Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 152: 104597, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072185

RESUMO

Insects' thermoregulatory processes depend on thermosensation and further processing of thermal information in the nervous system. It is commonly known that thermosensation involves thermoreceptors, including members of the TRP receptor family, but the involvement of neurotransmitters in thermoregulatory pathways remains unstudied. We conducted test to determine whether octopamine, a biogenic amine that acts as a neurotransmitter and neurohormone in insects, is involved in TRP-induced thermoregulatory responses in Periplaneta americana. We used capsaicin, an activator of the heat-sensitive TRP channel, Painless, to induce thermoregulatory response in cockroaches. Then, we evaluated the behavioural (thermal preferences and grooming), physiological (heart rate) and biochemical responses of insects to capsaicin, octopamine and phentolamine - octopaminergic receptor blocker. Capsaicin, similar to octopamine, increased cockroaches' grooming activity and heart rate. Moreover, octopamine level and protein kinase A (PKA) activity significantly increased after capsaicin treatment. Blocking octopaminergic receptors with phentolamine diminished cockroaches' response to capsaicin - thermoregulatory behaviour, grooming and heart rate were abolished. The results indicate that octopamine is a neurotransmitter secreted in insects after the activation of heat receptors.


Assuntos
Baratas , Periplaneta , Animais , Periplaneta/fisiologia , Capsaicina/metabolismo , Capsaicina/farmacologia , Octopamina/farmacologia , Octopamina/metabolismo , Fentolamina/farmacologia , Baratas/metabolismo , Neurotransmissores/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163598

RESUMO

Biogenic amines constitute an important group of neuroactive substances that control and modulate various neural circuits. These small organic compounds engage members of the guanine nucleotide-binding protein coupled receptor (GPCR) superfamily to evoke specific cellular responses. In addition to dopamine- and 5-hydroxytryptamine (serotonin) receptors, arthropods express receptors that are activated exclusively by tyramine and octopamine. These phenolamines functionally substitute the noradrenergic system of vertebrates Octopamine receptors that are the focus of this study are classified as either α- or ß-adrenergic-like. Knowledge on these receptors is scarce for the American cockroach (Periplaneta americana). So far, only an α-adrenergic-like octopamine receptor that primarily causes Ca2+ release from intracellular stores has been studied from the cockroach (PaOctα1R). Here we succeeded in cloning a gene from cockroach brain tissue that encodes a ß-adrenergic-like receptor and leads to cAMP production upon activation. Notably, the receptor is 100-fold more selective for octopamine than for tyramine. A series of synthetic antagonists selectively block receptor activity with epinastine being the most potent. Bioinformatics allowed us to identify a total of 19 receptor sequences that build the framework of the biogenic amine receptor clade in the American cockroach. Phylogenetic analyses using these sequences and receptor sequences from model organisms showed that the newly cloned gene is an ß2-adrenergic-like octopamine receptor. The functional characterization of PaOctß2R and the bioinformatics data uncovered that the monoaminergic receptor family in the hemimetabolic P. americana is similarly complex as in holometabolic model insects like Drosophila melanogaster and the honeybee, Apis mellifera. Thus, investigating these receptors in detail may contribute to a better understanding of monoaminergic signaling in insect behavior and physiology.


Assuntos
Adenilil Ciclases , Sinalização do Cálcio , Proteínas de Insetos , Periplaneta , Receptores de Amina Biogênica , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Octopamina/metabolismo , Periplaneta/genética , Periplaneta/metabolismo , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo
3.
Arch Insect Biochem Physiol ; 107(4): e21825, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34164848

RESUMO

Mating triggers physiological and behavioral changes in female insects. In many species, females experience postmating behavioral and physiological changes that define a post-mated state. These changes are comprised of several conditions, including long-term refractoriness to re-mating and increased production and laying of eggs. Here, we report that mating led to several changes in brown planthopper (BPH) females, including increased octopamine (OA), cAMP concentrations, and activities of several enzymes. Mating also led to changes in the expression of several genes acting in female physiology, including those in the cAMP/PKA signal transduction pathway. OA injections into virgin females led to similar changes. RNAi silencing of the gene encoding tyramine ß-hydroxylase, involved in the final step in OA synthesis, led to decreased expression of these genes, and reduced the cAMP/PKA signaling. At the whole-organism level, the RNAi treatments led to reduced fecundity, body weights, and longevity. RNAi silencing of genes acting in OA signaling led to truncated ovarian development, egg maturation, and ovarian vitellogenin (Vg) uptake. The impact of these decreases is also registered at the population level, seen as decreased population growth. We infer that OA signaling modulates the postmating state in female BPH and possibly other hemipterans.


Assuntos
Hemípteros/fisiologia , Oxigenases de Função Mista/metabolismo , Octopamina/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Longevidade , Ovário/crescimento & desenvolvimento , Oviposição
4.
Open Biol ; 10(4): 190035, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315567

RESUMO

Zinc-α2-glycoprotein (ZAG) is a major plasma protein whose levels increase in chronic energy-demanding diseases and thus serves as an important clinical biomarker in the diagnosis and prognosis of the development of cachexia. Current knowledge suggests that ZAG mediates progressive weight loss through ß-adrenergic signalling in adipocytes, resulting in the activation of lipolysis and fat mobilization. Here, through cross-linking experiments, amine oxidase copper-containing 3 (AOC3) is identified as a novel ZAG binding partner. AOC3-also known as vascular adhesion protein 1 (VAP-1) and semicarbazide sensitive amine oxidase (SSAO)-deaminates primary amines, thereby generating the corresponding aldehyde, H2O2 and NH3. It is an ectoenzyme largely expressed by adipocytes and induced in endothelial cells during inflammation. Extravasation of immune cells depends on amine oxidase activity and AOC3-derived H2O2 has an insulinogenic effect. The observations described here suggest that ZAG acts as an allosteric inhibitor of AOC3 and interferes with the associated pro-inflammatory and anti-lipolytic functions. Thus, inhibition of the deamination of lipolytic hormone octopamine by AOC3 represents a novel mechanism by which ZAG might stimulate lipolysis. Furthermore, experiments involving overexpression of recombinant ZAG reveal that its glycosylation is co-regulated by oxygen availability and that the pattern of glycosylation affects its inhibitory potential. The newly identified protein interaction between AOC3 and ZAG highlights a previously unknown functional relationship, which may be relevant to inflammation, energy metabolism and the development of cachexia.


Assuntos
Adipocinas/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Moléculas de Adesão Celular/metabolismo , Octopamina/metabolismo , Células 3T3-L1 , Adipocinas/química , Aldeídos/metabolismo , Regulação Alostérica , Amina Oxidase (contendo Cobre)/química , Amônia/metabolismo , Animais , Moléculas de Adesão Celular/química , Linhagem Celular , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica
5.
Insect Biochem Mol Biol ; 120: 103337, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109588

RESUMO

As the counterparts of noradrenaline and adrenaline in vertebrates, octopamine (OA) regulates multiple physiological and behavioral processes in invertebrate. OA mediates its effects via binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been reported in several insects. However, little work was documented in hemipteran insects. We cloned a ß-adrenergic-like OAR (NcOA2B2) from Nephotettix cincticeps. NcOA2B2 shares high similarity with members of the OA2B2 receptor class. Transcript level of NcOA2B2 varied in various tissues and was highly expressed in the leg. After heterologous expression in CHO-K1 cells, NcOA2B2 was dose-dependently activated by OA (EC50 = 2.56 nM) and tyramine (TA) (EC50 = 149 nM). Besides putative octopaminergic agonists, dopaminergic agonists and amitraz and DPMF potently activated NcOA2B2 in a dose-dependent manner. Receptor activity was blocked by potential antagonists and was most efficiently antagonized by asenapine. Phentolamine showed both antagonist and agonist effects on NcOA2B2. Our results offer the important information about molecular and pharmacological characterization of an OAR from N. cincticeps that will provide the basis for forthcoming studies on its roles in physiological processes and behaviors, and facilitate the design of novel insecticides for pest control.


Assuntos
Regulação da Expressão Gênica , Hemípteros/genética , Proteínas de Insetos/genética , Receptores de Amina Biogênica/genética , Sequência de Aminoácidos , Animais , AMP Cíclico/metabolismo , Dopamina/metabolismo , Hemípteros/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Octopamina/metabolismo , Filogenia , Receptores de Amina Biogênica/química , Receptores de Amina Biogênica/metabolismo , Alinhamento de Sequência , Tiramina/metabolismo
6.
Fish Shellfish Immunol ; 92: 188-195, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176766

RESUMO

Octopamine (OA), a biogenic monoamine, is known to mediate several immune responses. This study analyzed the effects of OA on immunological regulation in the tiger shrimp Penaeus monodon. The immune parameters including total haemocyte count, differential haemocyte count, phenoloxidase activity, respiratory bursts, superoxide dismutase activity, and phagocytic activity and clearance efficiency in response to the pathogen, Photobacterium damselae, were determined when shrimp were individually injected with saline or OA at 100 or 1000 pmol shrimp-1. In addition, the intracellular second messengers in haemocyte such as Ca2+ and adenosine 3',5'-cyclic monophosphate (cAMP) were examined in shrimp receiving saline or OA at 1 or 10 nmol shrimp-1. Results showed that all of the immune parameters significantly increased at 2-4 h in OA-injected shrimp except hyaline cells in 100 pmol shrimp-1-injected shrimp at 4 h, but phenoloxidase activity per granulocyte significantly decreased at 2-4 h. However, these had returned to saline control levels after receiving OA for 8 h except differential haemocyte count and phenoloxidase activity per granulocyte for 16 h. An injection of OA also significantly increased the survival rate of shrimp challenged with Pho. damselae. Shrimp receiving OA at 1 and 10 nmol shrimp-1 significantly increased the intracellular Ca2+ concentration ([Ca2+]i) at 30-60 min and 30 min, and cAMP concentration [cAMP]i) at 5-15 min and 15 min, respectively. However, [Ca2+]i at 50-60 min, and [cAMP]i at 30-60 min returned to saline control when the shrimp received OA at 10 nmol shrimp-1, and at 1 and 10 nmol shrimp-1, respectively. These results suggest that OA administration by injection at ≤1000 pmol shrimp-1 mediates transient upregulation of immunity together with the increased resistance of P. monodon to Pho. damselae, which are modulated through intracellular Ca2+ and cAMP second messenger pathways.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/efeitos dos fármacos , Octopamina/metabolismo , Penaeidae/genética , Penaeidae/imunologia , Transdução de Sinais/imunologia , Adjuvantes Imunológicos/farmacologia , Agonistas alfa-Adrenérgicos/administração & dosagem , Agonistas alfa-Adrenérgicos/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Octopamina/administração & dosagem , Photobacterium/fisiologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/imunologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-30991118

RESUMO

Temperature has profound effects on the neural function and behaviour of insects. When exposed to low temperature, chill-susceptible insects enter chill coma, a reversible state of neuromuscular paralysis. Despite the popularity of studying the effects of low temperature on insects, we know little about the physiological mechanisms controlling the entry to, and recovery from, chill coma. Spreading depolarization (SD) is a phenomenon that causes a neural shutdown in the central nervous system (CNS) and it is associated with a loss of K+ homeostasis in the CNS. Here, we investigated the effects of rapid cold hardening (RCH) on chill tolerance of the migratory locust. With an implanted thermocouple in the thorax, we determined the temperature associated with a loss of responsiveness (i.e. the critical thermal minimum - CTmin) in intact male adult locusts. In parallel experiments, we recorded field potential (FP) in the metathoracic ganglion (MTG) of semi-intact preparations to determine the temperature that would induce neural shutdown. We found that SD in the CNS causes a loss of coordinated movement immediately prior to chill coma and RCH reduces the temperature that evokes neural shutdown. Additionally, we investigated a role for octopamine (OA) in the locust chill tolerance and found that OA reduces the CTmin and mimics the effects of prior stress (anoxia) in locust.


Assuntos
Sistema Nervoso Central/fisiologia , Octopamina/metabolismo , Potássio/metabolismo , Termotolerância/fisiologia , Animais , Temperatura Baixa/efeitos adversos , Cistos Glanglionares/metabolismo , Homeostase/fisiologia , Locusta migratoria/metabolismo , Locusta migratoria/fisiologia , Masculino , Termotolerância/genética , Tórax/metabolismo , Tórax/fisiologia
8.
Pestic Biochem Physiol ; 148: 175-181, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891370

RESUMO

Rhinella icterica is a poisonous toad whose toxic secretion has never been studied against entomotoxic potential. Sublethal doses of Rhinella icterica toxic secretion (RITS) were assayed in Nauphoeta cinerea cockroaches, in order to understand the physiological and behavioral parameters, over the insect central and peripheral nervous system. RITS (10 µg/g) injections, induced behavioral impairment as evidenced by a significant decrease (38 ±â€¯14%) in the distance traveled (p < .05), followed by an increase (90 ±â€¯6%) of immobile episodes (p < .001, n = 28, respectively). In cockroaches semi-isolated heart preparations, RITS (16 µg/200 µl) induced a significant irreversible dose-dependent negative chronotropism, reaching ~40% decrease in heart rate in 20 min incubation. In in vivo cockroach neuromuscular preparations, RITS (20, 50 and 100 µg/g of animal weight) induced a time-dependent inhibition of twitch tension that was complete for 20 µg/g, in 120 min recordings. RITS (10 µg/g) also induced a significant increase in the insect leg grooming activity (128 ±â€¯10%, n = 29, p < .01), but not in the antennae counterparts. The RITS increase in leg grooming activity was prevented in 90% by the pretreatment of cockroaches with phentolamine (0.1 µg/g). The electrophysiological recordings of spontaneous neural compound action potentials showed that RITS (20 µg/g) induced a significant increase in the number of events, as well as in the rise time and duration of the potentials. In conclusion, RITS showed to be entomotoxic, being the neuromuscular failure and cardiotoxic activity considered the main deleterious effects. The disturbance of the cockroaches' behavior together with the electrophysiological alterations, may unveil the presence of some toxic components present in the poison with inherent biotechnological potentials.


Assuntos
Bufonidae/fisiologia , Baratas/efeitos dos fármacos , Octopamina/farmacologia , Pele/metabolismo , Toxinas Biológicas/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Baratas/metabolismo , Relação Dose-Resposta a Droga , Asseio Animal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Junção Neuromuscular/efeitos dos fármacos , Octopamina/metabolismo , Fentolamina/farmacologia , Toxinas Biológicas/metabolismo
9.
Molecules ; 23(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295521

RESUMO

Essential oils (EOs) are lipophilic secondary metabolites obtained from plants; terpenoids represent the main components of them. A lot of studies showed neurotoxic actions of EOs. In insects, they cause paralysis followed by death. This feature let us consider components of EOs as potential bioinsecticides. The inhibition of acetylcholinesterase (AChE) is the one of the most investigated mechanisms of action in EOs. However, EOs are rather weak inhibitors of AChE. Another proposed mechanism of EO action is a positive allosteric modulation of GABA receptors (GABArs). There are several papers that prove the potentiation of GABA effect on mammalian receptors induced by EOs. In contrast, there is lack of any data concerning the binding of EO components in insects GABArs. In insects, EOs act also via the octopaminergic system. Available data show that EOs can increase the level of both cAMP and calcium in nervous cells. Moreover, some EO components compete with octopamine in binding to its receptor. Electrophysiological experiments performed on Periplaneta americana have shown similarity in the action of EO components and octopamine. This suggests that EOs can modify neuron activity by octopamine receptors. A multitude of potential targets in the insect nervous system makes EO components interesting candidates for bio-insecticides.


Assuntos
Insetos/fisiologia , Inseticidas/química , Sistema Nervoso/metabolismo , Óleos Voláteis/química , Acetilcolinesterase/metabolismo , Regulação Alostérica , Animais , Cálcio/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , AMP Cíclico/metabolismo , Controle de Insetos , Inseticidas/metabolismo , Ligantes , Octopamina/metabolismo , Óleos Voláteis/metabolismo , Receptores de Amina Biogênica/metabolismo , Receptores de GABA/metabolismo , Metabolismo Secundário , Terpenos/química , Terpenos/metabolismo
10.
Nature ; 539(7629): 428-432, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828941

RESUMO

Astrocytes associate with synapses throughout the brain and express receptors for neurotransmitters that can increase intracellular calcium (Ca2+). Astrocytic Ca2+ signalling has been proposed to modulate neural circuit activity, but the pathways that regulate these events are poorly defined and in vivo evidence linking changes in astrocyte Ca2+ levels to alterations in neurotransmission or behaviour is limited. Here we show that Drosophila astrocytes exhibit activity-regulated Ca2+ signalling in vivo. Tyramine and octopamine released from neurons expressing tyrosine decarboxylase 2 (Tdc2) signal directly to astrocytes to stimulate Ca2+ increases through the octopamine/tyramine receptor (Oct-TyrR) and the transient receptor potential (TRP) channel Water witch (Wtrw), and astrocytes in turn modulate downstream dopaminergic neurons. Application of tyramine or octopamine to live preparations silenced dopaminergic neurons and this inhibition required astrocytic Oct-TyrR and Wtrw. Increasing astrocyte Ca2+ signalling was sufficient to silence dopaminergic neuron activity, which was mediated by astrocyte endocytic function and adenosine receptors. Selective disruption of Oct-TyrR or Wtrw expression in astrocytes blocked astrocytic Ca2+ signalling and profoundly altered olfactory-driven chemotaxis and touch-induced startle responses. Our work identifies Oct-TyrR and Wtrw as key components of the astrocytic Ca2+ signalling machinery, provides direct evidence that octopamine- and tyramine-based neuromodulation can be mediated by astrocytes, and demonstrates that astrocytes are essential for multiple sensory-driven behaviours in Drosophila.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Drosophila melanogaster/fisiologia , Vias Neurais , Neurônios/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica , Animais , Astrócitos/citologia , Quimiotaxia , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Endocitose , Octopamina/metabolismo , Receptores de Amina Biogênica/metabolismo , Receptores Purinérgicos P1/metabolismo , Reflexo de Sobressalto , Olfato , Tato , Canais de Potencial de Receptor Transitório/metabolismo , Tiramina/metabolismo , Tirosina Descarboxilase/metabolismo
11.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26136448

RESUMO

Complex social structure in eusocial insects can involve worker morphological and behavioural differentiation. Neuroanatomical variation may underscore worker division of labour, but the regulatory mechanisms of size-based task specialization in polymorphic species are unknown. The Australian weaver ant, Oecophylla smaragdina, exhibits worker polyphenism: larger major workers aggressively defend arboreal territories, whereas smaller minors nurse brood.Here, we demonstrate that octopamine (OA) modulates worker size-related aggression in O. smaragdina. We found that the brains of majors had significantly higher titres of OA than those of minors and that OA was positively and specifically correlated with the frequency of aggressive responses to non-nestmates, a key component of territorial defence. Pharmacological manipulations that effectively switched OA action in major and minor worker brains reversed levels of aggression characteristic of each worker size class. Results suggest that altering OA action is sufficient to produce differences in aggression characteristic of size-related social roles. Neuromodulators therefore may generate variation in responsiveness to task-related stimuli associated with worker size differentiation and collateral behavioural specializations, a significant component of division of labour in complex social systems.


Assuntos
Formigas/fisiologia , Neurotransmissores/metabolismo , Octopamina/metabolismo , Agressão , Animais , Formigas/genética , Polimorfismo Genético , Queensland , Comportamento Social , Territorialidade
13.
PLoS One ; 10(3): e0121230, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785721

RESUMO

The biogenic amine octopamine (OA) mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT) 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50) for activation of the OA-receptor decreased during the moth's activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.


Assuntos
Antenas de Artrópodes/citologia , Ritmo Circadiano , GMP Cíclico/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Manduca , Octopamina/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Octopamina/farmacologia , Percepção Olfatória/efeitos dos fármacos , Feromônios/metabolismo , Feromônios/farmacologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Tiramina/metabolismo
14.
Fly (Austin) ; 8(2): 80-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483253

RESUMO

Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through "hacking" a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Octopamina/metabolismo , Ovulação/metabolismo , Peptídeos/fisiologia , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino
15.
PLoS Biol ; 12(4): e1001824, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24690889

RESUMO

Sleep fragmentation, particularly reduced and interrupted night sleep, impairs the quality of life of older people. Strikingly similar declines in sleep quality are seen during ageing in laboratory animals, including the fruit fly Drosophila. We investigated whether reduced activity of the nutrient- and stress-sensing insulin/insulin-like growth factor (IIS)/TOR signalling network, which ameliorates ageing in diverse organisms, could rescue the sleep fragmentation of ageing Drosophila. Lowered IIS/TOR network activity improved sleep quality, with increased night sleep and day activity and reduced sleep fragmentation. Reduced TOR activity, even when started for the first time late in life, improved sleep quality. The effects of reduced IIS/TOR network activity on day and night phenotypes were mediated through distinct mechanisms: Day activity was induced by adipokinetic hormone, dFOXO, and enhanced octopaminergic signalling. In contrast, night sleep duration and consolidation were dependent on reduced S6K and dopaminergic signalling. Our findings highlight the importance of different IIS/TOR components as potential therapeutic targets for pharmacological treatment of age-related sleep fragmentation in humans.


Assuntos
Drosophila/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Somatomedinas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Dopamina/biossíntese , Dopamina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Proteínas Inibidoras de Apoptose/genética , Hormônios de Inseto/metabolismo , Insulina/metabolismo , Octopamina/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Receptor de Insulina/genética , Receptores Dopaminérgicos/biossíntese , Receptores de Glucagon/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Somatomedinas/biossíntese , Somatomedinas/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores
16.
J Neurochem ; 129(2): 284-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24266860

RESUMO

G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²âº-([Ca²âº](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²âº](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²âº signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC50(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin >> cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees.


Assuntos
Abelhas/metabolismo , Química Encefálica/fisiologia , Receptores de Amina Biogênica/efeitos dos fármacos , Receptores de Amina Biogênica/metabolismo , Adenilil Ciclases/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Clonagem Molecular , AMP Cíclico/metabolismo , Vetores Genéticos , Células HEK293 , Humanos , Imuno-Histoquímica , Octopamina/metabolismo , Octopamina/farmacologia , Filogenia , Transdução de Sinais/efeitos dos fármacos , Transfecção , Tiramina/metabolismo , Tiramina/farmacologia
17.
Neurosci Lett ; 560: 16-20, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24334164

RESUMO

In Drosophila associative olfactory learning, an odor, the conditioned stimulus (CS), is paired to an unconditioned stimulus (US). The CS and US information arrive at the Mushroom Bodies (MB), a Drosophila brain region that processes the information to generate new memories. It has been shown that olfactory information is conveyed through cholinergic inputs that activate nicotinic acetylcholine receptors (nAChRs) in the MB, while the US is coded by biogenic amine (BA) systems that innervate the MB. In this regard, the MB acts as a coincidence detector. A better understanding of the properties of the responses gated by nicotinic and BA receptors is required to get insights on the cellular and molecular mechanisms responsible for memory formation. In recent years, information has become available on the properties of the responses induced by nAChR activation in Kenyon Cells (KCs), the main neuronal MB population. However, very little information exists on the responses induced by aminergic systems in fly MB. Here we have evaluated some of the properties of the calcium responses gated by Dopamine (DA) and Octopamine (Oct) in identified KCs in culture. We report that exposure to BAs induces a fast but rather modest increase in intracellular calcium levels in cultured KCs. The responses to Oct and DA are fully blocked by a VGCC blocker, while they are differentially modulated by cAMP. Moreover, co-application of BAs and nicotine has different effects on intracellular calcium levels: while DA and nicotine effects are additive, Oct and nicotine induce a synergistic increase in calcium levels. These results suggest that a differential modulation of nicotine-induced calcium increase by DA and Oct could contribute to the events leading to learning and memory in flies.


Assuntos
Cálcio/metabolismo , Dopamina/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Corpos Pedunculados/efeitos dos fármacos , Nicotina/farmacologia , Octopamina/metabolismo , Animais , Células Cultivadas , Dopamina/farmacologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Sinergismo Farmacológico , Memória , Corpos Pedunculados/citologia , Corpos Pedunculados/metabolismo , Octopamina/farmacologia , Pupa/citologia , Pupa/efeitos dos fármacos , Pupa/metabolismo , Olfato
18.
Proc Natl Acad Sci U S A ; 110(43): 17420-5, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101486

RESUMO

Across animal taxa, seminal proteins are important regulators of female reproductive physiology and behavior. However, little is understood about the physiological or molecular mechanisms by which seminal proteins effect these changes. To investigate this topic, we studied the increase in Drosophila melanogaster ovulation behavior induced by mating. Ovulation requires octopamine (OA) signaling from the central nervous system to coordinate an egg's release from the ovary and its passage into the oviduct. The seminal protein ovulin increases ovulation rates after mating. We tested whether ovulin acts through OA to increase ovulation behavior. Increasing OA neuronal excitability compensated for a lack of ovulin received during mating. Moreover, we identified a mating-dependent relaxation of oviduct musculature, for which ovulin is a necessary and sufficient male contribution. We report further that oviduct muscle relaxation can be induced by activating OA neurons, requires normal metabolic production of OA, and reflects ovulin's increasing of OA neuronal signaling. Finally, we showed that as a result of ovulin exposure, there is subsequent growth of OA synaptic sites at the oviduct, demonstrating that seminal proteins can contribute to synaptic plasticity. Together, these results demonstrate that ovulin increases ovulation through OA neuronal signaling and, by extension, that seminal proteins can alter reproductive physiology by modulating known female pathways regulating reproduction.


Assuntos
Proteínas de Drosophila/fisiologia , Neurônios/fisiologia , Octopamina/metabolismo , Ovulação/fisiologia , Peptídeos/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Microscopia Confocal , Relaxamento Muscular/fisiologia , Mutação , Neurônios/metabolismo , Oviductos/inervação , Oviductos/fisiologia , Ovulação/genética , Peptídeos/genética , Peptídeos/metabolismo , Sarcômeros/fisiologia , Transdução de Sinais/genética , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
19.
J Neurochem ; 125(2): 281-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23331098

RESUMO

Biogenic amines (BAs) play a central role in the generation of complex behaviors in vertebrates and invertebrates, including the fly Drosophila melanogaster. The comparative advantages of Drosophila as a genetic model to study the contribution of BAs to behaviors stumble upon the difficulty to access the fly brain to ask relevant physiological questions. For instance, it is not known whether the activation of nicotinic acetylcholine receptors (nAChRs) induces the release of BAs in fly brain, a phenomenon associated to several behaviors in vertebrates. Here, we describe a new preparation to study the efflux of BAs in the adult fly brain by in vitro chronoamperometry. Using this preparation we show that nAChR agonists including nicotine induce a fast, transient, dose-dependent efflux of endogenous BAs, an effect mediated by α-bungarotoxin-sensitive nAChRs. By using different genetic tools we demonstrate that the BA whose efflux is induced by nAChR activation is octopamine (Oct). Furthermore, we show that the impairment of a mechanically induced startle response after nicotine exposure is not observed in flies deficient in Oct transmission. Thus, our data show that the efflux of BAs in Drosophila brain is increased by nAChR activation as in vertebrates, and that then AChR-induced Oct release could have implications in a nicotine-induced behavioral response.


Assuntos
Drosophila melanogaster/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Octopamina/metabolismo , Receptores Nicotínicos/metabolismo , Reflexo de Sobressalto/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Técnicas Eletroquímicas , Masculino , Modelos Animais
20.
Acta Biol Hung ; 63 Suppl 2: 63-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22776474

RESUMO

The ant, Formica japonica, is polyphagous and workers hunt other insects as foods. In this study, interspecific aggression was examined in the workers and queens. Behavior experiments demonstrated that interspecific aggressiveness was significantly higher in workers than queens. Workers showed predatory aggressive behavior towards crickets, on the other hand, queens elicited threat behavior but they didn't attack crickets. In order to investigate neuronal mechanisms underlying regulation of aggressive motivation, the role of biogenic amine in the brain in evoking aggressive behavior was examined by measuring biogenic amine using high-performance liquid chromatography (HPLC) with electrochemical detection (ECD). No significant difference in the octopamine (OA) level was found between workers and queens, but the level of N-acetyloctopamine (NacOA) in the brain of queens was significantly higher than that of workers. This study suggests that OAergic system in the brain must involve in controlling aggressive motivation in the ants.


Assuntos
Agressão/fisiologia , Formigas/metabolismo , Encéfalo/metabolismo , Octopamina/metabolismo , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA