Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2021: 1267041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483726

RESUMO

HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.


Assuntos
Complexo AIDS Demência/imunologia , Complexo AIDS Demência/virologia , Sistema Nervoso Central/virologia , HIV-1/metabolismo , Proteínas Virais/metabolismo , Complexo AIDS Demência/fisiopatologia , Antirretrovirais/uso terapêutico , Astrócitos/virologia , Sistema Nervoso Central/fisiopatologia , Genoma , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Inflamação , Cinurenina/metabolismo , Macrófagos/virologia , Microglia/virologia , Neurônios/virologia , Oligodendroglia/virologia , Receptores de N-Metil-D-Aspartato/metabolismo , Carga Viral , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
3.
Viruses ; 12(11)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153187

RESUMO

Progressive Multifocal Leukoencephalopathy (PML) is a fatal demyelinating disease of the CNS, resulting from the lytic infection of oligodendrocytes by the human neurotropic polyomavirus JC (JCPyV), typically associated with severe immunocompromised states and, in recent years, with the use of immunotherapies. Apoptosis is a homeostatic mechanism to dispose of senescent or damaged cells, including virally infected cells, triggered in the vast majority of viral infections of the brain. Previously, we showed upregulation of the normally dormant anti-apoptotic protein Survivin in cases of PML, which-in vitro-resulted in protection from apoptosis in JCPyV-infected primary cultures of astrocytes and oligodendrocytes. In the present study, we first demonstrate the absence of apoptotic DNA fragmentation and the lack of caspase activity in 16 cases of PML. We also identified the viral protein large T-Antigen as being responsible for the activation of the Survivin promoter. Chromatin Immunoprecipitation assay shows a direct binding between T-Antigen and the Survivin promoter DNA. Finally, we have identified the specific region of T-Antigen, spanning from amino acids 266 and 688, which binds to Survivin and translocates it to the nucleus, providing evidence of a mechanism that results in the efficient replication of JCPyV and a potential target for novel therapies.


Assuntos
Antígenos Virais de Tumores/genética , Apoptose , Vírus JC/genética , Regiões Promotoras Genéticas , Survivina/genética , Adulto , Idoso , Animais , Antígenos Virais de Tumores/imunologia , Astrócitos/virologia , Caspases/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Criança , Fragmentação do DNA , Feminino , Humanos , Vírus JC/imunologia , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva , Masculino , Camundongos , Pessoa de Meia-Idade , Oligodendroglia/virologia , Inclusão em Parafina , Survivina/imunologia
4.
Virology ; 548: 17-24, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838939

RESUMO

The demyelinating disease progressive multifocal leukoencephalopathy (PML) is caused by the human polyomavirus, JCPyV, under conditions of prolonged immunosuppression. Initial infection is asymptomatic, and the virus establishes lifelong persistence in the host. Following the loss of immune surveillance, the virus can traffic to the central nervous system and infect oligodendrocytes to cause demyelination and PML. The mechanisms involved in glial cell infection are not completely understood. In a screen for N-glycosylated proteins that influence JCPyV pathology, we identified Adipocyte Plasma Membrane Associated Protein (APMAP) as a host cell modulator of JCPyV infection. The removal of APMAP by small interfering siRNA as well as by CRISPR-Cas9 gene editing resulted in a significant decrease in JCPyV infection. Exogenous expression of APMAP in APMAP knockout cell lines rescued susceptibility to infection. These data suggest that virus infection of glial cells is dependent on APMAP.


Assuntos
Vírus JC/fisiologia , Neuroglia/metabolismo , Infecções por Polyomavirus/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Vírus JC/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana , Neuroglia/virologia , Oligodendroglia/metabolismo , Oligodendroglia/virologia , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/virologia
5.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748392

RESUMO

Myelin and lymphocyte protein (MAL) is a tetraspan integral membrane protein that resides in detergent-insoluble membrane fractions enriched in condensed membranes. MAL is expressed in oligodendrocytes, in Schwann cells, where it is essential for the stability of myelin, and at the apical membrane of epithelial cells, where it has a critical role in transport. In T lymphocytes, MAL is found at the immunological synapse and plays a crucial role in exosome secretion. However, no involvement of MAL in viral infections has been reported so far. Here, we show that herpes simplex virus 1 (HSV-1) virions travel in association with MAL-positive structures to reach the end of cellular processes, which contact uninfected oligodendrocytes. Importantly, the depletion of MAL led to a significant decrease in infection, with a drastic reduction in the number of lytic plaques in MAL-silenced cells. These results suggest a significant role for MAL in viral spread at cell contacts. The participation of MAL in the cell-to-cell spread of HSV-1 may shed light on the involvement of proteolipids in this process.IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establish latent infections in neurons. HSV-1 may spread from infected to uninfected cells by two main routes: by cell-free virus or by cell-to-cell spread. In the first case, virions exit into the extracellular space and then infect another cell from the outside. In the second case, viral transmission occurs through cell-to-cell contacts via a mechanism that is still poorly understood. A third mode of spread, using extracellular vesicles, also exists. In this study, we demonstrate the important role for a myelin protein, myelin and lymphocyte protein (MAL), in the process of cell-to-cell viral spread in oligodendrocytes. We show that MAL is involved in trafficking of virions along cell processes and that MAL depletion produces a significant alteration in the viral cycle, which reduces cell-to cell spread of HSV-1.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Humanos , Linfócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas da Mielina/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/química , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/fisiologia , Neurônios/metabolismo , Neurônios/virologia , Oligodendroglia/metabolismo , Oligodendroglia/virologia , Proteolipídeos/química , Proteolipídeos/metabolismo , Linfócitos T/metabolismo
6.
Sci Rep ; 9(1): 9844, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285460

RESUMO

Treatment options for chronic spinal cord injury (SCI) remain limited due to unfavourable changes in the microenvironment. Gene therapy can overcome these barriers through continuous delivery of therapeutic gene products to the target tissue. In particular, adeno-associated virus (AAV) vectors are potential candidates for use in chronic SCI, considering their safety and stable gene expression in vivo. Given that different AAV serotypes display different cellular tropisms, it is extremely important to select an optimal serotype for establishing a gene transfer system during the chronic phase of SCI. Therefore, we generated multiple AAV serotypes expressing ffLuc-cp156, a fusion protein of firefly luciferase and Venus, a variant of yellow fluorescent protein with fast and efficient maturation, as a reporter, and we performed intraparenchymal injection in a chronic SCI mouse model. Among the various serotypes tested, AAVrh10 displayed the highest photon count on bioluminescence imaging. Immunohistological analysis revealed that AAVrh10 showed favourable tropism for neurons, astrocytes, and oligodendrocytes. Additionally, with AAVrh10, the area expressing Venus was larger in the injury epicentre and extended to the surrounding tissue. Furthermore, the fluorescence intensity was significantly higher with AAVrh10 than with the other vectors. These results indicate that AAVrh10 may be an appropriate serotype for gene delivery to the chronically injured spinal cord. This promising tool may be applied for research and development related to the treatment of chronic SCI.


Assuntos
Proteínas de Bactérias/genética , Dependovirus/fisiologia , Luciferases de Vaga-Lume/genética , Proteínas Luminescentes/genética , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/virologia , Proteínas de Bactérias/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Luciferases de Vaga-Lume/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/virologia , Oligodendroglia/metabolismo , Oligodendroglia/virologia , Proteínas Recombinantes de Fusão/administração & dosagem , Traumatismos da Medula Espinal/genética , Tropismo Viral
7.
Antiviral Res ; 168: 91-99, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132386

RESUMO

Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious agent that can establish latency in neurons, and in some cases, viral retrograde transport results in infection of the central nervous system (CNS). Several antivirals have been identified with the ability to inhibit HSV-1 replication in human cells to a greater or lesser degree, most of which are nucleoside analogues that unfortunately exhibit teratogenic potential, embryotoxicity, carcinogenic or antiproliferative activities and resistances in immunocompromised patients, specially. In the present study, we assessed two amidic derivatives of valproic acid (VPA) - valpromide (VPD) and valnoctamide (VCD) - which are already used in clinic treatments, as feasible HSV-1 antivirals in glial cells. Both VPD and VCD have exhibited increased efficacy in bipolar disorders and as anticonvulsant drugs compared to VPA, while being less teratogenic and hepatotoxic. Cytotoxicity assays carried out in our laboratory showed that VPD and VCD were not toxic in a human oligodendroglioma cell line (HOG), at least at the concentrations established for human treatments. Infectivity assays showed a significant inhibition of HSV-1 infection in HOG cells after VPD and VCD treatment, being more pronounced in VPD-treated cells, comparable to the effects obtained with acyclovir. Furthermore, the same antiherpetic effects of VPD were observed in other oligodendrocytic cell lines and rat primary oligodendrocytes (OPCs), confirming the results obtained in HOG cells. Altogether, our results allow us to propose VPD as a potential antiherpetic drug that is able to act directly on oligodendrocytes of the CNS.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Oligodendroglia/virologia , Ácido Valproico/análogos & derivados , Amidas/química , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Estrutura Molecular , Oligodendroglia/efeitos dos fármacos , Ratos , Ácido Valproico/química , Ácido Valproico/farmacologia , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
J Neurovirol ; 25(4): 520-524, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31025264

RESUMO

JC virus (JCV) can cause a lytic infection of oligodendrocytes and astrocytes in the central nervous system (CNS) leading to progressive multifocal leukoencephalopathy (PML). JCV can also infect meningeal and choroid plexus cells causing JCV meningitis (JCVM). Whether JCV also infects meningeal and choroid plexus cells in PML patients and other immunosuppressed individuals with no overt symptoms of meningitis remains unknown. We therefore analyzed archival formalin-fixed, paraffin-embedded brain samples from PML patients, and HIV-seropositive and seronegative control subjects by immunohistochemistry for the presence of JCV early regulatory T Ag and JCV VP1 late capsid protein. In meninges, we detected JCV T Ag in 11/48 (22.9%) and JCV VP1 protein in 8/48 (16.7%) PML patients. In choroid plexi, we detected JCV T Ag in 1/7 (14.2%) and JCV VP1 protein in 1/8 (12.5%) PML patients. Neither JCV T Ag nor VP1 protein could be detected in meninges or choroid plexus of HIV-seropositive and HIV-seronegative control subjects without PML. In addition, examination of underlying cerebellar cortex of PML patients revealed JCV-infected cells in the molecular layer, including GAD 67+ interneurons, but not in HIV-seropositive and HIV-seronegative control subjects without PML. Our findings suggest that productive JCV infection of meningeal cells and choroid plexus cells also occurs in PML patients without signs or symptoms of meningitis. The phenotypic characterization of JCV-infected neurons in the molecular layer deserves further study. This data provides new insight into JCV pathogenesis in the CNS.


Assuntos
Astrócitos/virologia , Plexo Corióideo/virologia , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/virologia , Meninges/virologia , Neurônios/virologia , Oligodendroglia/virologia , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Astrócitos/patologia , Autopsia , Biomarcadores/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Córtex Cerebelar/patologia , Córtex Cerebelar/virologia , Plexo Corióideo/patologia , Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , HIV/genética , HIV/patogenicidade , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Imuno-Histoquímica , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/patologia , Meninges/patologia , Neurônios/patologia , Oligodendroglia/patologia
9.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768870

RESUMO

Progressive multifocal leukoencephalopathy (PML) is an often-fatal demyelinating disease of the central nervous system. PML results when oligodendrocytes within immunocompromised individuals are infected with the human JC virus (JCV). We have identified an oligodendrocyte precursor cell line, termed G144, that supports robust levels of JCV DNA replication, a central part of the JCV life cycle. In addition, we have determined that JC virus readily infects G144 cells. Furthermore, we have determined that JCV DNA replication in G144 cells is stimulated by myristoylated (i.e., constitutively active) Akt and reduced by the Akt-specific inhibitor MK2206. Thus, this oligodendrocyte-based model system will be useful for a number of purposes, such as studies of JCV infection, establishing key pathways needed for the regulation of JCV DNA replication, and identifying inhibitors of this process.IMPORTANCE The disease progressive multifocal leukoencephalopathy (PML) is caused by the infection of particular brain cells, termed oligodendrocytes, by the JC virus. Studies of PML, however, have been hampered by the lack of an immortalized human cell line derived from oligodendrocytes. Here, we report that the G144 oligodendrocyte cell line supports both infection by JC virus and robust levels of JCV DNA replication. Moreover, we have established that the Akt pathway regulates JCV DNA replication and that JCV DNA replication can be inhibited by MK2206, a compound that is specific for Akt. These and related findings suggest that we have established a powerful oligodendrocyte-based model system for studies of JCV-dependent PML.


Assuntos
Vírus JC/fisiologia , Oligodendroglia/virologia , Proteína Oncogênica v-akt/metabolismo , Replicação Viral , Linhagem Celular , Replicação do DNA , DNA Viral , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/virologia , Oligodendroglia/efeitos dos fármacos , Proteína Oncogênica v-akt/antagonistas & inibidores , Proteína Oncogênica v-akt/química
10.
Neurobiol Dis ; 97(Pt A): 1-10, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816768

RESUMO

Brain white matter damage is frequently detected in patients infected with human immunodeficiency virus type 1 (HIV-1). White matter is composed of neuronal axons sheathed by oligodendrocytes (Ols), the myelin-forming cells in central nervous system. Ols are susceptible to HIV-1 viral trans-activator of transcription (Tat) and injury of Ols results in myelin sheath damage. It has been demonstrated that activation of voltage-gated K+ (KV) channels induces cell apoptosis and Ols predominantly express K+ channel KV1.3. It is our hypothesis that Tat injures Ols via activation of KV1.3. To test this hypothesis, we studied the involvement of KV1.3 in Tat-induced Ol/myelin injury both in vitro and ex vivo. Application of Tat to primary rat Ol cultures enhanced whole-cell KV1.3 current recorded under voltage clamp configuration and confirmed by specific KV1.3 antagonists Margatoxin (MgTx) and 5-(4-phenoxybutoxy) psoralen (PAP). The Tat enhancement of KV1.3 current was associated with Tat-induced Ol apoptosis, which was blocked by MgTx and PAP or by siRNA knockdown of KV1.3 gene. The Tat-induced Ol injury was validated in cultured rat brain slices, particularly in corpus callosum and striatum, that incubation of the slices with Tat resulted in myelin damage and reduction of myelin basic protein which were also blocked by aforementioned KV1.3 antagonists. Further studies revealed that Tat interacts with KV1.3 as determined by protein pull-down of recombinant GST-Tat with KV1.3 expressed in rat brains and HEK293 cells. Such protein-protein interaction may alter channel protein phosphorylation, resultant channel activity and consequent Ol/myelin injury. Taken together, these results demonstrate an involvement of KV1.3 in Tat- induced Ol/myelin injury, a potential mechanism for the pathogenesis of HIV-1-associated white matter damage.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Oligodendroglia/metabolismo , Potássio/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cátions Monovalentes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células HEK293 , HIV-1 , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Oligodendroglia/virologia , Fosforilação , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
11.
Glia ; 65(1): 93-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27759175

RESUMO

Oligodendrocytes myelinate neuronal axons during development and increase conduction velocity of neuronal impulses in the central nervous system. Neuronal axons extend from multiple brain regions and pass through the white matter; however, whether oligodendrocytes ensheath a particular set of axons or do so randomly within the mammalian brain remains unclear. We developed a novel method to visualize individual oligodendrocytes and axon derived from a particular brain region in mouse white matter using a combinational injection of attenuated rabies virus and adeno-associated virus. Using this method, we found that some populations of oligodendrocytes in the corpus callosum predominantly ensheathed axons derived from motor cortex or sensory cortex, while others ensheathed axons from both brain regions, suggesting heterogeneity in preference of myelination toward a particular subtype of neurons. Moreover, our newly established method is a versatile tool for analyzing precise morphology of each oligodendrocyte in animal models for demyelinating disorders and addressing the role of oligodendrocyte in higher brain functions. GLIA 2016. GLIA 2017;65:93-105.


Assuntos
Axônios/virologia , Bainha de Mielina/virologia , Oligodendroglia/virologia , Vírus da Raiva/metabolismo , Animais , Feminino , Camundongos Endogâmicos C57BL , Transmissão Sináptica/fisiologia
12.
J Virol ; 90(7): 3385-99, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764005

RESUMO

UNLABELLED: Certain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved, infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs), we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here, we demonstrate that OPCs, but not OLs, are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival, proliferation, or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiation in vivo using transplanted transgenic NPCs showed that, while MLVs did not affect cellular engraftment or survival, they did inhibit OL differentiation, irrespective of MLV neurovirulence. In addition, in chimeric brains, where FrCasE-infected NPC transplants caused neurodegeneration, the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration, restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease. IMPORTANCE: A variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor and cognitive deficits. These retroviruses infect a variety of CNS cell types; however, the specific role each cell type plays in neuropathogenesis remains to be established. The NG2 glia, whose CNS functions are only now emerging, are a newly appreciated viral target in murine leukemia virus (MLV)-induced neurodegeneration. Since one role of NG2 glia is that of oligodendrocyte progenitor cells (OPCs), we investigated here whether their infection by the neurovirulent MLV FrCasE contributed to neurodegeneration by affecting OPC viability and/or development. Our results show that both neurovirulent and nonneurovirulent MLVs interfere with oligodendrocyte differentiation. Thus, NG2 glial infection could contribute to neurodegeneration by preventing myelin formation and/or repair and by suspending OPCs in a state of persistent susceptibility to excitotoxic insult mediated by neurovirulent virus effects on other glial subtypes.


Assuntos
Vírus da Leucemia Murina/patogenicidade , Doença dos Neurônios Motores/virologia , Células-Tronco Neurais/virologia , Neurogênese/fisiologia , Neuroglia/virologia , Infecções por Retroviridae/complicações , Células 3T3 , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Produtos do Gene env/biossíntese , Masculino , Camundongos , Camundongos Transgênicos , Oligodendroglia/citologia , Oligodendroglia/virologia
13.
Rev Med Virol ; 26(2): 102-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663440

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a devastating and often fatal demyelinating disease of the central nervous system for which effective therapies are lacking. It is caused by the replication of polyomavirus JC (JCV) in the oligodendrocytes and astrocytes leading to their cytolytic death and loss of myelin from the subcortical white matter. While the virus is very common in human populations worldwide, the incidence of the disease is very low and confined almost exclusively to individuals with some form of immunological dysfunction. However, the number of people who constitute the at-risk population is growing larger and includes individuals with HIV-1/AIDS and patients receiving immunomodulatory therapies such as multiple sclerosis patients treated with natalizumab. Further adding to the public health significance of this disease are the difficulties encountered in the diagnosis of PML and the lack of useful biomarkers for PML progression. In this review, we examine the diagnostic assays that are available for different aspects of the JCV life cycle, their usefulness and drawbacks, and the prospects for improvements.


Assuntos
Anticorpos Antivirais/sangue , Biomarcadores/sangue , Hospedeiro Imunocomprometido/imunologia , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico , RNA Viral/sangue , Carga Viral/métodos , Síndrome da Imunodeficiência Adquirida/imunologia , Astrócitos/virologia , Biomarcadores/análise , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Humanos , Leucoencefalopatia Multifocal Progressiva/virologia , Oligodendroglia/virologia
14.
Neuropathology ; 35(5): 487-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25946231

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease caused by reactivation of the asymptomatic persistent pathogen human polyomavirus JC (JC virus). The pathology of affected brain tissues demonstrates oligodendroglia-like cells with viral inclusions in their enlarged nuclei, a diagnostic hallmark of this disease. Today, the pathological features of this disease are expanding, partly due to an unsteady balance between viral virulence and host immunity. Intranuclear viral inclusions were initially thought to be amphophilic materials comprising the entire enlarged nucleus, based on HE staining (full inclusions). Howevewr, recent immunohistochemical analyses detected the presence of intranuclear viral inclusions in dots (dot-shaped inclusions). The dot-shaped inclusions reflect clustered progeny virions at punctuated subnuclear domains called promyelocytic leukemia nuclear bodies, and are indicative of early-stage viral infection or suppressed viral proliferation. Second, the JC virus is usually reactivated in patients with impaired immunity, and therefore the inflammatory reactions are poor. However, the causes of immunosuppression are divergent, as seen with the frequent use of immunosuppressive drugs, including natalizumab. Therefore, the degree of host immunity is variable; some patients show marked anti-viral inflammatory reactions and a good prognosis, indicating that a strong resistance against viral infection remains. Recovery of the immune system may also induce paradoxical clinical worsening, known as immune reconstitution inflammatory syndrome, the mechanism of which has not been clarified. The virus-host interactions have increased in complexity, and the pathology of PML is diverging. In this review, the pathology of PML will be described, with a focus on the intranuclear target of JC virus infection and host inflammatory reactions.


Assuntos
Corpos de Inclusão Intranuclear/patologia , Leucoencefalopatia Multifocal Progressiva/patologia , Oligodendroglia/patologia , Humanos , Corpos de Inclusão Intranuclear/virologia , Vírus JC , Leucoencefalopatia Multifocal Progressiva/virologia , Oligodendroglia/virologia
15.
J Neurovirol ; 21(6): 679-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25791343

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease caused by neurotropic polyomavirus, JC virus (JCV), a virus that causes lytic infection of CNS glial cells. After primary infection, JCV is controlled by the immune system but virus persists asymptomatically. Rarely, when immune function is impaired, it can reemerge to cause PML. The mechanisms of JCV persistence and reactivation are not well understood but our earlier work implicated epigenetic control by protein acetylation since histone deacetylase inhibitors such as trichostatin A (TSA) strongly stimulate JCV transcription. Since both TNF-α and TSA activate JCV transcription via the same unique NF-κB site in the JCV control region, we investigated a role for acetylation of NF-κB in JCV regulation. A site-directed mutagenesis strategy was employed targeting the known lysine acetylation sites of NF-κB p65: K218, K221, and K310. We individually mutated each lysine to arginine, which cannot be acetylated and retains a positive charge like lysine. K218R and K221R impaired transactivation of JCV early promoter transcription either alone or combined with TSA treatment or coexpression of acetyltransferase transcriptional coactivator p300 but K310R was largely without effect. Mutation of lysine to glutamine gives mutants with a negative charge like acetyllysine. However, K218Q and K221Q showed impaired activity and only K310Q showed enhanced transactivation. NF-κB acetylation can regulate several aspects of the process of activation including complex formation with IκB, translocation to the nucleus, and DNA binding and transcriptional activation. Cell fractionation studies revealed that the mutants had no defect in translocation to the nucleus whereas gel shift studies revealed reduced binding to the JCV NF-κB site. Thus, acetylation regulates NF-κB p65 activity toward JCV at the level of p65 binding to the JCV control region and activation of JCV transcription.


Assuntos
Epigênese Genética/genética , Vírus JC/genética , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/genética , Ativação Viral/genética , Acetilação , Western Blotting , Linhagem Celular Tumoral , Humanos , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Oligodendroglia/virologia , Transfecção
16.
Mult Scler ; 21(9): 1200-3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25480862

RESUMO

BACKGROUND: The envelope protein (ENV) of the human endogenous retrovirus type W is implicated in inflammatory reactions in multiple sclerosis (MS) but also interferes with oligodendroglial maturation. A neutralizing antibody GNbAC1 has been developed and successfully been tested in clinical trials. OBJECTIVES AND METHODS: We stimulated primary oligodendroglial cells with ENV upon preincubation with GNbAC1 and assessed for nitrosative stress and myelin expression. RESULTS: Neutralization of ENV by GNbAC1 reduces its ability to induce stress reactions resulting in a rescue of myelin expression. CONCLUSIONS: Beyond immune cell modulation, this monoclonal antibody may therefore help to overcome the oligodendroglial differentiation blockade in MS.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Linhagem Celular , Retrovirus Endógenos , Humanos , Oligodendroglia/citologia , Oligodendroglia/virologia , Proteínas do Envelope Viral
17.
J Neuropathol Exp Neurol ; 73(5): 442-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24709678

RESUMO

In progressive multifocal leukoencephalopathy, JC virus-infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed "promyelocytic leukemia nuclear bodies" (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 µm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.


Assuntos
Fase G2 , Corpos de Inclusão Intranuclear/patologia , Vírus JC , Leucoencefalopatia Multifocal Progressiva/patologia , Oligodendroglia/patologia , Fase S , Idoso , Ciclo Celular/fisiologia , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Feminino , Fase G2/fisiologia , Humanos , Corpos de Inclusão Intranuclear/ultraestrutura , Corpos de Inclusão Intranuclear/virologia , Vírus JC/ultraestrutura , Leucoencefalopatia Multifocal Progressiva/virologia , Oligodendroglia/ultraestrutura , Oligodendroglia/virologia , Fase S/fisiologia
18.
Gene Ther ; 21(5): 522-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24572783

RESUMO

Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.


Assuntos
Encéfalo/virologia , Dependovirus/genética , Vetores Genéticos/genética , Neurônios Motores/virologia , Oligodendroglia/virologia , Fatores Etários , Animais , Encéfalo/citologia , Gatos , Líquido Cefalorraquidiano/virologia , Terapia Genética , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/genética , Neurônios Motores/citologia , Neuroglia/citologia , Neurônios/citologia , Oligodendroglia/citologia , Medula Espinal/citologia , Medula Espinal/virologia , Transdução Genética
19.
PLoS One ; 9(2): e89141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551233

RESUMO

Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects many types of cells. Previous studies have demonstrated that oligodendrocytic cells are highly susceptible to HSV-1 infection. Here we analysed HSV-1 infection of a human oligodendrocytic cell line, HOG, and oligodendrocyte precursor cells (OPCs) cultured under growth or differentiation conditions. In addition to cell susceptibility, the role of the major cell receptors for viral entry was assessed. Our results revealed that OPCs and HOG cells cultured under differentiation conditions became more susceptible to HSV-1. On the other hand, viral infection induced morphological changes corresponding to differentiated cells, suggesting that HSV-1 might be inducing cell differentiation. We also observed colocalization of HVEM and nectin-1 with viral particles, suggesting that these two major HSV-1 receptors are functional in HOG cells. Finally, electron microscopy assays indicated that HSV-1 may be also entering OLs by macropinocytosis depending on their differentiation stage. In addition, vesicles containing intracellular enveloped virions observed in differentiated cells point to an endocytic mechanism of virus entry. All these data are indicative of diverse entry pathways dependent on the maturation stage of OLs.


Assuntos
Diferenciação Celular/genética , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Oligodendroglia/virologia , Vírion/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Proliferação de Células , Endocitose , Regulação da Expressão Gênica , Herpesvirus Humano 1/metabolismo , Humanos , Nectinas , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Vírion/metabolismo , Internalização do Vírus
20.
PLoS One ; 8(6): e65646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799030

RESUMO

Recombinant adeno-associated virus (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in adult rodents have shown that the use of cell type-specific promoters is sufficient to target AAV-mediated transgene expression to glia. However, neurological disorders caused by glial pathology usually have an early onset. Therefore, modelling and treatment of these conditions require expanding the concept of targeted glial transgene expression by promoter selectivity for gene delivery to the immature CNS. Here, we have investigated the AAV-mediated green fluorescent protein (GFP) expression driven by the myelin basic protein (MBP) or glial fibrillary acidic protein (GFAP) promoters in the developing mouse brain. Generally, the extent of transgene expression after infusion at immature stages was widespread and higher than in adults. The GFAP promoter-driven GFP expression was found to be highly specific for astrocytes following vector infusion to the brain of neonates and adults. In contrast, the selectivity of the MBP promoter for oligodendrocytes was poor following neonatal AAV delivery, but excellent after vector injection at postnatal day 10. To extend these findings obtained in naïve mice to a disease model, we performed P10 infusions of AAV-MBP-GFP in aspartoacylase (ASPA)-deficient mouse mutants presenting with early onset oligodendrocyte pathology. Spread of GFP expression and selectivity for oligodendrocytes in ASPA-mutants was comparable with our observations in normal animals. Our data suggest that direct AAV infusion to the developing postnatal brain, utilising cellular promoters, results in targeted and long-term transgene expression in glia. This approach will be relevant for disease modelling and gene therapy for the treatment of glial pathology.


Assuntos
Astrócitos/metabolismo , Dependovirus/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas , Fatores Etários , Animais , Animais Recém-Nascidos , Astrócitos/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Doença de Canavan/patologia , Doença de Canavan/terapia , Células Cultivadas , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos Endogâmicos C57BL , Oligodendroglia/virologia , Especificidade de Órgãos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA