Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.661
Filtrar
1.
Mol Biol Rep ; 51(1): 674, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787497

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with inflammation and immune dysfunction. OBJECTIVES: We compared the remyelination and immunomodulation properties of mesenchymal stem cells (MSCs) with their conditioned medium (CM) in the cuprizone model. METHODS: Twenty-four C57BL/ 6 mice were divided into four groups. After cuprizone demyelination, MSCs and their CM were injected into the right lateral ventricle of mice. The expression level of IL-1ß, TNF-α, and BDNF genes was evaluated using the qRT-PCR. APC antibody was used to assess the oligodendrocyte population using the immunofluorescent method. The remyelination and axonal repair were studied by specific staining of the LFB and electron microscopy techniques. RESULTS: Transplantation of MSCs and CM increased the expression of the BDNF gene and decreased the expression of IL-1ß and TNF-α genes compared to the cuprizone group, and these effects in the cell group were more than CM. Furthermore, cell transplantation resulted in a significant improvement in myelination and axonal repair, which was measured by luxol fast blue and transmission electron microscope images. The cell group had a higher number of oligodendrocytes than other groups. CONCLUSIONS: According to the findings, injecting MSCs intraventricularly versus cell-conditioned medium can be a more effective approach to improving chronic demyelination in degenerative diseases like MS.


Assuntos
Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Inflamação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Células-Tronco Mesenquimais/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Meios de Cultivo Condicionados/farmacologia , Inflamação/patologia , Inflamação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Oligodendroglia/metabolismo , Remielinização , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Bainha de Mielina/metabolismo
2.
Acta Neuropathol ; 147(1): 82, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722375

RESUMO

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Assuntos
Envelhecimento , Senescência Celular , Esclerose Múltipla , Oligodendroglia , Humanos , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Senescência Celular/fisiologia , Envelhecimento/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Adulto , Idoso , Pessoa de Meia-Idade , Masculino , Feminino , Adulto Jovem , Inflamação/patologia , Inflamação/metabolismo , Substância Branca/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21
3.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656648

RESUMO

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Assuntos
Astrócitos , Diferenciação Celular , Deficiências de Ferro , Oligodendroglia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ratos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Desferroxamina/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ferro/metabolismo
4.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669615

RESUMO

BACKGROUND AND OBJECTIVES: The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS: We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS: This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION: These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).


Assuntos
Biomarcadores , Esclerose Múltipla Recidivante-Remitente , Sindecana-1 , Humanos , Biomarcadores/líquido cefalorraquidiano , Adulto , Feminino , Masculino , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Pessoa de Meia-Idade , Sindecana-1/líquido cefalorraquidiano , Estudos de Coortes , Proteômica , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Oligodendroglia/metabolismo
5.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
6.
J Neuroinflammation ; 21(1): 69, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509618

RESUMO

Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.


Assuntos
Encéfalo , Microglia , Trocador 1 de Sódio-Hidrogênio , Animais , Camundongos , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo
7.
Front Immunol ; 15: 1331210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464529

RESUMO

Introduction: Microglia and macrophages can influence the evolution of myelin lesions through the production of extracellular vesicles (EVs). While microglial EVs promote in vitro differentiation of oligodendrocyte precursor cells (OPCs), whether EVs derived from macrophages aid or limit OPC maturation is unknown. Methods: Immunofluorescence analysis for the myelin protein MBP was employed to evaluate the impact of EVs from primary rat macrophages on cultured OPC differentiation. Raman spectroscopy and liquid chromatography-mass spectrometry was used to define the promyelinating lipid components of myelin EVs obtained in vitro and isolated from human plasma. Results and discussion: Here we show that macrophage-derived EVs do not promote OPC differentiation, and those released from macrophages polarized towards an inflammatory state inhibit OPC maturation. However, their lipid cargo promotes OPC maturation in a similar manner to microglial EVs. We identify the promyelinating endocannabinoids anandamide and 2-arachidonoylglycerol in EVs released by both macrophages and microglia in vitro and circulating in human plasma. Analysis of OPC differentiation in the presence of the endocannabinoid receptor antagonists SR141716A and AM630 reveals a key role of vesicular endocannabinoids in OPC maturation. From this study, EV-associated endocannabinoids emerge as important mediators in microglia/macrophage-oligodendrocyte crosstalk, which may be exploited to enhance myelin repair.


Assuntos
Vesículas Extracelulares , Microglia , Ratos , Animais , Humanos , Microglia/metabolismo , Endocanabinoides/metabolismo , Macrófagos , Oligodendroglia/metabolismo
8.
Mov Disord ; 39(4): 723-728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357858

RESUMO

BACKGROUND: The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS: Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS: STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS: These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Corpos de Inclusão , Atrofia de Múltiplos Sistemas , Neurônios , alfa-Sinucleína , Humanos , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Corpos de Inclusão/patologia , Corpos de Inclusão/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Feminino , Idoso , Masculino , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Microscopia/métodos
9.
Acta Neuropathol ; 147(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170217

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder, characterized by selective loss of motor neurons (MNs). A number of causative genetic mutations underlie the disease, including mutations in the fused in sarcoma (FUS) gene, which can lead to both juvenile and late-onset ALS. Although ALS results from MN death, there is evidence that dysfunctional glial cells, including oligodendroglia, contribute to neurodegeneration. Here, we used human induced pluripotent stem cells (hiPSCs) with a R521H or a P525L mutation in FUS and their isogenic controls to generate oligodendrocyte progenitor cells (OPCs) by inducing SOX10 expression from a TET-On SOX10 cassette. Mutant and control iPSCs differentiated efficiently into OPCs. RNA sequencing identified a myelin sheath-related phenotype in mutant OPCs. Lipidomic studies demonstrated defects in myelin-related lipids, with a reduction of glycerophospholipids in mutant OPCs. Interestingly, FUSR521H OPCs displayed a decrease in the phosphatidylcholine/phosphatidylethanolamine ratio, known to be associated with maintaining membrane integrity. A proximity ligation assay further indicated that mitochondria-associated endoplasmic reticulum membranes (MAM) were diminished in both mutant FUS OPCs. Moreover, both mutant FUS OPCs displayed increased susceptibility to ER stress when exposed to thapsigargin, and exhibited impaired mitochondrial respiration and reduced Ca2+ signaling from ER Ca2+ stores. Taken together, these results demonstrate a pathological role of mutant FUS in OPCs, causing defects in lipid metabolism associated with MAM disruption manifested by impaired mitochondrial metabolism with increased susceptibility to ER stress and with suppressed physiological Ca2+ signaling. As such, further exploration of the role of oligodendrocyte dysfunction in the demise of MNs is crucial and will provide new insights into the complex cellular mechanisms underlying ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Mutação , Oligodendroglia/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
10.
J Pineal Res ; 76(1): e12935, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241675

RESUMO

Circadian misalignment (CM) caused by shift work can increase the risk of mood impairment. However, the pathological mechanisms underlying these deficits remain unclear. In the present study, we used long-term variable photoperiod (L-VP) in wild-type mice to better simulate real-life shift patterns and study its effects on the prefrontal cortex (PFC) and hippocampus, which are closely related to mood function. The results showed that exposure to L-VP altered the activity/rest rhythms of mice, by eliciting phase delay and decreased amplitude of the rhythms. Mice with CM developed anxiety and depression-like manifestations and the number of mature oligodendrocytes (OL) was reduced in the medial prefrontal cortex and hippocampal CA1 regions. Mood impairment and OL reduction worsened with increased exposure time to L-VP, while normal photoperiod restoration had no effect. Mechanistically, we identified upregulation of Bmal1 in the PFC and hippocampal regions of CM mice at night, when genes related to mature OL and myelination should be highly expressed. CM mice exhibited significant inhibition of the protein kinase B (AKT)/mTOR signaling pathway, which is directly associated to OL differentiation and maturation. Furthermore, we demonstrated in the OL precursor cell line Oli-Neu that overexpression of Bmal1 inhibits AKT/mTOR pathway and reduces the expression of genes OL differentiation. In conclusion, BMAL1 might play a critical role in CM, providing strong research evidence for BMAL1 as a potential target for CM therapy.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Melatonina , Animais , Camundongos , Ansiedade/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/farmacologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Depressão/genética , Melatonina/farmacologia , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
11.
Brain ; 147(1): 147-162, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37640028

RESUMO

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos/metabolismo , Molécula de Adesão de Leucócito Ativado/metabolismo , Adesão Celular , Oligodendroglia/metabolismo
12.
Mol Neurobiol ; 61(4): 1953-1968, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37817030

RESUMO

Oligodendrocytes (OLs) form myelin sheaths around axons in the central nervous system (CNS) facilitate the propagation of action potentials. The studies have shown that the differentiation and maturation of OLs involve microRNA (miR) regulation. The recent findings have addressed that miR-204 regulates OL differentiation in culture. In this study, through in situ hybridization in combination with immunohistochemistry, we showed that microRNA-204-5p in the corpus callosum was mainly expressed in OLs immunoreactive with adenomatous polyposis coli (APC), an OL marker. We also found miR-204-5p expression in mature OLs was suppressed by the addition of interleukin-6 (IL-6). Moreover, IL-6-induced inhibition of miR-204-5p expression was blocked by the addition of the inhibitors specific for p38 mitogen-activated protein kinase (p38MAPK) or phosphatidylinositol 3-kinase (PI3K) pathway. We further utilized a rat model by feeding cuprizone (CPZ)-containing diet for 3 weeks to induce demyelination and gliosis in the corpus callosum, as well as the upregulation of IL-6 gene expression significantly. Despite that miR-204-5p expression in the corpus callosum was not altered after feeding by CPZ for 3 weeks, its expression was increased and IL-6 transcription was decreased in the corpus callosum of the recovery group that was fed by CPZ for the first 2 weeks and by the regular diet for one more week. Our data demonstrate that miR-204-5p expression in OLs declined under the influence of the inflamed microenvironment. The findings that an increase in miR-204-5p and declined IL-6 expression observed in the recovery group might be involved with OL repair in the corpus callosum, and also shed light on a potential role for miR-204-5p in OL homeostasis following the white matter injury.


Assuntos
Interleucina-6 , MicroRNAs , Ratos , Animais , Camundongos , Interleucina-6/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , MicroRNAs/genética , Cuprizona/farmacologia , Diferenciação Celular , Camundongos Endogâmicos C57BL
13.
Neurochem Res ; 49(2): 466-476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37917337

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of iron in the substantia nigra. While iron accumulation and inflammation are implicated in PD pathogenesis, their impact on oligodendrocytes, the brain's myelin-forming cells, remains elusive. This study investigated the influence of interleukin-1ß (IL-1ß), an elevated proinflammatory cytokine in PD, on iron-related proteins in MO3.13 oligodendrocytes. We found that IL-1ß treatment in undifferentiated MO3.13 oligodendrocytes increased iron regulatory protein 1 and transferrin receptor 1 (TfR1) expression while decreasing ferroportin 1 (FPN1) expression. Consequently, iron uptake was enhanced, and iron release was reduced, leading to intracellular iron accumulation. Conversely, IL-1ß treatment in differentiated MO3.13 oligodendrocytes exhibited the opposite effect, with decreased TfR1 expression, increased FPN1 expression, and reduced iron uptake. These findings suggest that IL-1ß-induced dysregulation of iron metabolism in oligodendrocytes may contribute to the pathological processes observed in PD. IL-1ß can increase the iron content in undifferentiated oligodendrocytes, thus facilitating the differentiation of undifferentiated MO3.13 oligodendrocytes. In differentiated oligodendrocytes, IL-1ß may facilitate iron release, providing a potential source of iron for neighboring dopaminergic neurons, thereby initiating a cascade of deleterious events. This study provides valuable insights into the intricate interplay between inflammation, abnormal iron accumulation, and oligodendrocyte dysfunction in PD. Targeting the IL-1ß-mediated alterations in iron metabolism may hold therapeutic potential for mitigating neurodegeneration and preserving dopaminergic function in PD.


Assuntos
Proteína 1 Reguladora do Ferro , Doença de Parkinson , Humanos , Interleucina-1beta/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Doença de Parkinson/metabolismo , Ferro/metabolismo , Inflamação/metabolismo , Oligodendroglia/metabolismo
14.
Acta Pharmacol Sin ; 45(3): 490-501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935896

RESUMO

Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs). In an effort to search pathways downstream of GPCRs that might be involved in OPC differentiation, we discover that U73122, a phosphoinositide specific phospholipase C (PI-PLC) inhibitor, dramatically promotes OPC-to-OL differentiation and myelin regeneration in experimental autoimmune encephalomyelitis model. Unexpectedly, U73343, a close analog of U73122 which lacks PI-PLC inhibitory activity also promotes OL differentiation, while another reported PI-PLC inhibitor edelfosine does not have such effect, suggesting that U73122 and U73343 enhance OPC differentiation independent of PLC. Although the structures of U73122 and U73343 closely resemble 17ß-estradiol, and both compounds do activate estrogen receptors Erα and Erß with low efficacy and potency, further study indicates that these compounds do not act through Erα and/or Erß to promote OPC differentiation. RNA-Seq and bioinformatic analysis indicate that U73122 and U73343 may regulate cholesterol biosynthesis. Further study shows both compounds increase 14-dehydrozymostenol, a steroid reported to promote OPC differentiation, in OPC culture. In conclusion, the aminosteroids U73122 and U73343 promote OPC-to-OL generation and myelin formation by regulating cholesterol biosynthesis pathway.


Assuntos
Estrenos , Receptor alfa de Estrogênio , Bainha de Mielina , Pirrolidinonas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular , Colesterol/metabolismo
15.
Neurobiol Dis ; 187: 106315, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783234

RESUMO

G protein-coupled receptor 17 (GPR17) and the WNT pathway are critical players of oligodendrocyte (OL) differentiation acting as essential timers in developing brain to achieve fully-myelinating cells. However, whether and how these two systems are related to each other is still unknown. Of interest, both factors are dysregulated in developing and adult brain diseases, including white matter injury and cancer, making the understanding of their reciprocal interactions of potential importance for identifying new targets and strategies for myelin repair. Here, by a combined pharmacological and biotechnological approach, we examined regulatory mechanisms linking WNT signaling to GPR17 expression in OLs. We first analyzed the relative expression of mRNAs encoding for GPR17 and the T cell factor/Lymphoid enhancer-binding factor-1 (TCF/LEF) transcription factors of the canonical WNT/ß-CATENIN pathway, in PDGFRα+ and O4+ OLs during mouse post-natal development. In O4+ cells, Gpr17 mRNA level peaked at post-natal day 14 and then decreased concomitantly to the physiological uprise of WNT tone, as shown by increased Lef1 mRNA level. The link between WNT signaling and GPR17 expression was further reinforced in vitro in primary PDGFRα+ cells and in Oli-neu cells. High WNT tone impaired OL differentiation and drastically reduced GPR17 mRNA and protein levels. In Oli-neu cells, WNT/ß-CATENIN activation repressed Gpr17 promoter activity through both putative WNT response elements (WRE) and upregulation of the inhibitor of DNA-binding protein 2 (Id2). We conclude that the WNT pathway influences OL maturation by repressing GPR17, which could have implications in pathologies characterized by dysregulations of the OL lineage including multiple sclerosis and oligodendroglioma.


Assuntos
Células Precursoras de Oligodendrócitos , Via de Sinalização Wnt , Camundongos , Animais , beta Catenina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Diferenciação Celular/fisiologia , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo
16.
J Headache Pain ; 24(1): 143, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875834

RESUMO

BACKGROUND: BMP7 has been shown to have neuroprotective effects and to alleviate demyelination. However, its role in trigeminal neuralgia (TN) has not been well investigated. The current study aims to determine whether BMP7 plays a role in demyelination, its effects on pain behaviors and mechanism of action in rats with TN. METHODS: We used an infraorbital-nerve chronic-constriction injury (ION-CCI) to establish a rat model of TN. Adeno-associated viruses (AAVs) were injected into the rats to upregulate or downregulate BMP7. The mechanical withdrawal thresholds (MWT) of the injured rats were detected using Von Frey filaments. The changes in expression levels of BMP7 and oligodendrocyte (OL) markers were examined by western blotting, quantitative real-time PCR, immunofluorescence, and transmission electron microscopy. RESULTS: The ION-CCI induced mechanical allodynia, demyelination, and loss of OLs with a reduction of BMP7. Short-hairpin RNA (shRNA)-BMP7 that inhibited BMP7 expression also caused mechanical allodynia, demyelination, and loss of OLs, and its mechanism may be OL apoptosis. Overexpressing BMP7 in the trigeminal spinal subnucleus caudalis(VC) with AAV-BMP7 relieved all three phenotypes induced by the CCI, and its mechanism may be alleviating OLs apoptosis. Two signal pathways associated with apoptosis, STAT3 and p65, were significantly downregulated in the VC after CCI and rescued by BMP7 overexpression. CONCLUSION: BMP7 can alleviate TN by reducing OLs apoptosis and subsequent demyelination. The mechanism behind this protection could be BMP7-mediated activation of the STAT3 and NF-κB/p65 signaling pathway and subsequent decrease in OL apoptosis. Importantly, our study presents clear evidence in support of BMP7 as a possible therapeutic target for the treatment of TN.


Assuntos
Doenças Desmielinizantes , Neuralgia do Trigêmeo , Ratos , Animais , Neuralgia do Trigêmeo/tratamento farmacológico , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Apoptose , Oligodendroglia/metabolismo
17.
Curr Neurovasc Res ; 20(4): 453-463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817523

RESUMO

BACKGROUND: The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored. OBJECTIVE: This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro. METHODS: The isolation, induction and characterization of rat primary neuronal stem cells, OPCs and oligodendrocytes were investigated with immunofluorescence and RT-qPCR. Then, the role of AKT/mTOR/p70S6K signaling was explored using western blotting and immunofluorescence, the effect on myelination was examined with OPC-dorsal root ganglion (DRG) neurons co-culture, and the influence of M1/M2 polarization status of microglia on myelin formation was also observed by adding M1/M2 supernatants into OPC-DRG neurons co-culture. RESULTS: Activation of the AKT/mTOR/p70S6K pathway elevated the expression of oligodendrocyte differentiation markers, including MBP, PLP and MOG, which also promoted the colocalization of MBP and NFH in OPC-DRG neurons co-culture. More interestingly, stimulation of the AKT/mTOR/p70S6K pathway facilitated M2 polarization of rat microglia. M2 polarization of microglia enhanced OPC differentiation to oligodendrocytes and myelin formation. CONCLUSION: Our findings highlight the potential of targeting the AKT/mTOR/p70S6K pathway in promoting oligodendrocyte differentiation and myelin regeneration in neurological disorders such as SCI.


Assuntos
Bainha de Mielina , Traumatismos da Medula Espinal , Ratos , Animais , Bainha de Mielina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular , Traumatismos da Medula Espinal/metabolismo
18.
Neurosci Lett ; 815: 137497, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748675

RESUMO

Roles for lipocalin-2 (LCN2, also referred to as neutrophil gelatinase associated lipocalin, NGAL) in the progression of disease in multiple sclerosis and its animal models have been reported; however, the importance of astrocyte-derived LCN2, a major source of LCN2, have not been defined. We found that clinical scores in experimental autoimmune encephalomyelitis (EAE) were modestly delayed in mice with conditional knockout of LCN2 from astrocytes, associated with a small decrease in astrocyte GFAP expression. Immunostaining and qPCR of spinal cord samples showed decreased oligodendrocyte proteolipid protein and transcription factor Olig2 expression, but no changes in PDGFRα expression. These results suggest astrocyte LCN2 contributes to early events in EAE and reduces damage to mature oligodendrocytes at later times.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Lipocalina-2/genética , Lipocalina-2/metabolismo , Esclerose Múltipla/metabolismo , Astrócitos/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Modelos Animais de Doenças , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL
19.
Phytother Res ; 37(11): 5341-5353, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37700535

RESUMO

BACKGROUND AND AIM: Our previous study has revealed that OEA promotes motor function recovery in the chronic stage of ischemic stroke. However, the neuroprotective mechanism of OEA on motor function recovery after stroke still is unexplored. Therefore, the aim of this study was to explore the effects of OEA treatment on angiogenesis, neurogenesis, and white matter repair in the peri-infarct region after cerebral ischemia. EXPERIMENTAL PROCEDURE: The adult male rats were subjected to 2 h of middle cerebral artery occlusion. The rats were treated with 10 and 30 mg/kg OEA or vehicle daily starting from day 2 after ischemia induction until they were sacrificed. KEY RESULTS AND CONCLUSIONS: The results revealed that OEA increased cortical angiogenesis, neural progenitor cells (NPCs) proliferation, migration, and differentiation. OEA treatment enhanced the survival of newborn neurons and oligodendrogenesis, which eventually repaired the cortical neuronal injury and improved motor function after ischemic stroke. Meanwhile, OEA treatment promoted the differentiation of oligodendrocyte progenitor cells (OPCs) and oligodendrogenesis by activating the PPARα signaling pathway. Our results showed that OEA restores motor function by facilitating cortical angiogenesis, neurogenesis, and white matter repair in rats after ischemic stroke. Therefore, we demonstrate that OEA facilitates functional recovery after ischemic stroke and propose the hypothesis that the long-term application of OEA mitigates the disability after stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Ratos , Masculino , Animais , Substância Branca/metabolismo , PPAR alfa/metabolismo , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Neurogênese , Diferenciação Celular , Oligodendroglia/metabolismo
20.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446309

RESUMO

The rapid growth of wireless electronic devices has raised concerns about the harmful effects of leaked electromagnetic radiation (EMR) on human health. Even though numerous studies have been carried out to explore the biological effects of EMR, no clear conclusions have been drawn about the effect of radio frequency (RF) EMR on oligodendrocytes. To this end, we exposed oligodendroglia and three other types of brain cells to 2.4 GHz EMR for 6 or 48 h at an average input power of 1 W in either a continuous wave (CW-RF) or a pulse-modulated wave (PW-RF, 50 Hz pulse frequency, 1/3 duty cycle) pattern. RNA sequencing, RT-qPCR, and Western blot were used to examine the expression of C/EBPß and its related genes. Multiple reaction monitoring (MRM) was used to examine the levels of expression of C/EBPß-interacting proteins. Our results showed that PW-RF EMR significantly increased the mRNA level of C/EBPß in oligodendroglia but not in other types of cells. In addition, the expression of three isoforms and several interacting proteins and targeted genes of C/EBPß were markedly changed after 6-h PW-RF but not CW-RF. Our results indicated that RF EMR regulated the expression and functions of C/EBPß in a waveform- and cell-type-dependent manner.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Regulação da Expressão Gênica , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Isoformas de Proteínas/metabolismo , Oligodendroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA