RESUMO
Long-term administration of exogenous estrogen is known to cause urinary retention and marked, often fatal, bladder distention in both male and female mice. Estrogen-treated mice have increased bladder pressure and decreased urine flow, suggesting that urinary retention in estrogen-treated mice is due to infravesicular obstruction to urine outflow. Thus, the condition is commonly referred to as bladder outlet obstruction (BOO). Obesity can also lead to urinary retention. As the effects of estrogen are mediated by multiple receptors, including estrogen receptors ERα and ERß and the G protein-coupled estrogen receptor (GPER), we sought to determine whether GPER plays a role in estrogen-induced BOO, particularly in the context of obesity. Wild type and GPER knockout (KO) mice fed a high-fat diet were ovariectomized or left ovary-intact (sham surgery) and supplemented with slow-release estrogen or vehicle-only pellets. Supplementing both GPER KO and wild type obese mice with estrogen for 8 weeks resulted in weight loss, splenic enlargement, and thymic atrophy, as expected. However, estrogen-treated obese GPER KO mice developed abdominal distension, debilitation, and ulceration of the skin surrounding the urogenital opening. At necropsy, these mice had prominently distended bladders and hydronephrosis. In contrast, estrogen-treated obese wild type mice only rarely displayed these signs. Our results suggest that, under conditions of obesity, estrogen induces BOO as a result of ERα-driven pathways and that GPER expression is protective against BOO.
Assuntos
Estrogênios , Camundongos Knockout , Obesidade , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Retenção Urinária , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Obesidade/metabolismo , Obesidade/complicações , Obesidade/genética , Camundongos , Retenção Urinária/metabolismo , Retenção Urinária/genética , Camundongos Endogâmicos C57BL , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Ovariectomia , Masculino , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/genéticaRESUMO
This study investigates whether hAFSCs can improve bladder function in partial bladder outlet obstruction (pBOO) rats by targeting specific cellular pathways. Thirty-six female rats were divided into sham and pBOO groups with and without hAFSCs single injection into the bladder wall. Cystometry, inflammation/hypoxia, collagen/fibrosis/gap junction proteins, and smooth muscle myosin/muscarinic receptors were examined at 2 and 6 weeks after pBOO or sham operation. In pBOO bladders, significant increases in peak voiding pressure and residual volume stimulated a significant upregulation of inflammatory and hypoxic factors, TGF-ß1 and Smad2/3. Collagen deposition proteins, collagen 1 and 3, were significantly increased, but bladder fibrosis markers, caveolin 1 and 3, were significantly decreased. Gap junction intercellular communication protein, connexin 43, was significantly increased, but the number of caveolae was significantly decreased. Markers for the smooth muscle phenotype, myosin heavy chain 11 and guanylate-dependent protein kinase, as well as M2 muscarinic receptors, were significantly increased in cultured detrusor cells. However, hAFSCs treatment could significantly ameliorate bladder dysfunction by inactivating the TGFß-Smad signaling pathway, reducing collagen deposition, disrupting gap junctional intercellular communication, and modifying the expressions of smooth muscle myosin and caveolae/caveolin proteins. The results support the potential value of hAFSCs-based treatment of bladder dysfunction in BOO patients.
Assuntos
Conexina 43 , Obstrução do Colo da Bexiga Urinária , Bexiga Urinária , Animais , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Feminino , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Bexiga Urinária/patologia , Conexina 43/metabolismo , Transplante de Células-Tronco/métodos , Transdução de Sinais , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Modelos Animais de Doenças , Junções Comunicantes/metabolismo , Colágeno/metabolismoRESUMO
Bladder outlet obstruction (BOO) is the primary clinical manifestation of benign prostatic hyperplasia, the most common urinary system disease in elderly men, and leads to associated lower urinary tract symptoms. Although BOO is reportedly associated with increased systemic oxidative stress (OS), the underlying mechanism remains unclear. The elucidation of this mechanism is the primary aim of this study. A Sprague-Dawley rat model of BOO was constructed and used for urodynamic monitoring. The bladder tissue of rats was collected and subjected to real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), histological examination, and immunohistochemical staining. Through bioinformatics prediction, we found that transforming growth factor ß2 (TGFß2) expression was upregulated in rats with BOO compared with normal bladder tissue. In vitro analyses using primary bladder smooth muscle cells (BSMCs) revealed that hydrogen peroxide (H2O2) induced TGFß2 expression. Moreover, H2O2 induced epithelial-to-mesenchymal transition (EMT) by reducing E-cadherin, an endothelial marker and CK-18, a cytokeratin maker, and increasing mesenchymal markers, including N-cadherin, vimentin, and α-smooth muscle actin (α-SMA) levels. The downregulation of TGFß2 expression in BSMCs using siRNA technology alleviated H2O2-induced changes in EMT marker expression. The findings of the study indicate that TGFß2 plays a crucial role in BOO by participating in OS-induced EMT in BSMCs.
Assuntos
Transição Epitelial-Mesenquimal , Estresse Oxidativo , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta2 , Bexiga Urinária , Animais , Masculino , Ratos , Peróxido de Hidrogênio/farmacologia , Músculo Liso/metabolismo , Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fator de Crescimento Transformador beta2/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/metabolismoRESUMO
Overactive bladder (OAB) is a common, long-term symptom complex with a high prevalence in women worldwide. OAB has caused a social burden, and effective treatments are urgently needed. However, the pathogenesis of OAB has yet to be elucidated. Model rats underwent bladder outlet obstruction surgery. In the 2nd, 3rd, and 4th weeks after surgery, metabolic cages were used to detect the 12 h urine volume of rats in the sham and model groups. The urodynamic parameters bladder leak point pressure (BPLL), maximum voiding pressure (MVP), residual volume (RV), maximum bladder capacity (MBC), bladder compliance (BC), voided efficiency (VE), and non-voiding contractions (NVCs) were also detected. Moreover, the contractile responses of isolated detrusor muscles to electrical and carbachol stimulation were examined at the abovementioned time points. At the 4th week after surgery, the bladders of both groups were obtained for hematoxylin-eosin (H&E) and Masson's trichrome staining. Real-time qPCR and Western blot were performed to quantify the expression of choline acetyltransferase (ChAT) and solute carrier family 17 member 9 (SLC17A9). At week 4, compared with the sham group, the 12 h urine volume of PBOO group increased significantly. The BLPP, MVP, VE, MBC, and NVCs increased significantly, and the VE was significantly reduced in 4-week PBOO group. The contractile responses of isolated detrusor muscles to electrical and carbachol stimulation significantly increased in 4-week PBOO group. In the 4-week PBOO group, the bladder wall and the ratio of bladder muscle to collagen within the bladder smooth muscle layer wall were significantly higher than those in the sham group. ChAT and SLC17A9 mRNA and protein expression in the OAB model rats significantly increased. At 4 weeks after PBOO, the OAB model was successfully established. The gene and protein expression levels of ChAT and SLC17A9 increased in the bladder of the OAB model, suggesting that OAB may be related to increased excitatory purinergic and cholinergic expression.
Assuntos
Obstrução do Colo da Bexiga Urinária , Bexiga Urinária Hiperativa , Humanos , Ratos , Feminino , Animais , Bexiga Urinária Hiperativa/genética , Obstrução do Colo da Bexiga Urinária/metabolismo , Carbacol/farmacologia , Bexiga Urinária/patologia , Colinérgicos/metabolismoRESUMO
INTRODUCTION: Intravesical prostatic protrusion (IPP) has been reported to be associated with bladder outlet obstruction and is the main cause of lower urinary tract symptoms (LUTS) during the development of benign prostatic hyperplasia (BPH). However, the molecular mechanism of IPP remains unclear. METHODS: Clinical data analysis was performed to analyze the association between IPP and long-term complications in patients with BPH. RNA sequencing was performed on prostate tissues (IPP or not). Stromal cells were obtained from IPP-derived primary cultures to explore the molecular mechanism of IPP formation. Cell proliferation was evaluated by a CCK-8 assay. Multiple proteins in the signaling pathway were assessed using Western blot. RESULTS: First, we confirmed that IPP is a prognostic factor for long-term complications in patients with BPH. Then, we observed that FGF7 was upregulated in both IPP tissues and IPP primary stromal cells through immunohistochemistry, Western blot, and quantitative real-time PCR. Furthermore, FGF7 was significantly upregulated in high IPP-grade prostate tissues. The coculture experiments showed that the downregulation of FGF7 in IPP-derived stromal cells inhibited the proliferation and migration of the prostate epithelial cells. Additionally, FGF7 was bound to FGFR2 to induce the epithelial-mesenchymal transition process through binding to FGFR2. RNA sequencing analysis also revealed the activation of the MAPK/ERK1/2 signaling pathway. The MAPK/ERK1/2 was downregulated by a specific inhibitor affecting the FGF7 stimulation in vitro. CONCLUSIONS: Our data reveal a novel amplification effect, i.e., stromal cell-derived FGF7 promotes epithelial cell proliferation and stromal cell phenotype, ultimately inducing IPP formation. Targeting FGF7 can significantly reduce epithelial to stromal transition and provide a potential therapeutic target for BPH progression.
Assuntos
Hiperplasia Prostática , Obstrução do Colo da Bexiga Urinária , Humanos , Masculino , Hiperplasia Prostática/tratamento farmacológico , Próstata/metabolismo , Regulação para Cima , Sistema de Sinalização das MAP Quinases , Obstrução do Colo da Bexiga Urinária/complicações , Obstrução do Colo da Bexiga Urinária/metabolismo , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/uso terapêuticoRESUMO
Aims: Bladder outlet obstruction (BOO) and the consequent low contractility of detrusor are the leading causes of voiding dysfunction. In this study, we aimed to evaluate the pharmacological activity of astragaloside IV (AS-IV), an antioxidant biomolecule that possess beneficial effect in many organs, on detrusor contractility and bladder wall remodeling process. Methods: Partial BOO (pBOO) was created by urethral occlusion in female rats, followed by oral gavage of different dose of AS-IV or vehicle. Cystometric evaluation and contractility test were performed. Bladder wall sections were used in morphology staining, and bladder tissue lysate was used for ELISA assay. Primary smooth muscle cells (SMCs) derived from detrusor were used for mechanism studies. Results: Seven weeks after pBOO, the bladder compensatory enlarged, and the contractility in response to electrical or chemical stimuli was reduced, while AS-IV treatment reversed this effect dose-dependently. AS-IV also showed beneficial effect on reversing the bladder wall remodeling process, as well as reducing ROS level. In mechanism study, AS-IV activated mitophagy and alleviated oxidative stress via an AMPK-dependent pathway. Conclusion: Out data suggested that AS-IV enhanced the contractility of detrusor and protected the bladder from obstruction induced damage, via enhancing the mitophagy and restoring mitochondria function trough an AMPK-dependent way.
Assuntos
Obstrução do Colo da Bexiga Urinária , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Feminino , Mitofagia , Contração Muscular , Estresse Oxidativo , Ratos , Saponinas , Triterpenos , Obstrução do Colo da Bexiga Urinária/metabolismoRESUMO
INTRODUCTION: Bladder outlet obstruction (BOO) was caused by a series of histological and biochemical changes in the bladder wall, through the inflammation process in the bladder wall, hypertrophy and fibrosis. ADSC has an important role in bladder regeneration. METHODS AND MATERIALS: This study was an experimental randomized study using male Wistar rats which were monitored at 2 and 4 weeks to determine the effect of ADSC therapy on TGF-ß1 type I collagen, and degree of fibrosis. RESULT: Rats were divided into 5 groups. In the week 2 BOO group, 1 sample included in the category of moderate fibrosis, 1 sample that was given ADSC with mild fibrosis category, 3 samples included in severe fibrosis category, 3 samples that were given ADSC included in the category of moderate fibrosis. The concentration of TGF-ß1 in the hADSC therapy group was significantly lower than the control group at the 2nd and 4th week of monitoring (p2 = 0.048, p4 = 0.048), and also with more type I collagen on 2nd and the 4th week (p2 = 0.048, p4 = 0.048). CONCLUSION: ADSC therapy can reduce the concentration of TGF-ß1, type I collagen, and degree of fibrosis in the male Wistar BOO model.
Assuntos
Transplante de Células-Tronco Mesenquimais , Obstrução do Colo da Bexiga Urinária , Animais , Colágeno Tipo I/análise , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose/metabolismo , Fibrose/terapia , Humanos , Masculino , Células-Tronco Mesenquimais , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Células-Tronco/patologia , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/metabolismo , Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/terapiaRESUMO
BACKGROUND: Hypoxia damages the bladder wall and contributes to the initiation of bladder dysfunction. The change of hypoxia is not well known in impaired bladder contractility caused by long-term bladder outlet obstruction (BOO). We aimed to find out whether hypoxia of bladder tissue is present and what signaling mechanisms are involved in the decompensated bladder in BOO. METHODS: Twenty 6-week-old female Sprague-Dawley rats were divided into 2 groups, 10 rats each: group 1, sham operation; group 2, BOO for 8 weeks. Eight weeks after the onset of BOO, we did cystometric evaluation and processed polymerase chain reaction (PCR) array for hypoxia pathway using bladder tissues. The PCR array consists of 84 genes known to be involved in the hypoxic response, cell differentiation, and metabolism. We did quantitative PCR (qPCR) and immunohistochemical staining of bladder tissue for hypoxia. RESULTS: Eight genes were at least 2-fold upregulated and 3 genes were at least 2-fold downregulated in BOO group, compared with the sham operation group. The up-regulated genes (fold change) belonging to the hypoxia-inducible factor (HIF) 1 interactor included Cdkn2a (11.0), and the down-regulated genes belonging to HIF and co-transcription factors included Hif3a (-39.6) and Per1 (-5.1) by BOO. Genes influenced each other by means of TGFß1, TNF, and TP53. CONCLUSION: Hypoxia genes were increased in impaired contractility because of long-term BOO. The gene expression profiles could explain the molecular mechanisms of hypoxia in impaired contractility because of long-term BOO.
Assuntos
Obstrução do Colo da Bexiga Urinária , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Bexiga Urinária , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/metabolismoRESUMO
Partial bladder outlet obstruction (pBOO) often results in bladder tissue inflammation and remodeling. As human urine-derived stem cells (USCs) have demonstrated therapeutic benefits, we used a rat model to investigate the effect of USCs on bladder function and explore the miRNA and gene expression profiles in bladder tissue using RNA sequencing. Eighteen rats were assigned to a sham surgery group, pBOO group, and pBOO+USC group (six biweekly treatments). Routine urodynamic monitoring, analysis of detrusor muscle strips, and pathophysiology assessments were conducted. Finally, altered miRNA and mRNA expression profiles of bladder tissue were examined using RNA sequencing and bioinformatics analysis. After USC treatment, elevated bladder compliance and maximal voiding pressure, declined end filling pressure and voided volume, and improved detrusor muscle contractility and carbachol sensitivity were found. Histology and TUNEL assay revealed reduced collagen deposition and muscle cell apoptosis in bladder tissue. The differential expression of eight miRNAs was reversed by USC treatment. Two large nodes (miR-142 and miR-9a) were identified in the miRNA-gene interaction network in the USC-treated group. The Kyoto Encyclopedia of Genes and Genomes analysis revealed enrichment of multiple significant pathways, including those involved in necroptosis and cytokine-cytokine receptor interactions. This is the first study to demonstrate the protective effect of USCs on bladder function and remodeling in pBOO rats. The miRNA and mRNA expression levels differed in the bladder of pBOO rats with and without USC treatment. Although the mechanism underlying these effects has not been fully elucidated, necroptosis and cytokine-cytokine receptor interaction-related pathways may be involved.
Assuntos
MicroRNAs , Obstrução do Colo da Bexiga Urinária , Animais , Carbacol , Citocinas , Humanos , MicroRNAs/genética , Dados Preliminares , RNA Mensageiro/genética , Ratos , Receptores de Citocinas , Células-Tronco/metabolismo , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/terapiaRESUMO
Bladder outlet obstruction (BOO) is ultimately experienced by ≈90% of men, most commonly secondary to benign prostatic hyperplasia. Inflammation is a critical driver of BOO pathology in the bladder and can be divided into two critical steps: initiation and resolution. Although great strides have been made toward understanding the initiation of inflammation in the bladder [through the NLR family pyrin domain containing 3 (NLRP3) inflammasome], no studies have examined resolution. Resolution is controlled by five classes of compounds known as specialized proresolving mediators (SPMs), all of which bind to one or more of the seven different receptors. Using immunocytochemistry, we showed the presence of six of the known SPM receptors in the bladder of control and BOO rats; the seventh SPM receptor has no rodent homolog. Expression was predominantly localized to urothelia, often with some expression in smooth muscle, but little to none in interstitial cells. We next examined the therapeutic potential of the annexin-A1 resolution system, also present in control and BOO bladders. Using the peptide mimetic Ac2-26, we blocked inflammation-initiating pathways (NLRP3 activation), diminished BOO-induced inflammation (Evans blue dye extravasation), and normalized bladder dysfunction (urodynamics). Excitingly, Ac2-26 also promoted faster and more complete functional recovery after surgical deobstruction. Together, the results demonstrate that the bladder expresses a wide variety of potential proresolving pathways and that modulation of just one of these pathways can alleviate many detrimental aspects of BOO and speed recovery after deobstruction. This work establishes a precedent for future studies evaluating SPM effectiveness in resolving the many conditions associated with bladder inflammation.NEW & NOTEWORTHY To our knowledge, this is the first study of proinflammation-resolving pathways in the bladder, which is the basis of a new pharmacological genus-dubbed "resolution pharmacology" aimed at reducing inflammation without creating an immunocompromised state. Inflammation plays a causative or exacerbating role in numerous bladder maladies. We documented proresolution receptors in the rat bladder and the effectiveness of a specialized proresolving mediator, annexin-A1, in alleviating detrimental aspects of bladder outlet obstruction and speeding recovery after deobstruction.
Assuntos
Anexina A1/metabolismo , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Bexiga Urinária/efeitos dos fármacos , Animais , Anexina A1/genética , Anexina A1/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/fisiopatologiaRESUMO
Bladder outlet obstruction (BOO) can lead to alternation of bladder structure and function, known as bladder remodeling. Macrophage is a heterogeneous cell type and implicated in immunity regulating and tissue repairment. The relationship between macrophage and BOO remains unclear. We determined the pivotal role of macrophage recruitment and polarization in bladder remodeling. Sprague-Dawley rats underwent surgical operation of a BOO for either 1, 3, 6 weeks and were compared with sham-operated rats. The BOO rats in the experimental group were orally administrated with 5 mg/kg RS-504393, a C-C chemokine receptor (CCR2) antagonist, for 6 weeks, and the rats in the control group were treated with vehicle. Bladder tissues were harvested for assays of flow cytometry, quantitative reverse transcription polymerase chain reaction, histological examinations, immunohistochemistry staining and immunofluorescence. After induction of BOO, M1 macrophages were predominantly observed at inflammatory stage while M2 macrophages were mainly found during fibrosis stage. Flow cytometry analysis revealed that the ratio of M1/M2 significantly increased at 3 weeks (P = 0.0013) when compared to the sham-operated group. Interestingly, our results showed that M2 macrophages promoted BOO-induced fibrosis through indirectly secreting TGF-ß and directly transforming to collagen-producing myofibroblast. Additionally, RS-504393 treatment significantly decreased the number of M1 and M2 macrophage infiltration in bladder tissue, and bladder fibrosis was attenuated by RS-504393 treatment compared with that in the vehicle-treated rats. In summary, macrophages play a pivotal role in bladder remodeling and targeting MCP-1/CCR2 signaling pathway might be a therapeutic strategy for human bladder fibrosis.
Assuntos
Quimiocina CCL2/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Humanos , Miofibroblastos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Bexiga UrináriaRESUMO
Extracellular matrix (ECM) remodeling is strongly associated with pathological changes induced by bladder outlet obstruction (BOO). In this study, we investigated the role of interleukin-6 (IL-6) in mechanical stretch-induced ECM remodeling of bladder smooth muscle. To construct a BOO animal model, the urethras of female Sprague-Dawley rats were partially ligated. In addition, increased hydrostatic pressure and mechanical stretching were applied to human bladder smooth muscle cells (HBSMCs) as an in vitro model. The expression of rat inflammatory genes was analyzed using DNA microarrays. We used quantitative RT-PCR (qRT-PCR) and immunohistochemical staining to detect IL-6 in the bladder smooth muscle of rats. To determine the specificity of IL-6, small interfering ribonucleic acid (siRNA) transfection and IL-6 receptor inhibitor (SC144) were applied to HBSMCs. qRT-PCR with siRNA transfection was also used to determine the specificity of downstream signaling. Moreover, western blotting was conducted to verify the expression results. In the animal model, the expression of ECM components and inflammatory genes was significantly upregulated. The expression of IL-6 was increased at both the mRNA level and the protein level in BOO rats. In vitro, hydrostatic pressure, and mechanical stretching both promoted MMP7 and MMP11 expression. Additionally, downregulation of collagen III occurred in both the hydrostatic pressure group and the mechanical stretch group. However, the expression of fibronectin exhibited opposing patterns between the hydrostatic pressure and mechanical stretch groups. The application of targeted siRNA transfection and an inhibitor (SC144) that targeted IL-6 significantly reversed the changes in MMP7 and MMP11 under mechanical stress and partially increased the expression of collagen III and fibronectin. In summary, IL-6 participated in the ECM remodeling of HBSMCs under mechanical stress, indicating that IL-6 may play an essential role in BOO..
Assuntos
Matriz Extracelular/metabolismo , Interleucina-6/metabolismo , Músculo Liso/citologia , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Estresse Mecânico , Bexiga Urinária , Animais , Microambiente Celular , Colágeno/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Interleucina-6/genética , Metaloproteinases da Matriz/genética , Músculo Liso/patologia , Ratos , Ratos Sprague-Dawley , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologiaRESUMO
INTRODUCTION: Bladder outlet obstruction (BOO) occurs in more than 20 percent of the adult population and may lead to changes in the structure and function of the bladder. The main objective of the study was to evaluate the expression of Toll-like receptor 4 (TLR 4) and Toll-like receptor 9 (TLR 9) in the animal model of BOO as potential triggers of the inflammation phase in the bladder. In addition, the modulating effect of alpha-1 adrenergic antagonist (tamsulosin) on TLR 4 and TLR 9 expression and inflammatory markers was assessed. Material and Methods. Thirty-two male, 9-week-old Sprague Dawley rats were randomly divided into 4 groups: SOP-sham-operated rats with a placebo (water); SOB-sham-operated rats with an alpha-1 adrenergic antagonist; BOOP-rats with BOO and a placebo; and BOOB-rats with BOO and an alpha-1 adrenergic antagonist. The rats were given a placebo or alpha-1 adrenergic antagonist for 15 days. Next, urine and the bladder were collected from the rats for histopathological and biochemical study. RESULTS: Histopathological analysis showed chronic inflammation without acute inflammation in the bladder. TLR 4 showed positive cytoplasmic reactivity in the urothelium and the smooth muscles of the bladder. TLR 9 showed positive cytoplasmic reactivity only in the urothelium. BOO caused an increase in TLR 4 and TLR 9 expression. Furthermore, treatment with an alpha-1 adrenergic antagonist had no significant effect on TLR 4 and TLR 9 expression in rats with BOO. BOO caused a significant increase in urine concentration of interleukin 6 (IL-6), while alpha-1 antagonist reduced the urine concentration of IL-6 and the concentration of interleukin 18 (IL-18). CONCLUSIONS: The results suggest the participation of TLR 4 and TLR 9 receptors in the induction of inflammation in the bladder, which is the first phase in the development of pathophysiological changes in BOO.
Assuntos
Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Peso Corporal , Modelos Animais de Doenças , Inflamação , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Tansulosina/farmacologia , Bexiga Urinária/metabolismoRESUMO
OBJECTIVE: Detrusor underactivity (DU) is a common but relatively under-researched bladder dysfunction. Recently, there has been renewed interest in this topic. The aim of the study was to develop a decision-making algorithm to predict the impaired detrusor contractility in patients with LUTS (lower urinary tract symptoms). PATIENTS AND METHODS: A retrospective analysis covered 96 consecutive patients (aged 63 ± 8 years) treated pharmacologically for 50 ± 37 months due to LUTS (persisting for 64 ± 41 months). Functional tests included uroflowmetry and flow cystometry. RESULTS: Weakened detrusor functioning was detected in 58 (60.4%) patients. Decision-making algorithm that included uroflowmetry, flow cystometry and clinical data, was showed to allow to diagnose impaired detrusor function with accuracy of 73% (95% CI - confidence interval: 61-83%) and specificity of 76% (95% CI: 54-90%). The positive predictive value of the classification tree graph is equal to 90% (95% CI: 78 -96%) and the negative predictive value is 50% (95% CI: 34-66%). The weakened detrusor function was more frequent in patients with: time to reach maximum flow rate higher than 13.5 s; time to reach maximum flow rate lower than 13.5 s and mean flow ratio higher than 4.5 ml/s, but time of flow longer than 44.5 s; time to reach maximum flow rate lower than 13.5 s and mean flow ratio lower than 4.5 ml/s, but time of flow longer than 52.5 s. CONCLUSIONS: The results of the uroflowmetry can be used to predict the impaired detrusor contractility in patients with LUTS.
Assuntos
Algoritmos , Tomada de Decisão Clínica , Obstrução do Colo da Bexiga Urinária/diagnóstico , Bexiga Inativa/diagnóstico , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Obstrução do Colo da Bexiga Urinária/metabolismo , Bexiga Inativa/metabolismo , UrodinâmicaRESUMO
AIMS: Abnormal intravesical pressure created by partial bladder outlet obstruction (PBOO) triggered the progression from chronic inflammation to fibrosis, initiating structural and functional alterations of bladder. To elucidate the underlying mechanisms of contraction and inflammatory response, we investigated the isolated human bladder smooth muscle cells (hBSMC) under pathological hydrostatic pressure (HP) mimicking the in vivo PBOO condition. METHODS: hBSMCs were subjected to HP of 200 cm H2 O to explore the contraction and inflammatory cytokine expression of hBSMC treated with ß-adrenoceptors (ADRBs) and/or autophagy signaling pathway agonists and/or antagonists. RESULTS: We showed that pathological HP induced the release of the proinflammatory cytokines, including monocyte chemotactic protein-1, regulated upon activation normal T cell expressed and secreted factor, and interleukin-6. HP downregulated ADRB2 and ADRB3 expression, which was consistent with the results of the PBOO rat model. ADRB2 or autophagy activation repressed pathological HP-induced proinflammatory cytokine production. ADRB2, ADRB3 or autophagy activation ameliorated the HP-enhanced contraction. The increased contraction and autophagy activity by ADRB2 agonist under HP conditions were reversed by pretreatment with antagonists of adenosine monophosphate-activated protein kinase (AMPK). CONCLUSION: The present study provides evidence that the ADRB3 agonist suppresses hBSMC contraction under pathological HP conditions. Moreover, the ADRB2 agonist negatively regulates the contraction and inflammatory response of hBSMCs through AMPK/mTOR-mediated autophagy under pathological HP. These findings provide a theoretical basis for potential therapeutic strategies for patients with PBOO.
Assuntos
Autofagia/fisiologia , Citocinas/metabolismo , Pressão Hidrostática , Miócitos de Músculo Liso/metabolismo , Receptores Adrenérgicos/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Agonistas Adrenérgicos/farmacologia , Regulação para Baixo , Humanos , Inflamação/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bexiga Urinária/efeitos dos fármacosRESUMO
Purpose: Many patients with benign prostatic hyperplasia require treatment for persistent storage symptoms, even when the obstruction is successfully relieved by surgery. Previous studies identified a characteristic increase in α1D-adrenoceptor levels in the bladder in a bladder outlet obstruction (BOO) model. Here, we investigated the expression of α1-adrenoceptor subtypes in the bladder after relief of partial BOO (pBOO) in a rat model. Materials and Methods: A total of 60 female Sprague-Dawley rats were randomly divided into three groups (sham-operated, pBOO, and pBOO relief groups), and the expression of α1-adrenoceptor subtypes in the urothelium and detrusor muscle tissues was examined by western blot. Results: The expression of the α1D-adrenoceptor was significantly higher in the urothelium and detrusor muscle tissue of the pBOO and pBOO relief groups than in the corresponding tissue of the sham-operated group. Additionally, the α1A-adrenoceptor was predominant in the sham-operated group but significantly decreased in the urothelium in the pBOO group. No significant differences were found in α1A-adrenoceptor levels in detrusor muscle or whole bladder. Conclusions: Our results showed that α1D-adrenoceptor levels were consistently increased with pBOO, even after relief, suggesting that the α1D-adrenoceptor might be a cause of persistent storage symptoms after relief of pBOO.
Assuntos
Receptores Adrenérgicos alfa 1/biossíntese , Obstrução do Colo da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Obstrução do Colo da Bexiga Urinária/cirurgiaRESUMO
The objective of this study was to investigate the role of ATP in cholinergic neurotransmission in the urinary bladder of control men and of patients obstructed as a result of benign prostatic hyperplasia (BPH). Human detrusor samples were collected from 41 patients who submitted to transvesical prostatectomy resulting from BPH and 26 male organ donors. The release of [3H]acetylcholine ([3H]ACh) was evoked by electrical field stimulation (10 Hz, 200 pulses) in urothelium-denuded detrusor strips. Myographic recordings were performed to test detrusor strip sensitivity to ACh and ATP. Nerve-evoked [3H]ACh release was 1.5-fold higher in detrusor strips from BPH patients compared with controls. This difference was abolished after desensitization of ionotropic P2X1-3 receptors with an ATP analog, α,ß-methylene ATP (30 µM, applied for 15 minutes). TNP-ATP (10 nM, a preferential P2X2/3 antagonist) and A317491 (100 nM, a selective P2X3 antagonist) were about equipotent in decreasing nerve-evoked [3H]ACh release in control detrusor strips, but the selective P2X1 receptor antagonist NF023 (3 µM) was devoid of effect. The inhibitory effect of TNP-ATP (10 nM) increased from 27% ± 9% to 43% ± 6% in detrusor strips of BPH patients, but the effect of A317491 (100 nM) [3H]ACh release unaltered (20% ± 2% vs. 24% ± 4%). The amplitude of ACh (0.1-100 µM)-induced myographic recordings decreased, whereas sensitivity to ATP (0.01-3 mM) increased in detrusor strips from BPH patients. Besides the well characterized P2X1 receptor-mediated contractile activity of ATP in pathologic human bladders, we show here for the first time that cholinergic hyperactivity in the detrusor of BPH patients is facilitated by activation of ATP-sensitive P2X2/3 heterotrimers. SIGNIFICANCE STATEMENT: Bladder outlet obstruction often leads to detrusor overactivity and reduced bladder compliance in parallel to atropine-resistant increased purinergic tone. Our data show that P2X1 purinoceptors are overexpressed in the detrusor of patients with benign prostatic hyperplasia. Besides the P2X1 receptor-mediated detrusor contractions, ATP favors nerve-evoked acetylcholine release via the activation of prejunctional P2X2/3 excitatory receptors in these patients Thus, our hypothesis is that manipulation of the purinergic tone may be therapeutically useful to counteract cholinergic overstimulation in obstructed patients.
Assuntos
Trifosfato de Adenosina/metabolismo , Tono Muscular , Receptores Purinérgicos P2X1/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Acetilcolina/metabolismo , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Fenóis/farmacologia , Compostos Policíclicos/farmacologia , Multimerização Proteica , Antagonistas do Receptor Purinérgico P2X/farmacologia , Suramina/análogos & derivados , Suramina/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Obstrução do Colo da Bexiga Urinária/fisiopatologiaRESUMO
AMP-activated protein kinase (AMPK) has been implicated in contractility changes in bladders with partial bladder outlet obstruction (PBOO), but the role of AMPK in the contractile response of normal bladder remains unclear. We investigated the phosphorylation of AMPKα and expression of the involved upstream AMPK kinases (AMPKKs) in a model of bladders with PBOO and sought to determine whether the pharmacological inhibition of these two factors affected detrusor contractility in normal bladders, using female Sprague-Dawley rats. Cystometry and Western blot analysis were performed in rats that were subjected to PBOO induction or a sham operation. Cystometry was performed in normal rats that received selective inhibitors of AMPKα and Ca2+/calmodulin-dependent protein kinase kinase (CaMKKß) (compound C and STO-609, respectively) at doses determined in the experiments. In the PBOO bladders, bladder weight and micturition pressure (MP) were higher and AMPKα phosphorylation (T172) and CaMKKß expression was significantly reduced. Compound C and STO-609 increased MP. The increased contractile response in bladders with PBOO-induced hypertrophy was related to decreased CaMKKß/AMPK signaling activity, and the pharmacological inhibition of this pathway in normal bladders increased detrusor contractility, implying a role of CaMKKß/AMPK signaling in the bladder in the regulation of detrusor contractility.
Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Contração Muscular , Proteínas Quinases/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Micção , Quinases Proteína-Quinases Ativadas por AMP , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Feminino , Naftalimidas/farmacologia , Naftalimidas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Bexiga Urinária/fisiopatologia , Obstrução do Colo da Bexiga Urinária/tratamento farmacológicoRESUMO
INTRODUCTION: The diagnosis of renal function impairment and deterioration in congenital urinary tract obstruction (UTO) continues to be extremely challenging. The use of new renal biomarkers in this setting may favor early renal injury detection, allowing for a reliable choice of optimal therapeutic options and the prevention or minimization of definitive renal damage. OBJECTIVE: The aim of the study was to investigate a selection of promising biomarkers of renal injury with the intention of evaluating and comparing their profile with clinically based decisions for surgical intervention of infants with congenital obstructive uropathies. STUDY DESIGN: The first-year profile of renal biomarkers, serum creatinine (sCr), serum and urine cystatin C (CyC), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), transforming growth factor beta-1 (TGF-ß1), retinol-binding protein (RBP), and microalbuminuria (µALB), was analyzed in a cohort of 37 infants with congenital UTO, divided into three subgroups, 14 cases with grade III unilateral hydro(uretero)nephrosis, 13 cases with grade III bilateral hydro(uretero)nephrosis, and 10 cases with low urinary tract obstruction (LUTO), compared with 24 healthy infants matched by gestational age and birth weight. Serum and urine samples were stored at -70 °C and thereafter analyzed by quantitative enzymatic immunoassay. RESULTS: Compared with the control group (Figure), all renal biomarker values were significantly increased in patients (P ≤ 0.02). In the unilateral hydronephrosis and LUTO group, RBP (P ≤ 0.043), NGAL (P ≤ 0.043), KIM-1 (P ≤ 0.03), and TGF-ß1 (P ≤ 0.034) values dropped significantly after surgery. Neutrophil gelatinase-associated lipocalin alone and in combination with urine and serum CyC demonstrated the best performance in determining the need for surgery (area under the curve, 0.801 and 0.881, respectively). Biomarker profile analysis was suggestive of surgical intervention in 55.4% (7/13) of non-operated cases, and most of the biomarker values were above the cutoff levels within at least 3 months before the clinically based surgical decision in 58% (14/24) of all operated patients. DISCUSSION: To the best of the authors' knowledge, this is the first study to present the clinical use of selected group of serum and urinary biomarkers in the setting of UTO to distinguish between patients who would benefit from surgery intervention. The most promising results were obtained using NGAL, RBP, TGF-ß1, and KIM-1, especially in the unilateral hydro(uretero)nephrosis and LUTO subgroups when compared with the control group. CONCLUSIONS: Urine biomarkers, alone and in combination, demonstrated high potential as a non-invasive diagnostic tool for identifying infants who may benefit from earlier surgical intervention.
Assuntos
Tomada de Decisão Clínica , Obstrução Ureteral/metabolismo , Obstrução Ureteral/cirurgia , Obstrução Uretral/metabolismo , Obstrução Uretral/cirurgia , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/cirurgia , Biomarcadores/sangue , Feminino , Humanos , Lactente , Masculino , Valor Preditivo dos Testes , Obstrução Ureteral/congênito , Obstrução Uretral/congênito , Obstrução do Colo da Bexiga Urinária/congênito , Procedimentos Cirúrgicos UrológicosRESUMO
Bladder outlet obstruction (BOO) leads to progressive voiding dysfunction. Acutely, obstruction triggers inflammation that drives bladder dysfunction. Over time, inflammation leads to decreased bladder nerve density and increased fibrosis, responsible for eventual decompensation and irreversibility. We have previously shown that BOO triggers inflammation, reduced bladder nerve density and increased fibrosis via activation of the NLRP3 inflammasome in an acutely obstructed (12-day) rat model. However, as BOO progresses, the bladder may become decompensated with an increase in postvoid residual volume and decreased voiding efficiency. Currently, we have examined rat bladder function and nerve densities after chronic BOO to determine whether NLRP3 plays a role in the decompensation at this stage. Four groups were examined: control, sham-operated, BOO, or BOO+gly (glyburide; an NLRP3 inhibitor). After 42 days, bladder weight, inflammation (Evans blue), urodynamics, and nerve density were measured. BOO greatly enhanced bladder weights and inflammation, while inflammation was prevented by glyburide. Voiding pressures were increased, and flow rates decreased in BOO and BOO+gly groups, demonstrating physical obstruction. No difference in frequency or voided volume was detected. However, postvoid residual volumes were greatly increased in BOO rats while BOO+gly rats were not different than controls. Moreover, there was a dramatic decrease in voiding efficiency in the chronic BOO rats, which was prevented with glyburide treatment. Finally, a reduction in nerve density was apparent with BOO and attenuated with glyburide. Together the results suggest a critical role for NLRP3 in mediating bladder decompensation and nerve density during chronic BOO.