Transição Epitelial-Mesenquimal/genética , Fibrose , Inflamação/genética , Inflamação/patologia , Interleucina-6/farmacologia , Rim/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Vimentina
19.
Clin Transl Med ; 12(8): e982, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35968938

RESUMO

BACKGROUND: Renal fibrosis is a serious condition that results in the development of chronic kidney diseases. The MEN1 gene is an epigenetic regulator that encodes the menin protein and its role in kidney tissue remains unclear. METHODS: Kidney histology was examined on paraffin sections stained with hematoxylin-eosin staining. Masson's trichrome staining and Sirius red staining were used to analyze renal fibrosis. Gene and protein expression were determined by quantitative real-time PCR (qPCR) and Western blot, respectively. Immunohistochemistry staining in the kidney tissues from mice or patients was used to evaluate protein levels. Flow cytometry was used to analyze the cell cycle distributions and apoptosis. RNA-sequencing was performed for differential expression genes in the kidney tissues of the Men1f/f and Men1∆/∆ mice. Chromatin immunoprecipitation sequencing (ChIP-seq) was carried out for identification of menin- and H3K4me3-enriched regions within the whole genome in the mouse kidney tissue. ChIP-qPCR assays were performed for occupancy of menin and H3K4me3 at the gene promoter regions. Luciferase reporter assay was used to detect the promoter activity. The exacerbated unilateral ureteral obstruction (UUO) models in the Men1f/f and Men1∆/∆ mice were used to assess the pharmacological effects of rh-HGF on renal fibrosis. RESULTS: The expression of MEN1 is reduce in kidney tissues of fibrotic mouse and human diabetic patients and treatment with fibrotic factor results in the downregulation of MEN1 expression in renal tubular epithelial cells (RTECs). Disruption of MEN1 in RTECs leads to high expression of α-SMA and Collagen 1, whereas MEN1 overexpression restrains epithelial-to-mesenchymal transition (EMT) induced by TGF-ß treatment. Conditional knockout of MEN1 resulted in chronic renal fibrosis and UUO-induced tubulointerstitial fibrosis (TIF), which is associated with an increased induction of EMT, G2/M arrest and JNK signaling. Mechanistically, menin recruits and increases H3K4me3 at the promoter regions of hepatocyte growth factor (HGF) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (Adamts5) genes and enhances their transcriptional activation. In the UUO mice model, exogenous HGF restored the expression of Adamts5 and ameliorated renal fibrosis induced by Men1 deficiency. CONCLUSIONS: These findings demonstrate that MEN1 is an essential antifibrotic factor in renal fibrogenesis and could be a potential target for antifibrotic therapy.


Assuntos
Nefropatias , Obstrução Ureteral , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Epigênese Genética/genética , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
20.
Cell Death Dis ; 13(8): 693, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941120

RESUMO

Renal fibrosis is a common consequence of various progressive nephropathies, including obstructive nephropathy, and ultimately leads to kidney failure. Infiltration of inflammatory cells is a prominent feature of renal injury after draining blockages from the kidney, and correlates closely with the development of renal fibrosis. However, the underlying molecular mechanism behind the promotion of renal fibrosis by inflammatory cells remains unclear. Herein, we showed that unilateral ureteral obstruction (UUO) induced Gasdermin D (GSDMD) activation in neutrophils, abundant neutrophil extracellular traps (NETs) formation and macrophage-to-myofibroblast transition (MMT) characterized by α-smooth muscle actin (α-SMA) expression in macrophages. Gsdmd deletion significantly reduced infiltration of inflammatory cells in the kidneys and inhibited NETs formation, MMT and thereby renal fibrosis. Chimera studies confirmed that Gsdmd deletion in bone marrow-derived cells, instead of renal parenchymal cells, provided protection against renal fibrosis. Further, specific deletion of Gsdmd in neutrophils instead of macrophages protected the kidney from undergoing fibrosis after UUO. Single-cell RNA sequencing identified robust crosstalk between neutrophils and macrophages. In vitro, GSDMD-dependent NETs triggered p65 translocation to the nucleus, which boosted the production of inflammatory cytokines and α-SMA expression in macrophages by activating TGF-ß1/Smad pathway. In addition, we demonstrated that caspase-11, that could cleave GSDMD, was required for NETs formation and renal fibrosis after UUO. Collectively, our findings demonstrate that caspase-11/GSDMD-dependent NETs promote renal fibrosis by facilitating inflammation and MMT, therefore highlighting the role and mechanisms of NETs in renal fibrosis.


Assuntos
Armadilhas Extracelulares , Nefropatias , Obstrução Ureteral , Caspases/metabolismo , Armadilhas Extracelulares/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/patologia , Nefropatias/patologia , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Transdução de Sinais , Obstrução Ureteral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA