Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
1.
Nat Commun ; 15(1): 1870, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467607

RESUMO

Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.


Assuntos
Remielinização , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Remielinização/fisiologia , Linfócitos T Reguladores/metabolismo , Oligodendroglia/fisiologia , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Envelhecimento , Sistema Nervoso Central
2.
Hum Cell ; 37(1): 9-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985645

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system (CNS), characterized by demyelination and axonal loss. It is induced by attack of autoreactive lymphocytes on the myelin sheath and endogenous remyelination failure, eventually leading to accumulation of neurological disability. Disease-modifying agents can successfully address inflammatory relapses, but have low efficacy in progressive forms of MS, and cannot stop the progressive neurodegenerative process. Thus, the stem cell replacement therapy approach, which aims to overcome CNS cell loss and remyelination failure, is considered a promising alternative treatment. Although the mechanisms behind the beneficial effects of stem cell transplantation are not yet fully understood, neurotrophic support, immunomodulation, and cell replacement appear to play an important role, leading to a multifaceted fight against the pathology of the disease. The present systematic review is focusing on the efficacy of stem cells to migrate at the lesion sites of the CNS and develop functional oligodendrocytes remyelinating axons. While most studies confirm the improvement of neurological deficits after the administration of different stem cell types, many critical issues need to be clarified before they can be efficiently introduced into clinical practice.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Esclerose Múltipla/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células-Tronco/fisiologia , Oligodendroglia/patologia , Oligodendroglia/fisiologia
3.
Nat Rev Neurosci ; 24(12): 733-746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857838

RESUMO

Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron-oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron-glioma interactions also have important roles in the pathogenesis of glial malignancies.


Assuntos
Glioma , Neurônios , Humanos , Neurônios/fisiologia , Oligodendroglia/fisiologia , Bainha de Mielina/fisiologia , Neuroglia/fisiologia
4.
Int J Radiat Biol ; 98(10): 1519-1531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311621

RESUMO

PURPOSE: With technological advancements in radiation therapy for tumors of the central nervous system (CNS), high doses of ionizing radiation can be delivered to the tumors with improved accuracy. Despite the reduction of ionizing radiation-induced toxicity to surrounding tissues of the CNS, a wide array of side effects still occurs, particularly late-delayed changes. These alterations, such as white matter damages and neurocognitive impairments, are often debilitative and untreatable, significantly affecting the quality of life of these patients, especially children. Oligodendrocytes, a major class of glial cells, have been identified to be one of the targets of radiation toxicity and are recognized be involved in late-delayed radiation-induced neuropathological changes. These cells are responsible for forming the myelin sheaths that surround and insulate axons within the CNS. Here, the effects of ionizing radiation on the oligodendrocyte lineage as well as the common clinical manifestations resulting from radiation-induced damage to oligodendrocytes will be discussed. Potential prophylactic and therapeutic strategies against radiation-induced oligodendrocyte damage will also be considered. CONCLUSION: Oligodendrocytes and oligodendrocyte progenitor cells (OPCs) are radiosensitive cells of the CNS. Here, general responses of these cells to radiation exposure have been outlined. However, several findings have not been consistent across various studies. For instance, cognitive decline in irradiated animals was observed to be accompanied by obvious demyelination or white matter changes in several studies but not in others. Hence, further studies have to be conducted to elucidate the level of contribution of the oligodendrocyte lineage to the development of late-delayed effects of radiation exposure, as well as to classify the dose and brain region-specific responses of the oligodendrocyte lineage to radiation. Several potential therapeutic approaches against late-delayed changes have been discussed, such as the transplantation of OPCs into irradiated regions and implementation of exercise. Many of these approaches show promising results. Further elucidation of the mechanisms involved in radiation-induced death of oligodendrocytes and OPCs would certainly aid in the development of novel protective and therapeutic strategies against the late-delayed effects of radiation.


Assuntos
Oligodendroglia , Qualidade de Vida , Animais , Diferenciação Celular , Linhagem da Célula , Sistema Nervoso Central , Bainha de Mielina , Oligodendroglia/patologia , Oligodendroglia/fisiologia
5.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884911

RESUMO

Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso-Beattie-Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.


Assuntos
Neurônios Motores/fisiologia , Células-Tronco Neurais/transplante , Oligodendroglia/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular , Células Cultivadas , Vértebras Cervicais , Modelos Animais de Doenças , Feminino , Análise da Marcha , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Neurais/citologia , Oligodendroglia/fisiologia , Ratos , Ratos Transgênicos , Ratos Wistar , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/fisiopatologia
6.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34676826

RESUMO

Failed or altered gliogenesis is a major characteristic of diffuse white matter injury in survivors of premature birth. The developmentally regulated long noncoding RNA (lncRNA) H19 inhibits S-adenosylhomocysteine hydrolase (SAHH) and contributes to methylation of diverse cellular components, such as DNA, RNA, proteins, lipids, and neurotransmitters. We showed that the pregnancy-derived synthetic PreImplantation Factor (sPIF) induces expression of the nuclear receptor corepressor 2 (NCOR2) via H19/SAHH-mediated DNA demethylation. In turn, NCOR2 affects oligodendrocyte differentiation markers. Accordingly, after hypoxic-ischemic brain injury in rodents, myelin protection and oligodendrocytes' fate are in part modulated by sPIF and H19. Our results revealed an unexpected mechanism of the H19/SAHH axis underlying myelin preservation during brain recovery and its use in treating neurodegenerative diseases can be envisioned.


Assuntos
Correpressor 2 de Receptor Nuclear/metabolismo , Oligodendroglia/fisiologia , Peptídeos/fisiologia , RNA Longo não Codificante/genética , Animais , Feminino , Humanos , Camundongos , Gravidez
7.
Neuropathology ; 41(3): 161-173, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33913208

RESUMO

Oligodendrocyte precursor cells (OPCs) are a fourth resident glial cell population in the mammalian central nervous system. They are evenly distributed throughout the gray and white matter and continue to proliferate and generate new oligodendrocytes (OLs) throughout life. They were understudied until a few decades ago when immunolabeling for NG2 and platelet-derived growth factor receptor alpha revealed cells that are distinct from mature OLs, astrocytes, neurons, and microglia. In this review, we provide a summary of the known properties of OPCs with some historical background, followed by highlights from recent studies that suggest new roles for OPCs in certain pathological conditions.


Assuntos
Células Precursoras de Oligodendrócitos/patologia , Células Precursoras de Oligodendrócitos/fisiologia , Animais , Antígenos/análise , Antígenos/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Glioma/genética , Humanos , Microscopia Eletrônica , Neurônios , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/ultraestrutura , Oligodendroglia/fisiologia , Proteoglicanas/análise , Proteoglicanas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Prog Neurobiol ; 196: 101899, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858093

RESUMO

We previously revealed adult reactive neurogenesis in deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline model. We recently replicated the same surgery in a rodent model and aimed to elucidate the origin and fate of newly generated cells following UVN. We used specific markers of cell proliferation, glial reaction, and cell differentiation in the medial vestibular nucleus (MVN) of adult rats. UVN induced an intense cell proliferation and glial reaction with an increase of GFAP-Immunoreactive (Ir), IBA1-Ir and Olig2-Ir cells 3 days after the lesion in the deafferented MVN. Most of the newly generated cells survived after UVN and differentiated into oligodendrocytes, astrocytes, microglial cells and GABAergic neurons. Interestingly, UVN induced a significant increase in a population of cells colocalizing SOX2 and GFAP 3 days after lesion in the deafferented MVN indicating the probable presence of multipotent cells in the vestibular nuclei. The concomitant increase in BrdU- and SOX2-Ir cells with the presence of SOX2 and GFAP colocalization 3 days after UVN in the deafferented MVN may support local mitotic activity of endemic quiescent neural stem cells in the parenchyma of vestibular nuclei.


Assuntos
Proliferação de Células/fisiologia , Neurogênese/fisiologia , Oligodendroglia/fisiologia , Doenças Vestibulares/fisiopatologia , Núcleos Vestibulares/fisiologia , Núcleos Vestibulares/cirurgia , Animais , Comportamento Animal/fisiologia , Denervação , Masculino , Células-Tronco Neurais , Ratos , Ratos Long-Evans
10.
J Neurotrauma ; 38(6): 777-788, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33107383

RESUMO

Chronic spinal cord injury (SCI) is a devastating medical condition. In the acute phase after injury, there is cell loss resulting in chronic axonal damage and loss of sensory and motor function including loss of oligodendrocytes that results in demyelination of axons and further dysfunction. In the chronic phase, the inhibitory environment within the lesion including the glial scar can arrest axonal growth and regeneration and can also potentially affect transplanted cells. We hypothesized that glial scar ablation (GSA) along with cell transplantation may be required as a combinatorial therapy to achieve functional recovery, and therefore we proposed to examine the survival and fate of human induced pluripotent stem cell (iPSC) derived pre-oligodendrocyte progenitor cells (pre-OPCs) transplanted in a model of chronic SCI, whether this was affected by GSA, and whether this combination of treatments would result in functional recovery. In this study, chronically injured athymic nude (ATN) rats were allocated to one of three treatment groups: GSA only, pre-OPCs only, or GSA+pre-OPCs. We found that human iPSC derived pre-OPCs were multi-potent and retained the ability to differentiate into mainly oligodendrocytes or neurons when transplanted into the chronically injured spinal cords of rats. Twelve weeks after cell transplantation, we observed that more of the transplanted cells differentiated into oligodendrocytes when the glial scar was ablated compared with no GSA. Further, we also observed that a higher percentage of transplanted cells differentiated into V2a interneurons and motor neurons in the pre-OPCs only group when compared with GSA+pre-OPCs. This suggests that the local environment created by ablation of the glial scar may have a significant effect on the fate of cells transplanted into the injury site.


Assuntos
Gliose/terapia , Neurônios Motores/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Feminino , Corantes Fluorescentes/administração & dosagem , Gliose/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Neurônios Motores/química , Células Precursoras de Oligodendrócitos/química , Células Precursoras de Oligodendrócitos/transplante , Oligodendroglia/química , Ratos , Rosa Bengala/administração & dosagem , Traumatismos da Medula Espinal/patologia , Vértebras Torácicas/lesões
11.
Dev Neurobiol ; 81(3): 310-320, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324338

RESUMO

Though much is known about microtubule organization and microtubule-based transport in neurons, the development and function of microtubules in glia are more enigmatic. In this review, we provide an overview of the literature on microtubules in ramified brain cells, including oligodendrocytes, astrocytes, and microglia. We focus on normal cell biology-how structure relates to function in these cells. In oligodendrocytes, microtubules are important for extension of processes that contact axons and for elongating the myelin sheath. Recent studies demonstrate that new microtubules can form outside of the oligodendrocyte cell body off of Golgi outpost organelles. In astrocytes and microglia, changes in cell shape and ramification can be influenced by neighboring cells and the extracellular milieu. Finally, we highlight key papers implicating glial microtubule defects in neurological injury and disease and discuss how microtubules may contribute to invasiveness in gliomas. Thus, future research on the mechanisms underlying microtubule organization in normal glial cell function may yield valuable insights on neurological disease pathology.


Assuntos
Astrócitos , Microglia , Células Cultivadas , Microtúbulos/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia
12.
Acta Neuropathol Commun ; 8(1): 224, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33357244

RESUMO

Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pontine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentiation. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myelinating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte numbers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further determine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.


Assuntos
Astrócitos/fisiologia , Diferenciação Celular , Mielinólise Central da Ponte/patologia , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Adulto , Idoso , Animais , Antidiuréticos , Astrócitos/patologia , Linhagem da Célula , Desamino Arginina Vasopressina , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Humanos , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Masculino , Pessoa de Meia-Idade , Bainha de Mielina , Mielinólise Central da Ponte/induzido quimicamente , Mielinólise Central da Ponte/metabolismo , Proteínas de Neoplasias/metabolismo , Nestina/metabolismo , Células-Tronco Neurais , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Ratos , Cloreto de Sódio
13.
Science ; 370(6512)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004487

RESUMO

Injuries to the central nervous system (CNS) are inefficiently repaired. Resident neural stem cells manifest a limited contribution to cell replacement. We have uncovered a latent potential in neural stem cells to replace large numbers of lost oligodendrocytes in the injured mouse spinal cord. Integrating multimodal single-cell analysis, we found that neural stem cells are in a permissive chromatin state that enables the unfolding of a normally latent gene expression program for oligodendrogenesis after injury. Ectopic expression of the transcription factor OLIG2 unveiled abundant stem cell-derived oligodendrogenesis, which followed the natural progression of oligodendrocyte differentiation, contributed to axon remyelination, and stimulated functional recovery of axon conduction. Recruitment of resident stem cells may thus serve as an alternative to cell transplantation after CNS injury.


Assuntos
Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Oligodendroglia/fisiologia , Regeneração da Medula Espinal/fisiologia , Animais , Astrócitos/fisiologia , Axônios/fisiologia , Linhagem da Célula , Epêndima/citologia , Epêndima/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Remielinização/genética , Remielinização/fisiologia , Análise de Célula Única , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/genética
14.
Biosci Trends ; 14(5): 360-367, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33100289

RESUMO

This study explored the therapeutic effects of transplantation of neural stem cells (NSCs) encapsulated in hydrogels in a cauda equina lesion model. NSCs were isolated from neonatal dorsal root ganglion (nDRG) and cultured in three-dimensional porous hydrogel scaffolds. Immunohistochemistry, transmission electron microscopy and TUNEL assay were performed to detect the differentiation capability, ultrastructural and pathological changes, and apoptosis of NSCs. Furthermore, the functional recovery of sensorimotor reflexes was determined using the tail-flick test. NSCs derived from DRG were able to proliferate to form neurospheres and mainly differentiate into oligodendrocytes in the three-dimensional hydrogel culture system. After transplantation of NSCs encapsulated in hydrogels, NSCs differentiated into oligodendrocytes, neurons or astrocytes in vivo. Moreover, NSCs engrafted on the hydrogels decreased apoptosis and alleviated the ultrastructural and pathological changes of injured cauda equina. Behavioral analysis showed that transplanted hydrogel-encapsulated NSCs decreased the tail-flick latency and showed a neuroprotective role on injured cauda equina. Our results indicate transplantation of hydrogel-encapsulated NSCs promotes stem cell differentiation into oligodendrocytes, neurons or astrocytes and contributes to the functional recovery of injured cauda equina, suggesting that NSCs encapsulated in hydrogels may be applied for the treatment of cauda equina injury.


Assuntos
Síndrome da Cauda Equina/terapia , Hidrogéis/administração & dosagem , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Animais Recém-Nascidos , Astrócitos/fisiologia , Cauda Equina/citologia , Cauda Equina/patologia , Cauda Equina/cirurgia , Cauda Equina/ultraestrutura , Síndrome da Cauda Equina/patologia , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/citologia , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Oligodendroglia/fisiologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
15.
Genes Dev ; 34(17-18): 1177-1189, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32792353

RESUMO

Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.


Assuntos
Diferenciação Celular , Proteínas dos Microfilamentos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Regeneração Nervosa/genética , Doenças do Sistema Nervoso/genética , Oligodendroglia/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/genética , Doenças do Sistema Nervoso/fisiopatologia , Oligodendroglia/citologia , Estabilidade Proteica , Ubiquitinação/genética
16.
Acta Neuropathol Commun ; 8(1): 84, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517808

RESUMO

Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies.


Assuntos
Corpo Caloso/patologia , Corpo Caloso/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Atividade Motora , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Células-Tronco Neurais/transplante , Remielinização , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Diferenciação Celular , Corpo Caloso/diagnóstico por imagem , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/prevenção & controle , Células-Tronco Neurais/fisiologia , Oligodendroglia/patologia , Oligodendroglia/fisiologia
17.
FASEB J ; 34(5): 6984-6998, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32232913

RESUMO

Rictor is an essential component that directly activates the mammalian target of rapamycin (mTOR) activity, which contributes to the intrinsic axon growth capacity of adult sensory neurons after injury. However, whether its action also applies to regeneration after spinal cord injury (SCI) remains unknown. In this study, rats were given spinal cord contusion at the T9-10 level to establish the SCI model and were subsequently treated with intraspinal cord injection of a Rictor overexpression lentiviral vector to locally upregulate the Rictor expression in the injured spinal cord. Thereafter, we investigated the therapeutic effects of Rictor overexpression in the injured spinal cords of SCI rats. Rictor overexpression not only significantly attenuated the acute inflammatory response and cell death after SCI but also markedly increased the shift in macrophages around the lesion from the M1 to M2 phenotype compared to those of the control lentiviral vector injection-treated group. Furthermore, Rictor overexpression dramatically increased neurogenesis in the lesion epicenter, subsequently promoting the tissue repair and functional recovery in SCI rats. Interestingly, the mechanism underlying the beneficial effects of Rictor overexpression on SCI may be associated with the Rictor overexpression playing a role in the anti-inflammatory response and driving macrophage polarization toward the M2 phenotype, which benefits resident neuronal and oligodendrocyte survival. Our findings demonstrate that Rictor is an effective target that affects the generation of molecules that inhibit spinal cord regeneration. In conclusion, localized Rictor overexpression represents a promising potential strategy for the repair of SCI.


Assuntos
Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Apoptose , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/classificação , Macrófagos/metabolismo , Macrófagos/patologia , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Plasticidade Neuronal , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Remielinização , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Regulação para Cima
18.
Neurochem Res ; 45(6): 1287-1297, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31927687

RESUMO

The solute carrier 8 (SLC8) family of sodium-calcium exchangers (NCXs) functions as an essential regulatory system that couples opposite fluxes of sodium and calcium ions across plasmalemmal membranes. NCXs, thereby, play key roles in maintaining an ion homeostasis that preserves cellular integrity. Hence, alterations in NCX expression and regulation have been found to lead to ionic imbalances that are often associated with intracellular calcium overload and cell death. On the other hand, intracellular calcium has been identified as a key driver for a multitude of downstream signaling events that are crucial for proper functioning of biological systems, thus highlighting the need for a tightly controlled balance. In the CNS, NCXs have been primarily characterized in the context of synaptic transmission and ischemic brain damage. However, a much broader picture is emerging. NCXs are expressed by virtually all cells of the CNS including oligodendrocytes (OLGs), the cells that generate the myelin sheath. With a growing appreciation of dynamic calcium signals in OLGs, NCXs are becoming increasingly recognized for their crucial roles in shaping OLG function under both physiological and pathophysiological conditions. In order to provide a current update, this review focuses on the importance of NCXs in cells of the OLG lineage. More specifically, it provides a brief introduction into plasmalemmal NCXs and their modes of activity, and it discusses the roles of OLG expressed NCXs in regulating CNS myelination and in contributing to CNS pathologies associated with detrimental effects on OLG lineage cells.


Assuntos
Homeostase/fisiologia , Oligodendroglia/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Trocador de Sódio e Cálcio/química
19.
Neuron ; 105(2): 293-309.e5, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31901304

RESUMO

The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells remain unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most common internal RNA modification of mammalian mRNA, plays a critical role in various developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo conditional inactivation of an essential m6A writer component, METTL14, results in decreased oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell (OPC) numbers are normal. In vitro Mettl14 ablation disrupts postmitotic oligodendrocyte maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover, the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA transcripts, including those that encode the essential paranodal component neurofascin 155 (NF155). Together, our findings indicate that dynamic RNA methylation plays an important regulatory role in oligodendrocyte development and CNS myelination.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular/fisiologia , Metiltransferases/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/citologia , Oligodendroglia/fisiologia , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Contagem de Células , Linhagem da Célula , Células Cultivadas , Feminino , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/metabolismo , Células Precursoras de Oligodendrócitos/fisiologia
20.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396468

RESUMO

Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.


Assuntos
Diferenciação Celular , Regeneração Nervosa , Células-Tronco Neurais/citologia , Neurônios/citologia , Oligodendroglia/citologia , Optogenética , Animais , Axônios , Sobrevivência Celular , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Oligodendroglia/fisiologia , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA