Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701957

RESUMO

The interaction between glioma cells and astrocytes promotes the proliferation of gliomas. Micro-RNAs (miRNAs) carried by astrocyte exosomes (exos) may be involved in this process, but the mechanism remains unclear. The oligonucleotide AS1411, which consists of 26 bases and has a G-quadruplex structure, is an aptamer that targets nucleolin. In this study, we demonstrate exosome-miRNA-27a-mediated cross-activation between astrocytes and glioblastoma and show that AS1411 reduces astrocytes' pro-glioma activity. The enhanced affinity of AS1411 toward nucleolin is attributed to its G-quadruplex structure. After binding to nucleolin, AS1411 inhibits the entry of the NF-κB pathway transcription factor P65 into the nucleus, then downregulates the expression of miRNA-27a in astrocytes surrounding gliomas. Then, AS1411 downregulates astrocyte exosome-miRNA-27a and upregulates the expression of INPP4B, the target gene of miRNA-27a in gliomas, thereby inhibiting the PI3K/AKT pathway and inhibiting glioma proliferation. These results were verified in mouse orthotopic glioma xenografts and human glioma samples. In conclusion, the parallel structure of AS1411 allows it to bind to nucleolin and disrupt the exosome-miRNA-27a-mediated reciprocal activation loop between glioma cells and astrocytes. Our results may help in the development of a novel approach to therapeutic modulation of the glioma microenvironment.


Assuntos
Aptâmeros de Nucleotídeos , Astrócitos , Exossomos , Glioma , MicroRNAs , Nucleolina , Oligodesoxirribonucleotídeos , Fosfoproteínas , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Astrócitos/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Camundongos , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Exossomos/metabolismo , Exossomos/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Transdução de Sinais
2.
Chem Commun (Camb) ; 60(47): 6059-6062, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780054

RESUMO

We developed a system to detect multiple target biomolecules through sensing motif-tethered oligodeoxynucleotides. DNA-based molecular probes gave the primary amine motif upon reaction with the target biomolecules, glutathione (GSH) and H2O2. After labelling with biotin, the product DNAs were selectively collected to be quantified by qPCR.


Assuntos
Biotina , Glutationa , Peróxido de Hidrogênio , Oligodesoxirribonucleotídeos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Glutationa/química , Glutationa/análise , Biotina/química , DNA/química , Técnicas Biossensoriais/métodos
3.
Methods Mol Biol ; 2521: 207-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733000

RESUMO

As a method of gene therapy, application of decoy oligodeoxynucleotides (ODNs) could interfere at the pretranscription level, by blocking the transcription factors, and inhibiting their attachment to the corresponding sequences in genomic DNA. Some of the transcription factors including MYC, OCT4, SOX2, STAT3, and NANOG are associated with the stemness properties of cancer cells, and suppressing them could interfere with cellular differentiation, which synergizes the efficiency of other anticancer therapies. The use of decoy ODNs has shown to be an effective measure against various malignancies, and it has shown to have a synergic effect when it is used along with the other cancer therapy methods. Emergence of modern nanocarriers has shown to further improve the outcome of using decoy ODNs against some cancers, and it has the potential of being used for clinical applications. In this chapter, it was aimed to provide a glance of this method for cancer therapy.


Assuntos
Neoplasias , Oligodesoxirribonucleotídeos , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/terapia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/uso terapêutico , Regiões Promotoras Genéticas
4.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884745

RESUMO

Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5'-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells. The chimera was first produced by hybridizing the ATP aptamer with its complementary DNA sequence, which is linked with the AS1411 aptamer via a poly-thymine linker. Doxorubicin was then loaded inside the hybridized DNA region of the chimera. Our results show that the AS1411-ATP aptamer chimera was able to release loaded doxorubicin in cells in response to ATP. In addition, selective uptake of the chimera into cancer cells was demonstrated using flow cytometry. Furthermore, confocal laser scanning microscopy showed the successful delivery of the doxorubicin loaded in chimeras to the nuclei of targeted cells. Moreover, the doxorubicin-loaded chimeras effectively inhibited the growth of cancer cell lines and reduced the cytotoxic effect on the normal cells. Overall, the results of this study show that the AS1411-ATP aptamer chimera could be used as an innovative approach for the selective delivery of doxorubicin to cancer cells, which may improve the therapeutic potency and decrease the off-target cytotoxicity of doxorubicin.


Assuntos
Aptâmeros de Nucleotídeos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/sangue , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Estabilidade de Medicamentos , Técnicas In Vitro , Células MCF-7 , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/sangue , Oligodesoxirribonucleotídeos/genética , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Nucleolina
5.
J Biosci Bioeng ; 132(6): 552-559, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34518106

RESUMO

Various diseases, including cancer, are caused by genetic mutations. A 5'-tailed duplex (TD) DNA, consisting of a long single-stranded (ss) editor DNA and a short (∼35-base) ss assistant oligodeoxyribonucleotide, can introduce a base-substitution in living cells and thus correct mutated genes. Previously, several hundred-base DNAs were employed as the editor DNAs. In this study, 5'-TDs were prepared from various editor DNAs with different lengths and examined for their gene correction abilities, using plasmid DNA bearing a mutated copepod green fluorescent protein (copGFP) gene, in human cells. High-throughput analysis was performed by the reactivated fluorescence of the wild-type protein encoded by the corrected gene as the indicator. The analysis revealed that 5'-TDs with ∼100-base ss editor DNAs enabled gene editing at least as efficiently as those with longer editor DNAs. Moreover, the antisense strand was more effective as the editor than the sense strand, in contrast to the 5'-TDs with longer editor strands. These results indicated that the 5'-TD fragments with shorter editor strands than those used in previous studies are useful nucleic acids for gene correction.


Assuntos
DNA de Cadeia Simples , Oligodesoxirribonucleotídeos , Sequência de Bases , DNA/genética , Humanos , Oligodesoxirribonucleotídeos/genética , Plasmídeos
6.
RNA ; 27(9): 971-980, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34193550

RESUMO

In biological systems, conformational changes and allosteric modulation play pivotal roles in regulating biological functions, such as the dynamic change of protein molecules, in response to binding or interacting with other factors such as pH, voltage, salt, light, or ligand. RNA can be manipulated and tuned with a level of simplicity that is characteristic of DNA or polymers, while displaying versatility in structure, diversity in function, and adaptability in a configuration similar to proteins. In the past, the work on the investigation of conformational change mainly focused on protein. The induced-fit and conformational capture in RNA have also been explored, such as in the study of riboswitches. Herein, we report the engineering of three-dimensional RNA nanocubes and demonstrated the operation and regulation for its configuration. We demonstrate the operation of reconfigurable RNA nanocubes whose shapes change precisely and reversibly in response to a specific trigger strand. The shape, size, and conformation can be regulated precisely and reversibly in response to the specific triggering signals. The shape and conformational conversion were observed by cryo-EM and gel electrophoresis, respectively. Harnessing the size, shape, conformation, and self-assembly capabilities of the RNA nanocube can provide a new potential use of this technology as nanocarriers for the treatment of various diseases.


Assuntos
Imunomodulação/efeitos dos fármacos , Nanoestruturas/química , Nanotecnologia/métodos , Oligodesoxirribonucleotídeos/farmacologia , Riboswitch , Animais , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Engenharia Genética/métodos , Concentração de Íons de Hidrogênio , Interleucina-6/biossíntese , Interleucina-6/imunologia , Ligantes , Camundongos , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
7.
Cell Biol Int ; 45(5): 1001-1014, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33377576

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a critical regulator for angiogenesis, cell cycle progression, apoptosis, and drug resistance. Resistance toward EGF receptor (EGFR) inhibitors is a significant clinical concern for metastatic colon cancer patients. The present study aimed to evaluate the blocking influences of STAT3 decoy oligodeoxynucleotides (ODNs) on the STAT3 survival signaling pathway in nonresistant and erlotinib-resistant SW480 colon cancer cells. First, STAT3 decoy and scramble ODNs were designed according to STAT3 elements in the promoter region of MYCT1 gene and tested for the interaction of STAT3 protein with designed ODNs via in silico molecular docking study. Then, the efficiency of transfection and subcellular localization of ODNs were assessed using flow cytometry and fluorescence microscopy, respectively. Cell viability, cell cycle, and apoptosis tests, scratch and colony formation assays, and real-time PCR were also used to study the cancerous properties of cells. A considerable decrease in proliferation of colon cancer cells was observed with blockade of STAT3 signaling due to cell cycle arrest and induced apoptosis via downregulation of cyclin D1 and Bcl-XL, respectively. Furthermore, upon transfecting STAT3 decoy ODNs, colony formation potential and migration activity in both SW480 colon cancer cell lines were decreased compared to the control groups. From this study, it could be concluded that STAT3 is critical for cell growth inhibition and metastatic properties reduction of resistant SW480 colon cancer cells; therefore, STAT3 decoy ODNs could be considered as potential therapeutics along with current remedies for treating drug-resistant colon cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Oligodesoxirribonucleotídeos/farmacologia , Fator de Transcrição STAT3/genética , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Humanos , Metástase Neoplásica/genética , Oligodesoxirribonucleotídeos/genética , Fator de Transcrição STAT3/metabolismo
8.
Mol Ther ; 29(3): 1214-1225, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248246

RESUMO

Despite recent advances, non-Hodgkin's B cell lymphoma patients often relapse or remain refractory to therapy. Therapeutic resistance is often associated with survival signaling via nuclear factor κB (NF-κB) transcription factor, an attractive but undruggable molecular target. In this study, we describe a bipartite inhibitor comprising a NF-κB-specific decoy DNA tethered to a CpG oligodeoxynucleotide (ODN) targeting Toll-like receptor-9-expressing B cell lymphoma cells. The Bc-NFκBdODN showed efficient uptake by human diffuse large B cell (U2932, OCI-Ly3), Burkitt (RaJi), and mantle cell (Jeko1) lymphomas, respectively. We confirmed that Bc-NFκBdODN inhibited NF-κB nuclear translocation and DNA binding, resulting in CCND2 and MYC downregulation. Bc-NFκBdODN enhanced radiosensitivity of lymphoma cells in vitro. In xenotransplanted human lymphoma, local injections of Bc-NFκBdODN reduced NF-κB activity in whole tumors. When combined with a local 3-Gy dose of radiation, Bc-NFκBdODN effectively arrested OCI-Ly3 lymphoma progression. In immunocompetent mice, intratumoral injections of Bc-NFκBdODN suppressed growth of directly treated and distant A20 lymphomas, as a result of systemic CD8 T cell-dependent immune responses. Finally, systemic administration of Bc-NFκBdODN to mice bearing disseminated A20 lymphoma induced complete regression and extended survival of most of the treated mice. Our results underscore clinical relevance of this strategy as monotherapy and in support of radiation therapy to benefit patients with resistant or relapsed B cell lymphoma.


Assuntos
Linfoma de Células B/terapia , NF-kappa B/antagonistas & inibidores , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Receptor Toll-Like 9/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Humanos , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Oligodesoxirribonucleotídeos/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Eur J Pharm Biopharm ; 158: 62-71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33176193

RESUMO

Cellular gene delivery via polycations has wide implications for the potential of gene therapy, but it has remained a challenge due to the plethora of pre- and post-uptake barriers that must be overcome to reach desired efficiency. Herein we report poly(hexamethylene biguanide) (PHMB) as a nano-vector for intracellular delivery of plasmid DNA (pDNA) and oligodeoxynucleotides (ODNs). PHMB and pDNA or ODNs self-assembled into complex nanoparticles at different pH values (7.4 and 12). Their size, charge, cellular uptake, and gene-expression efficiency are assessed and compared to PEI analogues. The systematic results show that the nanoparticles are effective in delivering plasmid DNA and ODNs to model cell lines in culture (HepG2, HEK293T, HeLa), with measurable changes in gene expression levels, comparable to and, in some conditions, even higher than PEI. The well-accepted safety profile of PHMB makes it a valuable candidate for consideration as an effective intracellular DNA vector for further study and potential clinical translation.


Assuntos
Biguanidas/química , Portadores de Fármacos/química , Oligodesoxirribonucleotídeos/administração & dosagem , Plasmídeos/administração & dosagem , Transfecção/métodos , Biguanidas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Terapia Genética/métodos , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Oligodesoxirribonucleotídeos/genética , Tamanho da Partícula , Plasmídeos/genética , Testes de Toxicidade Aguda
10.
Mol Biol Rep ; 47(9): 6793-6805, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32865703

RESUMO

Low sensitivity of cancer stem cells toward regular cancer therapy strategies is an important issue in the field of cancer remedy. The concept of cancer stem cell elimination has been a topic of interest in the field of molecular medicine for a long time. At the current study, it was aimed to elevate the sensitivity of cancer stem-like cells toward radiotherapy by treating with Oct4-Sox2 complex decoy oligodeoxynucleotides (ODNs). After treating HT29 and HT29-ShE cells with Oct4-Sox2 complex decoy ODNs, and analyzing the cellular uptake and localization of decoys, treated cells and control groups were subjected to irradiation by fractionated 6MV X-ray with a final dose of 2 Gy. Thereafter, the influence of radiotherapy on ODNs treated groups and control group was investigated on cell viability, cell cycle, apoptosis, colonosphere formation and scratch assay. Cellular uptake and localization assays demonstrated that decoy ODNs can efficiently be transfected to the cells and reside in subcellular compartment, where they pose their action on gene regulation. Post radiotherapy analysis indicated statistical significance in decoy ODNs treated cells by means of lower cell viability, cell cycle arrest in G2/M phase, increased cellular apoptosis, and reduced cell motility. Also, formed colonospheres were smaller in size and fewer in numbers. Considering the role of Oct4, and Sox2 transcription factors in signaling pathways of preserving stemness and inducing reverse EMT, application of decoy strategy could increase the sensitivity of cancer cells toward irradiation, which has a potential to eliminate the cancerous cells from tumors and support cancer treatment.


Assuntos
Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Neoplasias do Colo/metabolismo , Neoplasias do Colo/radioterapia , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Fatores de Transcrição SOXB1/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HT29 , Humanos , Fator 3 de Transcrição de Octâmero/genética , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
11.
Mikrochim Acta ; 187(8): 479, 2020 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32740774

RESUMO

A novel electrochemical nanobiosensor for the detection of miR-155 (as breast cancer biomarker) is introduced . Fe3O4NPs@Ag core-shell nanoparticles were synthesized and their shape and characteristics were confirmed by scanning electron microscope (SEM) imaging, Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) methods. Synthesized nanoparticles were applied onto the magnetic bar carbon paste electrode and then the amine-modified anti-miR-155 (single-stranded probes) was applied on the modified electrode surface and upon hybridization with target miR-155, resveratrol (RSV) was eventually applied as an electrochemical label on the double-strand oligonucleotide. Differential pulse voltammetry (DPV) of the oxidation peak of RSV was assumed as the final signal by sweeping potential from 0 to 0.6 V (vs. Ag/AgCl). The fabrication process was optimized through a series of experiments and the optimized process was confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The linear range of the fabricated nanobiosensor was 0.5 fM to 1.0 nM and the detection limit was 0.15 fM. The nanobiosensor was able to pass reproducibility and specificity tests using different types of mismatched target sequences.Spiked real samples of human serum were used to confirm that the nanobiosensor enables detection of miR-155 without any significant interferences from other moieties and molecules. Finally, the molecular dynamics simulation of the RSV interaction with single- and double-stranded oligonucleotide was performed and confirmed the preferential binding of RSV to double-stranded DNA; therefore, it can be used as the electrochemical label of DNA and/or miRNA hybridization-based biosensors. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Nanopartículas de Magnetita/química , MicroRNAs/sangue , Oligodesoxirribonucleotídeos/química , Resveratrol/química , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Técnicas Eletroquímicas/métodos , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Ácidos Nucleicos Imobilizados/metabolismo , Limite de Detecção , MicroRNAs/genética , Simulação de Acoplamento Molecular , Nanocompostos/química , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Reprodutibilidade dos Testes , Resveratrol/metabolismo , Prata/química
12.
Front Immunol ; 11: 1075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547560

RESUMO

Immunotherapy using checkpoint blockade has revolutionized cancer treatment, improving patient survival and quality of life. Nevertheless, the clinical outcomes of such immunotherapy are highly heterogeneous between patients. Depending on the cancer type, the patient response rates to this immunotherapy are limited to 20-30%. Based on the mechanism underlying the antitumor immune response, new therapeutic strategies have been designed with the aim of increasing the effectiveness and specificity of the antitumor immune response elicited by checkpoint blockade agents. The activation of toll-like receptor 9 (TLR9) by its synthetic agonists induces the antitumor response within the innate immunity arm, generating adjuvant effects and priming the adaptive immune response elicited by checkpoint blockade during the effector phase of tumor-cell killing. This review first describes the underlying mechanisms of action and current status of monotherapy using TLR9 agonists and immune checkpoint inhibitors for cancer immunotherapy. The rationale for combining these two agents is discussed, and evidence indicating the current status of such combination therapy as a novel cancer treatment strategy is presented.


Assuntos
Ilhas de CpG/genética , Inibidores de Checkpoint Imunológico , Imunoterapia/métodos , Neoplasias/terapia , Oligodesoxirribonucleotídeos/genética , Receptor Toll-Like 9/metabolismo , Adjuvantes Imunológicos , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais , Microambiente Tumoral
13.
Sci Rep ; 10(1): 9047, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493997

RESUMO

Dengue is one of the most widespread vector-borne viral diseases in the world. However, the size, heterogeneity, and temporal dynamics of the cell-associated viral reservoir during acute dengue virus (DENV) infection remains unclear. In this study, we analyzed cells infected in vitro with DENV and PBMC from an individual experiencing a natural DENV infection utilizing 5' capture single cell RNA sequencing (scRNAseq). Both positive- and negative-sense DENV RNA was detected in reactions containing either an oligo(dT) primer alone, or in reactions supplemented with a DENV-specific primer. The addition of a DENV-specific primer did not increase the total amount of DENV RNA captured or the fraction of cells identified as containing DENV RNA. However, inclusion of a DENV-specific cDNA primer did increase the viral genome coverage immediately 5' to the primer binding site. Furthermore, while the majority of intracellular DENV sequence captured in this analysis mapped to the 5' end of the viral genome, distinct patterns of enhanced coverage within the DENV polyprotein coding region were observed. The 5' capture scRNAseq analysis of PBMC not only recapitulated previously published reports by detecting virally infected memory and naïve B cells, but also identified cell-associated genomic variants not observed in contemporaneous serum samples. These results demonstrate that oligo(dT) primed 5' capture scRNAseq can detect DENV RNA and quantify virus-infected cells in physiologically relevant conditions, and provides insight into viral sequence variability within infected cells.


Assuntos
Dengue/genética , Análise de Sequência de RNA/métodos , Linfócitos B/metabolismo , Primers do DNA/genética , DNA Complementar/genética , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Vírus da Dengue/fisiologia , Genoma Viral/genética , Humanos , Leucócitos Mononucleares/metabolismo , Oligodesoxirribonucleotídeos/genética , RNA Viral/genética
14.
Front Immunol ; 11: 863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477350

RESUMO

CLEC12A has been proposed as a suitable target for delivering antigen to dendritic cells (DCs) to enhance vaccine efficacy both in human and mouse. In this study, we have characterized the porcine homolog of CLEC12A (poCLEC12A). Using new monoclonal antibodies (mAb), raised against its ectodomain, poCLEC12A was found to be expressed on alveolar macrophages, blood conventional type 1 and type 2 DCs and plasmacytoid DCs, but not on monocytes, T cells, B cells or NK cells, in contrast to its human and murine homologs. Western blot analysis showed that in alveolar macrophages this receptor is expressed both as a monomer and a dimer. After binding to DCs, anti- poCLEC12A mAb was efficiently internalized. No significant changes were observed in TNFα or IFNα secretion by plasmacytoid DCs stimulated with either CpGs (ODN2216) or polyinosinic-polycytidylic acid (poly I:C), upon incubation with mAb. These results provide the basis for future investigations aimed to assess the ability of anti-poCLEC12A mAbs to improve vaccine efficacy by targeting antigen to DCs.


Assuntos
Anticorpos Monoclonais/metabolismo , Células Dendríticas/imunologia , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Clonagem Molecular , Cricetulus , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Terapia de Alvo Molecular , Oligodesoxirribonucleotídeos/genética , Poli I-C/imunologia , Proteínas Recombinantes de Fusão/genética , Suínos , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Transcriptoma
15.
Int Immunopharmacol ; 83: 106397, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32220805

RESUMO

Melanomas represent the deadliest form of skin cancers. Due to the intricacy of tumorigenesis, it is emergent to find effective therapies for melanomas. Researches have proved that pimozide inhibits the growth of melanoma, but the limited curing effect needs to be further improved. Nowadays, tumor immunotherapy has been widely recognized as the sole therapy that can eradicate cancers. Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), TLR9 receptor agonist, can significantly enhance anti-tumor immune responses. This study explored the therapeutic effect of pimozide combined with CpG ODN on melanoma-bearing mice. The results showed that pimozide combined with CpG ODN effectively inhibited the growth of melanoma and prolonged the survival of melanoma-bearing mice, inhibited the expression of MMP2 and p-Stat5, increased the infiltration of CD4+ and CD8+ T cells in tumor, raised the ratios of CD4+, CD8+ T cells and NK cells. These all indicated that the combination treatment improved the anti-tumor effect of pimozide on mice. The anti-tumor mechanism might be attributed to cell apoptosis induction, invasion inhibition, and immune regulation. A more effective combination treatment concerning with pimozide is being under investigation.


Assuntos
Antineoplásicos/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Melanoma/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Pimozida/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose , Ilhas de CpG/genética , Modelos Animais de Doenças , Quimioterapia Combinada , Humanos , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/genética , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética
16.
Chem Res Toxicol ; 33(2): 604-613, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31903755

RESUMO

6-Nitrochrysene (6-NC), the most potent carcinogen evaluated by the newborn mouse assay, is metabolically activated by nitroreduction and a combination of ring oxidation and nitroreduction pathways. The nitroreduction pathway yields three major DNA adducts: at the C8 and N2 positions of 2'-deoxyguanosine (dG), N-(dG-8-yl)-6-AC and 5-(dG-N2-yl)-6-AC, and at the C8 position of 2'-deoxyadenosine (dA), N-(dA-8-yl)-6-AC. A nucleotide excision repair assay demonstrated that N-(dA-8-yl)-6-AC is repaired much more slowly than many other bulky DNA adducts, including the other DNA adducts formed by 6-NC. But neither the total synthesis nor evaluation of other biological activities of this dA adduct has ever been reported. Herein, we report a convenient synthesis of the 6-NC-derived dA adduct by employing the Buchwald-Hartwig coupling strategy, which provided a high yield of the protected N-(dA-8-yl)-6-AC. The deprotected nucleoside showed syn conformational preference by NMR spectroscopy. Following DMT protection of the 5'-hydroxyl, N-(dA-8-yl)-6-AC was converted to its 3'-phosphoramidite, which was used to prepare oligonucleotides containing a single N-(dA-8-yl)-6-AC adduct. Circular dichroism spectra of the adducted duplex showed only a slight departure from the B-DNA helix profile of the control duplex. The 15-mer N-(dA-8-yl)-6-AC oligonucleotide was used to construct a single-stranded plasmid vector containing a single adduct, which was replicated in Escherichia coli. Viability of the adducted construct was ∼60% of the control, indicating slower translesion synthesis of the adduct, which increased to nearly 90% upon induction of the SOS functions. Without SOS, the mutation frequency (MF) of the adduct was 5.2%, including 2.9% targeted and 2.3% semi-targeted mutations. With SOS, the targeted MF increased 3-fold to 9.0%, whereas semi-targeted mutation increased only marginally to 3.2%. The major type of targeted mutation was A*→G in both uninduced and SOS-induced cells.


Assuntos
Adutos de DNA/genética , Desoxiadenosinas/genética , Escherichia coli/genética , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/genética , Adutos de DNA/química , Adutos de DNA/metabolismo , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Escherichia coli/metabolismo , Estrutura Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo
17.
Curr Cancer Drug Targets ; 20(5): 355-363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31899677

RESUMO

BACKGROUND: Chemokine 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are involved in the onset of various types of cancer. However, their role in cervical cancer (CC) remains unknown. OBJECTIVE: To investigate the role of chemokine 13 (CXCL13) and its receptor in CC. METHODS: The expression of CXCL13/CXCR5 and the infiltration of CXCR5+CD8+ T cells in CC, cervical intraepithelial neoplasia (CIN), normal cervical epithelial (NCE) tissues, and in CC cell lines were analysed and the associated clinical significance was determined. In vitro, CXCL13 overexpression and DNA methyltransferase inhibition (through S110) were used to investigate the biological function and the underlying mechanism that regulates CXCL13 expression. Tumor growth and liver metastasis were also evaluated in the xenogenous subcutaneously implant model. RESULTS: CXCL13/CXCR5 expression levels and the infiltration of CXCR5+CD8+ T cells were significantly decreased in CC tissues compared with CIN and NCE tissues. CXCL13 downregulation was significantly correlated with the FIGO stages, lymph node metastasis, interstitial infiltration depth, and pathological grade. The overexpression of CXCL13 suppressed CC cell migration. CXCL13 downregulation was associated with hypermethylation in CC cell lines, and primary tumor biopsies. Furthermore, a CpG dinucleotide at the HIF-1a transcription factor motifs in the promoter element of CXCL13 was consistently methylated in CC cells and associated with HIF-1a. CXCL13 overexpression and S110 treatment dramatically repressed tumor growth and liver metastasis in the xenograft model; whereas it's low expression increased the risk of death in CC patients. CONCLUSION: DNA methylation-dependent CXCL13 downregulation may promote cervical carcinogenesis and progression.


Assuntos
Movimento Celular , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo do Útero/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligodesoxirribonucleotídeos/genética , Prognóstico , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Immunol ; 11: 620417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33815351

RESUMO

The laboratorial diagnosis of the intestinal schistosomiasis is always performed using Kato-Katz technique. However, this technique presents low sensitivity for diagnosis of individuals with low parasite burden, which constitutes the majority in low endemicity Brazilian locations for the disease. The objective of this study was developed and to validate a real-time PCR assay (qPCR) targeting 121 bp sequence to detect Schistosoma spp. DNA for the diagnosis of intestinal schistosomiasis and a sequence of the human ß-actin gene as internal control. Firstly, the qPCR was standardized and next it was evaluated for diagnosis and cure assessment of intestinal schistosomiasis in the resident individuals in Tabuas and Estreito de Miralta, two locations in Brazil endemic for intestinal schistosomiasis. The qPCR assay results were compared with those of the Kato-Katz (KK) test, examining 2 or 24 slides, Saline Gradient (SG) and "reference test" (24 KK slides + SG). The cure assessment was measured by these diagnostic techniques at 30, 90, and 180 days post-treatment. In Tabuas, the positivity rates obtained by the qPCR was 30.4% (45/148) and by "reference test" was of 31.0% (46/148), with no statistical difference (p = 0.91). The presumed cure rates at 30, 90, and 180 days post-treatment were 100, 94.4, and 78.4% by the analysis of 24 KK slides, 100, 94.4, and 78.4% by the SG, and 100, 83.3, and 62.1% by the qPCR assay. In Estreito de Miralta, the positivity obtained by qPCR was 18.3% (26/142) and with "reference test" was 24.6% (35/142), with no statistical difference (p = 0.20). The presumed cure rates were 93.3, 96.9, and 96.5% by the KK, 93.3, 96.9, and 100% by the SG, and 93.3, 93.9, and 96.5% by the qPCR at 30, 90, and 180 days post-treatment, respectively. This study showed that the diagnostic techniques presented different performance in the populations from the two districts (Tabuas and Estreito de Miralta) and reinforces the need of combining techniques to improve diagnosis accuracy, increasing the detection of individuals with low parasite burden. This combination of techniques consists an important strategy for controlling the disease transmission.


Assuntos
Anti-Helmínticos/uso terapêutico , DNA de Helmintos/análise , Fezes/parasitologia , Praziquantel/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Estudos Transversais , DNA de Helmintos/isolamento & purificação , Fezes/química , Feminino , Helmintos/genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos/genética , Contagem de Ovos de Parasitas , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Sensibilidade e Especificidade , Especificidade da Espécie , Resultado do Tratamento , Adulto Jovem
19.
J Vasc Surg ; 71(1): 229-241, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204215

RESUMO

OBJECTIVE: Intimal hyperplasia (IH) is the main cause of therapeutic failure after vascular and endovascular surgery. However, there is currently no targeted therapy for the treatment of IH. We recently reported that the inhibition of cyclic adenosine monophosphate response element (CRE) binding protein (CREB) activation is important in vein graft IH. We focused on a decoy oligodeoxynucleotide (ODN) therapeutic strategy for suppressing IH as a clinical application. The objective of this study was to confirm the therapeutic effect of a CRE decoy ODN in an animal model as a novel therapy for preventing intimal hyperplasia as the first step of the preclinical study of our strategy. METHODS: We designed two phosphorothioate CREs and two scramble decoy ODNs and screened them using a CREB transcription assay to check their ability to bind to a CRE sequence. We chose a CRE decoy ODN with high first-binding ability and transfected it into vascular smooth muscle cells (VSMCs) in vitro. Proliferation and migration were assessed using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays and modified Boyden chamber assays. We examined CRE activity using a luciferase reporter gene assay. We assessed the expression of messenger RNAs by quantitative real-time polymerase chain reaction. In a wire-injury mouse model (C57BL6, n = 6), CRE decoy ODN was transfected into the injured vessel wall using an ultrasound-sonoporation method in vivo. Mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) and four and a half LIM domains 5 (FHL5) expression of pregrafting vein remnants were assessed by immunohistologic analyses. RESULTS: Compared with scramble decoy ODN, the selected CRE decoy ODN could significantly decrease CRE activity (mean ± standard error of the mean: 0.20 ± 0.03 vs 1.00 ± 0.16, n = 6; P < .05) as shown by a luciferase reporter gene assay, VSMC proliferation (0.73 ± 0.04 vs 0.89 ± 0.02, n = 6; P < .05) and migration (96.4 ± 6.1 vs 311.4 ± 19.1 migrated VSMCs/well, n = 6; P < .05) after 24-hour transfection. The CRE decoy ODN significantly suppressed the formation of IH at injured vessel walls in an animal model, as analyzed by pathologic staining (0.20 ± 0.02 vs 0.56 ± 0.08, area of the intima/area of the artery vs the control after 21 days' transfection, n = 6; P < .05). Furthermore, MAPKAPK3 and FHL5, which are CREB activators, were significantly expressed in pregrafting vein remnants in diabetes mellitus patients. CONCLUSIONS: CREB-CRE signaling is an important mechanism of IH formation, and CRE decoy therapy can help preventing IH. This study is the first part of the preclinical study of our strategy.


Assuntos
AMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Oligodesoxirribonucleotídeos/genética , Elementos de Resposta/genética , Lesões do Sistema Vascular/prevenção & controle , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Oligodesoxirribonucleotídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
20.
Nucleosides Nucleotides Nucleic Acids ; 39(1-3): 119-130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31645189

RESUMO

Point mutations are well characterized activators of oncogenes but are often indistinguishable using common gene technologies. In general, the precise sites of point-mutated oncogenes are difficult to distinguish under physiological conditions primarily because single nucleotide mismatch do not affect the annealing temperatures of DNA probes sufficiently. To address this limitation, we developed photo-responsive oligodeoxyribonucleotides containing 2'-O-[N-(4,5',8-trimethylpsoralen-4'-ylmethylcarbamoyl)]adenosine (Ps-amd-Oligo), which can be used to selectively manipulate and identify genes with point mutations. Here we present time course analyses of the photo-cross-linking efficiency of Ps-amd-Oligo with DNA and RNA and show promising selectivity for the oncogene H-ras.


Assuntos
Adenosina/análogos & derivados , Adenosina/química , DNA , Mutação , Oligodesoxirribonucleotídeos/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenosina/síntese química , Reagentes de Ligações Cruzadas , DNA/química , DNA/genética , Estrutura Molecular , Oligodesoxirribonucleotídeos/genética , Mutação Puntual , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA