Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Am Chem Soc ; 143(44): 18571-18580, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723500

RESUMO

Nickel serves critical roles in the metabolism of E. coli and many prokaryotes. Many details of nickel trafficking are unestablished, but a nonproteinaceous low-molecular-mass (LMM) labile nickel pool (LNiP) is thought to be involved. The portion of the cell lysate that flowed through a 3 kDa cutoff membrane, which ought to contain this pool, was analyzed by size-exclusion and hydrophilic interaction chromatographies (SEC and HILIC) with detection by inductively coupled plasma (ICP) and electrospray ionization (ESI) mass spectrometries. Flow-through-solutions (FTSs) contained 11-15 µM Ni, which represented most Ni in the cell. Chromatograms exhibited 4 major Ni-detected peaks. MS analysis of FTS and prepared nickel complex standards established that these peaks arose from Ni(II) coordinated to oxidized glutathione, histidine, aspartate, and ATP. Surprisingly, Ni complexes with reduced glutathione or citrate were not members of the LNiP under the conditions examined. Aqueous Ni(II) ions were absent in the FTS. Detected complexes were stable in chelator-free buffer but were disrupted by treatment with 1,10-phenanthroline or citrate. Titrating FTS with additional NiSO4 suggested that the total nickel-binding capacity of cytosol is approximately 20-45 µM. Members of the LNiP are probably in rapid equilibrium. Previously reported binding constants to various metalloregulators may have overestimated the relevant binding strength in the cell because aqueous metal salts were used in those determinations. The LNiP may serve as both a Ni reservoir and buffer, allowing cells to accommodate a range of Ni concentrations. The composition of the LNiP may change with cellular metabolism and nutrient status.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Níquel/química , Níquel/metabolismo , Glutationa/química , Dissulfeto de Glutationa/química , Dissulfeto de Glutationa/metabolismo , Modelos Moleculares , Estrutura Molecular , Oligoelementos/química , Oligoelementos/metabolismo
2.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299622

RESUMO

A method has been developed, optimised and validated to analyse protein powder supplements on an inductively coupled plasma-sector field mass spectrometer (ICP-SFMS), with reference to ICH Guideline Q2 Validation of Analytical Procedures: Text and Methodology. This method was used in the assessment of twenty-one (n = 21) elements (Al, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Pb, Pt, Sn, Ti, Tl, V) to evaluate the safety of thirty-six (n = 36) protein powder samples that were commercially available in the Irish marketplace in 2016/2017. Using the determined concentrations of elements in samples (µg·kg-1), a human health risk assessment was carried out to evaluate the potential carcinogenic and other risks to consumers of these products. While the concentrations of potentially toxic elements were found to be at acceptable levels, the results suggest that excessive and prolonged use of some of these products may place consumers at a slightly elevated risk for developing cancer or other negative health impacts throughout their lifetimes. Thus, the excessive use of these products is to be cautioned, and consumers are encouraged to follow manufacturer serving recommendations.


Assuntos
Espectrometria de Massas/métodos , Pós/química , Proteínas/química , Análise Espectral/métodos , Humanos , Irlanda , Metais , Medição de Risco , Oligoelementos/química
3.
Cells ; 10(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924517

RESUMO

Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.


Assuntos
Técnicas de Cultura de Células , Separação Celular/métodos , Meios de Cultura Livres de Soro/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Aminoácidos/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Meios de Cultura Livres de Soro/química , Humanos , Imunomodulação , Peptídeos e Proteínas de Sinalização Intercelular/química , Lipídeos/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Oligoelementos/química
4.
Food Res Int ; 134: 109221, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517933

RESUMO

Coffee (Coffea arabica L.) is an important commodity, involving about 500 million people from the cultivation of the coffee trees to final consumption of infusions of the ground roasted coffee beans. In contrast to a considerable amount of research performed on green coffee beans, there are relatively few studies regarding the chemical constituents of coffee leaves. Hemileia vastatrix is a parasite, specific to coffee plants and causes coffee leaf rust, which is a very destructive disease. Some coffee plants have natural resistance which is mainly linked to a gene and specific host resistance response. An increase in flavonoid production may be related to fungal disease resistance, with the levels and flavonoid types being an early physiological response to rust infection. Trace inorganic elements can be related to many roles in the defense response of higher plants and can be used as a biomarker for some diseases. To address this, coffee leaves from 16 different cultivars of Coffea arabica were harvested from Minas Gerais, Brazil (susceptible and resistant to rust) and their polyphenolic compounds were extracted using the QuEChERS technique and quantitated by HPLC-ESI-MS. The same leaves were decomposed using an acid mixture in a block digester and the content of Al, Cu, Mg, Mn, Ni, Sn and Zn was quantitated by ICP-OES. Principal component analysis (PCA) was applied and we could establish a relation between polyphenolic and trace element concentration in the leaves with resistance to rust infection. On this basis in this preliminary study we were able to separate the resistant from the susceptible cultivars. The main compounds responsible for this differentiation were the content of chlorogenic acid and magnesium in the leaves. The content of polyphenolic compounds was lower in susceptible cultivars and a diametric effect was observed between Mn and Mg concentrations. This study shows potential for the discrimination of resistant and susceptible coffee trees based on the analyses of both trace element and polyphenolic concentration.


Assuntos
Coffea/química , Doenças das Plantas/microbiologia , Folhas de Planta/química , Polifenóis/química , Oligoelementos/química , Basidiomycota , Biomarcadores , Coffea/classificação , Análise Multivariada , Análise de Componente Principal
5.
PLoS One ; 15(4): e0230983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240214

RESUMO

China has the largest share of global iron and steel production, which is considered to play a significant contribution to air pollution. This study aims to investigate trace element contamination at different fractions of particulate matter (PM) at industrial areas in China. Three PM fractions, PM2.1-9.0, PM1.1-2.1 and PM1.1, were collected from areas surrounding iron and steelmaking plants at Kunming, Wuhan, Nanjing and Ningbo in China. Multiple trace elements and their bioavailability, as well as Pb isotopic compositions, were analysed for identification of contaminants, health risk assessment and source apportionment. Results showed that PM particles in the sites near industrial areas were associated with a range of toxic trace elements, specifically As, Cr(VI), Cd and Mn, and posed significant health risks to humans. The isotopic Pb compositions identified that coal and high temperature metallurgical processes in the steelmaking process were the dominant contributors to local air pollution in these sites. In addition to iron and steelmaking activities, traffic emissions and remote pollution also played a contributing role in PM contamination, confirmed by the differences of Pb isotopic compositions at each PM fraction and statistical results from Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA). The results presented in this study provide a comprehensive understanding of PM emissions at iron and steelmaking areas, which helps to guide subsequent updates of air pollution control guidelines to efficiently minimise environmental footprint and ensure long term sustainability of the industries.


Assuntos
Poluentes Atmosféricos/análise , Ferro/química , Material Particulado/efeitos adversos , Material Particulado/química , Aço/química , Oligoelementos/efeitos adversos , Oligoelementos/química , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/química , Poluição do Ar/efeitos adversos , China , Carvão Mineral/efeitos adversos , Monitoramento Ambiental/métodos , Feminino , Humanos , Indústrias/métodos , Masculino , Medição de Risco/métodos , Estações do Ano
6.
Theranostics ; 10(5): 2201-2214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104504

RESUMO

Biomineralization of enzymes for in vivo diagnosis and treatment of diseases remain a considerable challenge, due to their severe reaction conditions and complicated physiological environment. Herein, we reported a biomimetic enzyme cascade delivery nanosystem, tumor-targeted erythrocyte membrane (EM)-cloaked iron-mineralized glucose oxidases (GOx-Fe0@EM-A) for enhancing anticancer efficacy by self-activated in vivo cascade to generate sufficient high toxic •OH at tumor site. Methods: An ultra-small Fe0 nanoparticle (Fe0NP) was anchored in the inner cavity of glucose oxidase (GOx) to form iron-mineralized glucose oxidase (GOx-Fe0) as a potential tumor therapeutic nanocatalyst. Moreover, erythrocyte membrane cloaking delivery of GOx-Fe0in vivo was designed to effectively accumulate ultra-small GOx-Fe0 at tumor site. Results: GOx-Fe0@EM-A had satisfactory biocompatibility and light-trigged release efficiency. Erythrocyte membrane cloaking of GOx-Fe0@EM-A not only prolongs blood circulation but also protects in vivo enzyme activity of GOx-Fe0; Tumor targeting of GOx-Fe0@EM-A endowed preferential accumulation at tumor site. After NIR light irradiation at tumor site, erythrocyte membrane of GOx-Fe0@EM-A was ruptured to achieve light-driven release and tumor deep penetration of ultra-small nanosize GOx-Fe0 by the photothermal effect of ICG. Then, GOx-Fe0 occurred self-activated in vivo cascade to effectively eradicate tumor by producing the highly cumulative and deeply penetrating •OH at tumor site. Conclusion: Tumor-targeted erythrocyte membrane-cloaked iron-mineralized glucose oxidase (GOx-Fe0@EM-A) exhibits a promising strategy for striking antitumor efficacy by light-driven tumor deep penetration and self-activated therapeutic cascade.


Assuntos
Membrana Eritrocítica/efeitos dos fármacos , Glucose Oxidase/metabolismo , Ferro/química , Animais , Biomimética , Biomineralização , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Modelos Animais de Doenças , Membrana Eritrocítica/enzimologia , Membrana Eritrocítica/metabolismo , Feminino , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Oligoelementos/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biomed Mater ; 15(2): 025006, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783394

RESUMO

For decades, the main focus of titanium implants developed to restore bone functionality was on improved osseointegration. Additional antimicrobial properties have now become desirable, due to the risk that rising antibiotic resistance poses for implant-associated infections. To this end, the trace elements of copper and zinc were integrated into calcium phosphate based coatings by electrochemically assisted deposition. In addition to their antimicrobial activity, zinc is reported to attract bone progenitor cells through chemotaxis and thus increase osteogenic differentiation, and copper to stimulate angiogenesis. Quantities of up to 68.9 ± 0.1 µg cm- 2 of copper and 56.6 ± 0.4 µg cm- 2 of zinc were deposited; co-deposition of both ions did not influence the amount of zinc but slightly increased the amount of copper in the coatings. The release of deposited copper and zinc species was negligible in serum-free simulated body fluid. In protein-containing solutions, a burst release of up to 10 µg ml-1 was observed for copper, while zinc was released continuously for up to 14 days. The presence of zinc was beneficial for adhesion and growth of human mesenchymal stromal cells in a concentration-dependent manner, but cytotoxic effects were already visible for coatings with an intermediate copper content. However, co-deposited zinc could somewhat alleviate the adverse effects of copper. Antimicrobial tests with E. coli revealed a decrease in adherent bacteria on brushite without copper or zinc of 60%, but if the coating contained both ions there was almost no bacterial adhesion after 12 h. Coatings with high zinc content and intermediate copper content had the overall best multifunctional properties.


Assuntos
Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Próteses e Implantes , Titânio/química , Oligoelementos/química , Anti-Infecciosos/química , Aderência Bacteriana/efeitos dos fármacos , Adesão Celular , Cobre/química , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Íons , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Neovascularização Fisiológica , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Desenho de Prótese , Difração de Raios X , Zinco/química
8.
J Anim Physiol Anim Nutr (Berl) ; 104(3): 767-775, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31742797

RESUMO

The study investigated the potential effect of the microbial fermented feed utilization on physicochemical traits, antioxidant enzyme and trace mineral analysis in rabbit meat. A total of 72 six-week-old male rabbits were weighed and randomly divided into four groups (1) (SRKC) control; (2) (SRKP) Lactobacillus plantarum 1 × 106  cfu/g fresh weight (FW); (3) (SRKG) Pediococcus acidilactici 1 × 106 cfu/g FW and (4) (SRKPG) P. acidilactici + L. plantarum 1 × 106 cfu/g FW. Performance characteristic, weekly body weight, was positively (p < .05) enhanced, while daily feed intake (DFI) and feed convention ratio (FCR) were not influenced in treatments group as compared to untreated. The water, protein, water holding capacity (WHC) and dry matter (DM) concentration were positively (p < .05) influenced, while ash, pH, lightness, redness and yellowness were not influenced in treated group as compared to untreated. The concentration of glutathione peroxidase (Gpx), superoxide dismutase (SOD) and aspartate aminotransferase (AST) was positively (p < .05) influenced in treatments group as compared to control. Regarding trace minerals, copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were positively (p > .05) reduced in treated group as compared to untreated. It is concluded that the addition of lactic acid bacteria (L. plantarum and P. acidilactici) in Hybrid pennisetum silage had a constructive influence on rabbit health performance and meat biochemistry.


Assuntos
Ração Animal/análise , Antioxidantes/metabolismo , Dieta/veterinária , Manipulação de Alimentos , Carne/análise , Oligoelementos/química , Animais , Fermentação , Masculino , Carne/normas , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Coelhos
9.
J Environ Sci (China) ; 87: 299-309, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791503

RESUMO

The residual effect of tobacco biochar (TB ≥ 500°C) mono and co-application with Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ) on the bio-availability of trace elements TE(s) in alkaline soils has not been deeply studied yet. A pot study that had earlier been investigated TB mono and blended with CH, CB and NZ on the immobilization of Pb, Cu Cd, and Zn by Chinese cabbage. Maize crop in the rotation was selected as test plant to assess the residual impact of amendments on stabilization of Pb, Cu Cd, and Zn in mine polluted (M-P), smelter heavily and low polluted (S-HP and S-LP, respectively) soils. The obtained results showed that stabilization of Pb, Cd, Cu and Zn reached 63.84% with TB + CB, 61.19% with TB + CH, 83.31% with TB + CH and 35.27% with TB + CH for M-P soil, 36.46% with TB + NZ, 38.46% with TB + NZ, 19.40% with TB + CH and 62.43% with TB + CH for S-LP soil, 52.94% TB + NZ, 57.65% with TB + NZ, 52.94% with TB + NZ, and 28.44% with TB + CH for S-LP soil. Conversely, TB + CH and TB alone had mobilized Pb and Zn up to 19.29% and 34.96% in M-P soil. The mobility of Zn reached 8.38% with TB + CB and 66.03% with TB for S-HP and S-LP soils. The uptake and accumulation of Pb, Cd, Cu and Zn in shoot and root were reduced in three polluted soils. Overall, the combination of TB along with CH, CB and NZ has been proven to be effective in Pb, Cd, Cu and Zn polluted mine/smelter soils restoration.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Oligoelementos/química , Poluentes do Solo/análise , Nicotiana
10.
Biol Trace Elem Res ; 194(1): 66-75, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31172427

RESUMO

Colorectal cancer (CRC) is an increasingly common medical issue affecting millions worldwide, and contribution of the body's trace elements to CRC is arguable. The concentrations and buffered status of selenium, iron, copper, zinc, and phosphorus in blood and large intestinal tissues of CRC patients are, respectively, variable and vital for cell physiology. The aim of this study was to assess selenium, iron, copper, zinc, and phosphorus variations in blood and colorectal epithelia along with examining the expression of mismatch repair proteins in CRC patients with/without metastasis for potential diagnosis/therapy. Concentrations of selenium, iron, copper, zinc, and phosphorus in blood of healthy versus CRC patients and colorectal epithelia (adenocarcinomatous versus non-adenocarcinomatous/control) were measured in 40 CRC patients (55.87 ± 11.9 years old) with/without metastasis before surgery using ICP-OES. Mismatch repair (MMR) protein expression was analyzed through histopathological/immunohistochemistry assays, which was sparse in 5 CRC patient's colorectal tissues (12%). Compared with healthy individuals, blood and colorectal tissue's levels of phosphorus, copper, and iron were significantly higher in the CRC patients, and more pronounced in metastatic CRC patients; conversely, blood and colorectal tissue's selenium levels were significantly lower in metastatic patients. Unlike blood zinc, cancerous colorectal tissue's zinc concentration was significantly lower in CRC patients compared to healthy control cohorts. There was no significant difference on the measured elements in samples from CRC patients with MMR- compared to CRC patients with MMR+. Receiver operating characteristic analysis revealed a correlation of blood iron, zinc, copper, and phosphorus to CRC, and inappropriately low levels of blood and colorectal selenium correlated with exacerbated metastasis. Altered levels of selenium, iron, copper, zinc, and phosphorus in vivo may impact the pathogenesis and detection of CRC, and their diagnostic/therapeutic potential in CRC would be revealing.


Assuntos
Neoplasias Colorretais/sangue , Proteínas de Neoplasias/genética , Oligoelementos/sangue , Adulto , Idoso , Neoplasias Colorretais/química , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/sangue , Oligoelementos/química
11.
J Vet Diagn Invest ; 32(1): 103-107, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31838963

RESUMO

Trace mineral status is a critical component of bovine health. Impairment of physiological processes, caused by trace mineral toxicities or deficiencies, can be potential underlying factors of disease. Historically, the status of critical trace minerals, such as copper, manganese, selenium, and zinc, has been evaluated through the analysis of hepatic tissue. We assessed variation of these 4 elements between homogenized liver and samples of 0.02 g, 0.1 g, 0.5 g, and 1.0 g. We also evaluated concentration differences in copper, manganese, selenium, and zinc among samples stored under different durations. No differences in concentrations of copper, manganese, selenium, or zinc were observed among samples stored frozen for 3, 7, and 14 d post-collection. Statistical differences in concentrations of selenium and zinc were observed between 0.02-g biopsy samples and larger samples. Moisture content differed between 0.02-g biopsies and larger samples and over time. Results indicate that as little as 0.02 g of hepatic tissue dried to ~0.006 g is reliable for interpretation of trace mineral status and determination of toxicities and deficiencies in cattle pertaining to copper, manganese, selenium, and zinc, despite the small differences observed.


Assuntos
Bovinos/metabolismo , Fígado/química , Espectrofotometria Atômica/veterinária , Oligoelementos/química , Animais , Cobre/química , Manganês/química , Espectrometria de Massas , Selênio/química , Espectrofotometria Atômica/métodos , Zinco/química
12.
Environ Geochem Health ; 42(1): 283-312, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31197554

RESUMO

The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference's (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74-87%), Pb (65-80%), Zn (59-82%) and Cd (55-66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.


Assuntos
Exposição Ambiental/análise , Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Criança , Cidades , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/estatística & dados numéricos , Humanos , Metais Pesados/química , Modelos Estatísticos , Medição de Risco , Esgotos/análise , Esgotos/química , Solo/química , Poluentes do Solo/química , África do Sul , Oligoelementos/análise , Oligoelementos/química , Instalações de Eliminação de Resíduos
14.
Environ Sci Pollut Res Int ; 26(26): 27225-27238, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321723

RESUMO

The objective of this research is to investigate the effluent water quality of a treatment plant in Turkey fed from surface and groundwater, according to water quality index (WOI) and health risk assessment (HRA). In order to achieve this goal, the quality of the influent and effluent water of the treatment plant was monitored monthly from January 2017 to January 2019. Water quality parameter results were compared with the Turkish drinking water standards and the World Health Organization (WHO), revealing that all parameters were within approved limits. Principal component analysis (PCA) was applied to determine the water quality parameter impacts in the overall quality of water and the most attractive parameters were trace elements, heavy metals, NH3-N, NO3, and TKN. To evaluate water quality and the impacts on human health, WQI and HRA, including hazard quotient (HQ) and hazard index (HI), were used. The WQI values were calculated by taking into account PCA results. WQI results demonstrated that the influent and effluent of water treatment plant values have a small number of WQI ranking that expressed the water category was "excellent" for drinking purpose. Finally, metal contamination in influent and effluent waters was assessed and the associated health risks to rural populations were estimated for different age groups, children and adults in the service area of the treatment plant. The health risk assessment with similar to WQI results, the acute, sub-chronic, and chronic risks of trace elements was "negligible" level, i.e., to a level affecting 1 person in 1,000,000 inhabitants.


Assuntos
Água Potável/análise , Água Subterrânea/análise , Metais Pesados/análise , Oligoelementos/análise , Adulto , Criança , Humanos , Metais Pesados/química , Medição de Risco , Oligoelementos/química , Turquia , Purificação da Água , Qualidade da Água
15.
Environ Sci Pollut Res Int ; 26(24): 24630-24644, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240649

RESUMO

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd > Cu > Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.


Assuntos
Poluentes do Solo/análise , Sulfetos/química , Oligoelementos/análise , Compostos de Zinco/química , Zinco/análise , Adulto , Criança , China , Ecologia , Poluição Ambiental/análise , Humanos , Mineração , Medição de Risco , Solo , Poluentes do Solo/química , Oligoelementos/química , Recursos Hídricos , Zinco/química
16.
Acta Biomater ; 88: 462-476, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735810

RESUMO

Lysosomal entrapment and liver accumulation are the two main obstacles faced by many anticancer drugs for achieving satisfactory therapeutic outcomes. Here, we develop a facile one-step hydrothermal synthetic route to prepare trace metal (M)-, N-, and O-doped carbon-dominated nanoparticles (termed as MNOCNPs, M = Ni, Pd, or Cu, metal content: <0.1 mol%) with exceptional photothermal properties (e.g., the ultrahigh extinction coefficient of 32.7 L g-1 cm-1), which can simultaneously realize preferable endoplasmic reticulum (ER) targeting and specific tumor enrichment without noticeable liver accumulation after poly(ethylene glycol) (PEG) conjugation. More interestingly, the PEG-modified MNOCNPs with nanoscale lengths exhibit considerable nucleolar delivery and increased tumor accumulation upon laser irradiation. After fluorescence labeling, these PEG-modified MNOCNPs are suitable for fluorescence/photoacoustic/thermal triple-modal imaging-guided photothermal cancer treatment. Additionally, the ultralow metal content ensures the exceptional biosafety of the nanoagents. The present work provides a novel, facile, and general synthetic method of carbon-dominated nanoparticles with superior photothermal properties for highly efficient tumor ablation, and the large-organelle (ER and nucleus)-targeted cancer therapeutic strategy may represent an alternative solution for optimizing the anticancer efficacy of nanomaterials. STATEMENT OF SIGNIFICANCE: Limited wire-like nanomaterials have been used for biomedical applications due to their lack of intrinsic photothermal properties, poor cellular uptake and tumor accumulation, and potential biotoxicity arising from their micrometer lengths and/or massive heavy metal doping. Besides, the clinical applications of many nanoagents are hindered by their tendency to accumulate in liver, which may cause severe liver toxicity. Herein, we develop for the first time a one-step hydrothermal method to prepare wire-like trace metal-, N-, and O-doped carbon-dominated nanoparticles with excellent photothermal properties, massive cellular uptake, preferable ER localization, selective tumor targeting with negligible liver deposition, laser irradiation-enhanced nucleolar delivery and tumor accumulation, and multimodal imaging-guided cancer therapy. This work opens a new window for simultaneously overcoming lysosomal entrapment and liver accumulation in cancer therapy.


Assuntos
Carbono/química , Nucléolo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Lasers , Nanopartículas/química , Neoplasias/terapia , Fototerapia , Oligoelementos/química , Animais , Coloides/química , Feminino , Células HeLa , Humanos , Hipertermia Induzida , Camundongos Nus , Nanopartículas/ultraestrutura , Neoplasias/patologia , Técnicas Fotoacústicas , Polietilenoglicóis/química , Distribuição Tecidual
17.
Environ Int ; 124: 79-88, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30640132

RESUMO

Agricultural lands adjacent to industrial activities are vulnerable due to the risk of trace elements (TEs) being accumulated into crops and subsequently humans. One such case concerns the industrial area of Volos, Greece, a suspected contaminated area which has never been studied. We measured Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn in soil and maize (leaves and grains) and assessed health risk of human exposure via soil ingestion and grain consumption. We found that the most highly enriched elements in soils were Tl (enrichment factor = 19), Se (17.68), Sb (14.81), As (7.89), Ni (6.91), Mo (5.22) and Cr (4.33); they all likely derived from anthropogenic activities and in particular from a nearby major steel factory, except for Ni which is known to be lithogenically elevated in that area. Synchrotron XANES spectra analysis revealed that As species were associated with ferrihydrite, and predominant species were As(V) (at ca. 85%) and As(III) (at ca. 15%). Although the total content of the studied elements was high, the ammonium bicarbonate-DTPA extractions recovered very low element concentrations, probably due to the fact that soil conditions decelerated solubility (i.e., soils were alkaline, clayey, and with high Fe oxides content). This was confirmed by the soil-to-grain transfer index, which was particularly low for all studied elements. In 5% of sampled grains concerning Cd, and in 40% concerning Pb, the European food-related regulation limits were surpassed. Health risk assessment showed a dramatically elevated risk for Tl via soil ingestion (hazard quotient, HQ = 2.399), a value that contributed 74% of the total risk. Similarly, concerning the grain consumption-related health risk, Tl was the predominant contributor (HQ = 0.128, contributing 40% of the total risk). Such elevated Tl risk which has rarely been reported previously, led to a considerably high hazard index (HI) well above the threshold of HI = 1. Cancer risk was below the 1 × 10-4 risk threshold for As and Pb. Our findings indicate that this study should be pivotal concerning similar industrially-affected agricultural soils of suspected contamination, since less-expected toxic elements such as Tl here may be primary contributors to health risk.


Assuntos
Monitoramento Ambiental , Indústrias , Metais Pesados/química , Poluentes do Solo/química , Oligoelementos/química , Zea mays/química , Contaminação de Alimentos , Grécia , Humanos , Medição de Risco , Solo
18.
Chemosphere ; 207: 725-741, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29859485

RESUMO

The present study aimed to evaluate the responses of different biochemicals parameters associated with environmental pollution in the digestive gland of the gastropod mollusc Stramonita haemastoma. Physiochemical parameters and trace metal elements (Copper (Cu), Zinc (Zn), Chromium (Cr), Cadmium (Cd) and Lead (Pb)) were measured in seawater. Spatiotemporal variations in reduced glutathione (GSH), malondialdehyde (MDA) and metallothionein (Mt) as well as the specific activities of glutathione S-transferase (GST) and catalase (CAT) were evaluated in digestive gland of this species during a one-year period in 2013-2014. Samples collection was conducted at three sites. The results obtained showed seasonal fluctuations in GST and CAT activities and in the rate of Mt content. In addition, intersite variations in GSH, MDA, Mt and CAT were recorded in individuals. Also, trace metal elements concentrations determined by season in the digestive gland revealed spatial and temporal variations for Cu and Zn but they are below the limit of detection for Cd and Pb. The highest values were generally recorded in spring for Cu and in winter for Zn. In this first regional study using in S. haemastoma as a model, the biomarkers measured were seen to be inducible parameters to evaluate the health state of the organism and the overall quality of the study sites.


Assuntos
Catalase/química , Biomarcadores Ambientais/fisiologia , Glutationa/química , Malondialdeído/química , Metalotioneína/química , Metais/efeitos adversos , Oligoelementos/química , Mar Mediterrâneo
19.
Rocz Panstw Zakl Hig ; 69(2): 119-126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766690

RESUMO

The garden nasturtium (Tropaeolum majus L.) belongs to the family Tropaeolaceae. Native to South America it was brought to Europe in XVI century. It is a plant with numerous healing properties. Medicinal plants such as the garden nasturtium contain trace elements and bioactive compounds which can be easily absorbed by the human body. The flowers and other parts of the garden nasturtium are a good source of micro elements such as potassium, phosphorus, calcium and magnesium, and macro elements, especially of zinc, copper and iron. The essential oil, the extract from the flowers and leaves, and the compounds isolated from these elements have antimicrobial, antifungal, hypotensive, expectorant and anticancer effects. Antioxidant activity of extracts from garden nasturtium is an effect of its high content of compounds such as anthocyanins, polyphenols and vitamin C. Due to its rich phytochemical content and unique elemental composition, the garden nasturtium may be used in the treatment of many diseases for example the illnesses of the respiratory and digestive systems. High content of erucic acid in nasturtium seeds makes it possible to use its oil as treatment in adrenoleukodystrophy. It is also applied in dermatology because it improves the condition of skin and hair. More recently, the flowers of this species have been used as a decorative and edible element of some types of dishes. Aim of the review was to summarize available data concerning garden nasturtium Tropaeolum majus L.


Assuntos
Flores/química , Extratos Vegetais/química , Oligoelementos/química , Tropaeolum/química , Antioxidantes/química , Humanos
20.
J Air Waste Manag Assoc ; 68(7): 725-736, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29652226

RESUMO

A self-flushing wet electrostatic precipitator was developed to investigate the removal performance for fine particles. Flexible material (polypropylene, 840A) and carbon steel in the form of a spiked band were adopted as the collection plate and discharge electrode, respectively. The particle concentration, morphology, and trace-element content were measured by electric low-pressure impactor, scanning electron microscope, and energy-dispersive x-ray spectroscopy, respectively, before and after the electrostatic precipitator. With increasing gas velocity, the collection efficiency of fine particles (up to 0.8 µm in diameter) increased, while it decreased for particles with diameters larger than 0.8 µm. Increasing the dust inlet concentration increased the collection efficiency up to a point, from which it then declined gradually with further increases in the inlet concentration. The particulate matter after the wet electrostatic precipitator showed different degrees of agglomeration. The collection efficiency of trace elements within PM10 was less than that of the PM10 itself. Notably, the water consumption in the current setup was significantly lower than for other treatment processes of comparable collection efficiencies. IMPLICATIONS: Wet electrostatic precipitators, as fine filtration equipment, were generally applicable to coal-fired plants to reduce PM2.5 emissions in China. However, high energy consumption and unstable operation, such as water usage and spray washing directly in the electric field, seriously restricted the further development. The utilization of self-flushing wet electrostatic precipitator can solve these problems to some extent.


Assuntos
Poluentes Atmosféricos/análise , Filtração/métodos , Material Particulado/análise , Poluentes Atmosféricos/química , China , Carvão Mineral , Poeira , Eletrodos , Filtração/instrumentação , Tamanho da Partícula , Material Particulado/química , Eletricidade Estática , Oligoelementos/análise , Oligoelementos/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA