Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749176

RESUMO

Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.


Assuntos
Apolipoproteínas E , Barreira Hematoencefálica , Camundongos Transgênicos , Oligonucleotídeos Antissenso , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/farmacocinética , Humanos , Apolipoproteínas E/metabolismo , Camundongos , Morfolinos/administração & dosagem , Morfolinos/farmacocinética , Morfolinos/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos Penetradores de Células/química
2.
Bioconjug Chem ; 35(5): 623-632, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659333

RESUMO

Nanodiamonds (NDs) are considered promising delivery platforms, but inaccurate and uncontrolled release of drugs at target sites is the biggest challenge of NDs in precision medicine. This study presents the development of phototriggerable ND-based drug delivery systems, utilizing ortho-nitrobenzyl (o-NB) molecules as photocleavable linkers between drugs and nanocarriers. UV irradiation specifically cleaved o-NB molecules and then was followed by releasing antisense oligonucleotides from ND-based carriers in both buffer and cellular environments. This ND system carried cell nonpermeable therapeutic agents for bypassing lysosomal trapping and degradation. The presence of fluorescent nitrogen-vacancy centers also allowed NDs to serve as biological probes for tracing in cells. We successfully demonstrated phototriggered release of antisense oligonucleotides from ND-based nanocarriers, reactivating their antisense functions. This highlights the potential of NDs, photocleavable linkers, and light stimuli to create advanced drug delivery systems for controlled drug release in disease therapy, opening possibilities for targeted and personalized treatments.


Assuntos
Sistemas de Liberação de Medicamentos , Nanodiamantes , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/administração & dosagem , Humanos , Nanodiamantes/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Raios Ultravioleta , Luz
3.
BMC Cancer ; 22(1): 79, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042456

RESUMO

BACKGROUND: Long non-coding RNA (LncRNA) HOTAIR was amplified and overexpressed in many human carcinomas, which could serve as a useful target for cancer early detection and treatment. The 99mTc radiolabeled antisense oligonucleotides (ASON) could visualize the expression of HOTAIR and provide a diagnostic value for malignant tumors. The aim of this study was to evaluate whether liposome-coated antisense oligonucleotide probe 99mTc-HYNIC-ASON targeting HOTAIR can be used in in vivo imaging of HOTAIR in malignant glioma xenografts. METHODS: The ASON targeting LncRNA HOTAIR as well as mismatched ASON (ASONM) were designed and modified. The radiolabeling of 99mTc with two probes were via the conjugation of bifunctional chelator HYNIC. Then probes were purified by Sephadex G25 and tested for their radiolabeling efficiency and purity, as well as stability by ITLC (Instant thin-layer chromatography) and gel electrophoresis. Then the radiolabeled probes were transfected with lipofectamine 2000 for cellular uptake test and the next experimental use. Furthermore, biodistribution study and SPECT imaging were performed at different times after liposome-coated 99mTc-HYNIC-ASON/ASONM were intravenously injected in glioma tumor-bearing mice models. All data were analyzed by statistical software. RESULTS: The labeling efficiencies of 99mTc-HYNIC-ASON and 99mTc-HYNIC-ASONM measured by ITLC were (91 ± 1.5) % and (90 ± 0.6) %, respectively, and both radiochemical purities were more than 89%. Two probes showed good stability within 12 h. Gel electrophoresis confirmed that the oligomers were successfully radiolabeled no significant degradation were found. Biodistribution study demonstrated that liposome-coated antisense probes were excreted mainly through the kidney and bladder and has higher uptake in the tumor. Meanwhile, the tumor was clearly shown after injection of liposome coated 99mTc-HYNIC-ASON, and its T/M ratio was higher than that in the non-transfection group and mismatched group. No tumor was seen in mismatched and blocking group. CONCLUSION: The liposome encapsulated 99mTc-HYNIC-ASON probe can be used in the in vivo, real-time imaging of LncRNA HOTAIR expression in malignant glioma.


Assuntos
Glioma/diagnóstico por imagem , Oligonucleotídeos Antissenso/administração & dosagem , Compostos de Organotecnécio/administração & dosagem , RNA Longo não Codificante/análise , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Modelos Animais de Doenças , Xenoenxertos/metabolismo , Lipossomos , Camundongos , Distribuição Tecidual
4.
Nat Med ; 27(10): 1725-1734, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642494

RESUMO

Chronic infection with hepatitis B virus (HBV) leads to an increased risk of death from cirrhosis and hepatocellular carcinoma. Functional cure rates are low with current treatment options (nucleos(t)ide analogs (NAs) and pegylated interferons). Bepirovirsen is an antisense oligonucleotide targeting all HBV messenger RNAs; in cell culture and animal models, bepirovirsen leads to reductions in HBV-derived RNAs, HBV DNA and viral proteins. This phase 2 double-blinded, randomized, placebo-controlled trial is the first evaluation of the safety and activity of an antisense oligonucleotide targeting HBV RNA in both treatment-naïve and virally suppressed individuals with chronic HBV infection. The primary objective was to assess the safety and tolerability of bepirovirsen in individuals with chronic hepatitis B (CHB) (NCT02981602). The secondary objective was to assess antiviral activity, including the change from baseline to day 29 in serum hepatitis B surface antigen (HBsAg) concentration. Participants with CHB infection ≥6 months and serum HBsAg ≥50 IU ml-1 were enrolled from seven centers across Hong Kong and the Republic of Korea and randomized (3:1 within each dose cohort) to receive bepirovirsen or placebo via subcutaneous injection twice weekly during weeks 1 and 2 (days 1, 4, 8 and 11) and once weekly during weeks 3 and 4 (days 15 and 22). Participants were then followed for 26 weeks. Twenty-four participants were treatment-naïve and seven were receiving stable NA therapy. Treatment-emergent adverse events were mostly mild/moderate (most commonly injection site reactions). Eleven (61.1%) and three (50.0%) treatment-naïve participants experienced one or more treatment-emergent adverse event in the bepirovirsen and placebo groups, respectively. In participants receiving NA therapy, the corresponding numbers were three (60.0%) and one (50.0%). Transient, self-resolving alanine aminotransferase flares (≥2× upper limit of normal) were observed in eight treatment-naïve participants and three participants on stable NA regimens in the bepirovirsen treatment arms. HBsAg reductions were observed and were significant versus placebo for treatment-naïve participants receiving bepirovirsen 300 mg (P = 0.001), but not for the bepirovirsen 150 mg group (P = 0.245) or participants receiving stable NA therapy (P = 0.762). Two participants in each of the 300 mg dose groups achieved HBsAg levels below the lower limit of quantitation by day 29 (n = 3) or day 36 (n = 1). Bepirovirsen had a favorable safety profile. These preliminary observations warrant further investigation of the safety and activity of bepirovirsen in a larger CHB patient population.


Assuntos
Antivirais/administração & dosagem , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Adolescente , Adulto , Antivirais/efeitos adversos , Quimioterapia Combinada , Feminino , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/sangue , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/efeitos adversos , Placebos , Polietilenoglicóis/química , República da Coreia/epidemiologia , Adulto Jovem
5.
Adv Drug Deliv Rev ; 178: 113834, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492233

RESUMO

Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Técnicas de Transferência de Genes/tendências , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/terapia , Ensaios Clínicos como Assunto/métodos , Aprovação de Drogas , Sistemas de Liberação de Medicamentos/métodos , Hepatite/genética , Hepatite/metabolismo , Hepatite/terapia , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Ácidos Nucleicos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Trends Mol Med ; 27(7): 643-659, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33994320

RESUMO

RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Neoplasias/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Splicing de RNA , Doenças Genéticas Inatas/genética , Humanos , Neoplasias/genética
7.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805602

RESUMO

Carriers of genetic material are divided into vectors of viral and non-viral origin. Viral carriers are already successfully used in experimental gene therapies, but despite advantages such as their high transfection efficiency and the wide knowledge of their practical potential, the remaining disadvantages, namely, their low capacity and complex manufacturing process, based on biological systems, are major limitations prior to their broad implementation in the clinical setting. The application of non-viral carriers in gene therapy is one of the available approaches. Poly(amidoamine) (PAMAM) dendrimers are repetitively branched, three-dimensional molecules, made of amide and amine subunits, possessing unique physiochemical properties. Surface and internal modifications improve their physicochemical properties, enabling the increase in cellular specificity and transfection efficiency and a reduction in cytotoxicity toward healthy cells. During the last 10 years of research on PAMAM dendrimers, three modification strategies have commonly been used: (1) surface modification with functional groups; (2) hybrid vector formation; (3) creation of supramolecular self-assemblies. This review describes and summarizes recent studies exploring the development of PAMAM dendrimers in anticancer gene therapies, evaluating the advantages and disadvantages of the modification approaches and the nanomedicine regulatory issues preventing their translation into the clinical setting, and highlighting important areas for further development and possible steps that seem promising in terms of development of PAMAM as a carrier of genetic material.


Assuntos
Dendrímeros/síntese química , Regulação Neoplásica da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/terapia , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/síntese química , Dendrímeros/administração & dosagem , Regulamentação Governamental , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , MicroRNAs/metabolismo , Nanomedicina/legislação & jurisprudência , Nanomedicina/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/química , Plasmídeos/metabolismo , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Propriedades de Superfície
8.
Cancer Res ; 81(7): 1654-1666, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648930

RESUMO

Overcoming drug resistance is one of the biggest challenges in cancer chemotherapy. In this study, we examine whether targeting the long noncoding RNA taurine upregulated gene 1 (TUG1) could be an effective therapeutic approach to overcome drug resistance in pancreatic ductal adenocarcinoma (PDAC). TUG1 was expressed at significantly higher levels across 197 PDAC tissues compared with normal pancreatic tissues. Overall survival of patients with PDAC who had undergone 5-FU-based chemotherapy was shorter in high TUG1 group than in low TUG1 group. Mechanistically, TUG1 antagonized miR-376b-3p and upregulated dihydropyrimidine dehydrogenase (DPD). TUG1 depletion induced susceptibility to 5-FU in BxPC-3 and PK-9 pancreatic cell lines. Consistently, the cellular concentration of 5-FU was significantly higher under TUG1-depleted conditions. In PDAC xenograft models, intravenous treatment with a cancer-specific drug delivery system (TUG1-DDS) and 5-FU significantly suppressed PDAC tumor growth compared with 5-FU treatment alone. This novel approach using TUG1-DDS in combination with 5-FU may serve as an effective therapeutic option to attenuate DPD activity and meet appropriate 5-FU dosage requirements in targeted PDAC cells, which can reduce the systemic adverse effects of chemotherapy. SIGNIFICANCE: Targeting TUG1 coupled with a cancer-specific drug delivery system effectively modulates 5-FU catabolism in TUG1-overexpressing PDAC cells, thus contributing to a new combinatorial strategy for cancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1654/F1.large.jpg.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , RNA Longo não Codificante/antagonistas & inibidores , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inativação Metabólica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular/métodos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/química , RNA Longo não Codificante/efeitos dos fármacos , RNA Longo não Codificante/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS One ; 16(2): e0246040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539438

RESUMO

Alpha-1 Antitrypsin (AAT) is a serum protease inhibitor that regulates increased lung protease production induced by cigarette smoking. Mutations in the Serpina1 gene cause AAT to form hepatoxic polymers, which can lead to reduced availability for the protein's primary function and severe liver disease. An AAT antisense oligonucleotide (ASO) was previously identified to be beneficial for the AATD liver disease by blocking the mutated AAT transcripts. Here we hypothesized that knockdown of AAT aggravates murine lung injury during smoke exposure and acute exacerbations of chronic obstructive pulmonary disease (COPD). C57BL/6J mice were randomly divided into 4 groups each for the smoking and smoke-flu injury models. The ASO and control (No-ASO) were injected subcutaneously starting with smoking or four days prior to influenza infection and then injected weekly at 50 mg/kg body weight. ASO treatment during a 3-month smoke exposure significantly decreased the serum and lung AAT expression, resulting in increased Cela1 expression and elastase activity. However, despite the decrease in AAT, neither the inflammatory cell counts in the bronchoalveolar lavage fluid (BALF) nor the lung structural changes were significantly worsened by ASO treatment. We observed significant differences in inflammation and emphysema due to smoke exposure, but did not observe an ASO treatment effect. Similarly, with the smoke-flu model, differences were only observed between smoke-flu and room air controls, but not as a result of ASO treatment. Off-target effects or compensatory mechanisms may account for this finding. Alternatively, the reduction of AAT with ASO treatment, while sufficient to protect from liver injury, may not be robust enough to lead to lung injury. The results also suggest that previously described AAT ASO treatment for AAT mutation related liver disease may attenuate hepatic injury without being detrimental to the lungs. These potential mechanisms need to be further investigated in order to fully understand the impact of AAT inhibition on protease-antiprotease imbalance in the murine smoke exposure model.


Assuntos
Oligonucleotídeos Antissenso/administração & dosagem , Lesão por Inalação de Fumaça/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Injeções Subcutâneas , Masculino , Camundongos , Mutação , Oligonucleotídeos Antissenso/farmacologia , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Distribuição Aleatória , Lesão por Inalação de Fumaça/metabolismo
10.
Mol Pharm ; 18(2): 610-626, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584043

RESUMO

Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.


Assuntos
Portadores de Fármacos/química , Doença de Huntington/tratamento farmacológico , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/antagonistas & inibidores , Ataxias Espinocerebelares/tratamento farmacológico , Administração Intranasal , Administração Oral , Animais , Animais Geneticamente Modificados , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Loci Gênicos/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Injeções Intraperitoneais , Injeções Intravenosas , Injeções Intraventriculares , Injeções Espinhais , Fármacos Neuroprotetores/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Peptídeos/genética , Peptídeos/metabolismo , Permeabilidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Distribuição Tecidual , Expansão das Repetições de Trinucleotídeos
11.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946877

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Cicatrização/genética , Animais , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Éxons/genética , Fibroblastos , Fibrose , Humanos , Queratinócitos , Camundongos , Camundongos Transgênicos , Mutação , Oligonucleotídeos Antissenso/genética , Cultura Primária de Células , Pele/efeitos dos fármacos
12.
Methods Mol Biol ; 2254: 273-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326082

RESUMO

With the rapid revolution in RNA/DNA sequencing technologies, it is evident that mammalian genomes express tens of thousands of long noncoding RNAs (lncRNAs). Since a large majority of lncRNAs have been functionally implicated in cancer development and progression, there is an increasing appreciation for the use of antisense oligonucleotide (ASO)-based therapies targeting lncRNAs in several cancers. Despite their great potential in therapeutic applications, their use is still limited due to cellular toxicity and shortcomings in achieving required stability in biological fluids and tissue uptake. To overcome these limitations, major changes in ASO chemistry have been introduced to generate second and third generation ASOs, including locked nucleic acids (LNA) technology. Here we describe two different LNA-ASO delivery approaches, a peritumoral administration and a systemic delivery in xenograft models of lung adenocarcinoma, that significantly reduced tumor growth without inducing toxicity.


Assuntos
Adenocarcinoma de Pulmão/terapia , Neoplasias Pulmonares/terapia , Oligonucleotídeos Antissenso/administração & dosagem , RNA Longo não Codificante/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Projetos Piloto , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Mater Chem B ; 8(47): 10825-10836, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33174901

RESUMO

Cell-penetrating peptides are a promising therapeutic strategy for a wide variety of degenerative diseases, ageing, and cancer. Among the multitude of cell-penetrating peptides, PepFect14 has been preferentially used in our laboratory for oligonucleotide delivery into cells and in vivo mouse models. However, this activity has mainly been reported towards cytoplasm and nuclei, while the mentioned disorders have been linked to mitochondrial defects. Here, we report a library generated from a combinatorial covalent fusion of a mitochondrial-penetrating peptide, mtCPP1, and PepFect14 in order to deliver therapeutic biomolecules to influence mitochondrial protein expression. The non-covalent complexation of these peptides with oligonucleotides resulted in nano-complexes affecting biological functions in the cytoplasm and on mitochondria. This delivery system proved to efficiently target mitochondrial genes, providing a framework for the development of mitochondrial peptide-based oligonucleotide technologies with the potential to be used as a treatment for patients with mitochondrial disorders.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Líquido Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , Animais , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/genética , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Citoplasma/metabolismo , Células HeLa , Humanos , Líquido Intracelular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Proteínas Mitocondriais/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/genética
14.
Expert Opin Investig Drugs ; 29(10): 1125-1132, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745442

RESUMO

INTRODUCTION: Huntington's disease (HD) is an incurable, autosomal dominant neurodegenerative disease caused by an abnormally long polyglutamine tract in the huntingtin protein. Because this mutation causes disease via gain-of-function, lowering huntingtin levels represents a rational therapeutic strategy. AREAS COVERED: We searched MEDLINE, CENTRAL, and other trial databases, and relevant company and HD funding websites for press releases until April 2020 to review strategies for huntingtin lowering, including autophagy and PROTACs, which have been studied in preclinical models. We focussed our analyses on oligonucleotide (ASOs) and miRNA approaches, which have entered or are about to enter clinical trials. EXPERT OPINION: ASO and mRNA approaches for lowering mutant huntingtin protein production and strategies for increasing mutant huntingtin clearance are attractive because they target the cause of disease. However, questions concerning the optimal mode of delivery and associated safety issues remain. It is unclear if the human CNS coverage with intrathecal or intraparenchymal delivery will be sufficient for efficacy. The extent that one must lower mutant huntingtin levels for it to be therapeutic is uncertain and the extent to which CNS lowering of wild-type huntingtin is safe is unclear. Polypharmacy may be an effective approach for ameliorating signs and symptoms and for preventing/delaying onset and progression.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/terapia , Animais , Progressão da Doença , Humanos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , MicroRNAs/administração & dosagem , Mutação , Oligonucleotídeos Antissenso/administração & dosagem
15.
Nucleic Acid Ther ; 30(5): 265-275, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32833564

RESUMO

Inotersen (TEGSEDI™) is a 2'-O-(2-methoxyethyl)-modified antisense oligonucleotide, intended for treating hereditary transthyretin (TTR) amyloidosis with polyneuropathy. The potential immunogenicity (IM) response to inotersen was evaluated in chronic nonclinical safety studies and the pivotal phase 2/3 clinical study. The evaluation was designed to assess the characteristics of antidrug antibodies (ADAs) and their effects on the pharmacokinetics, pharmacodynamics, clinical efficacy, and safety in animals and humans. No immunogenic response was observed after long-term treatment with inotersen in mice. In monkeys, the incidence rate of IM to inotersen appeared to be dose dependent, with 28.6%-50.0% of animals developing ADAs after 36 weeks of treatment. This was characterized as late onset (median onset of 185 days) with low titers (median titer of 8, or 400 if minimum required dilution of 50 is included). The overall incidence rate of patients who developed ADAs was 30% after 65 weeks of treatment with median onset of 203 days and median peak titer of 300. IM had minimal effect on plasma peak (Cmax) and total exposure (i.e. area under curve, AUC) of inotersen, but showed elevated plasma trough levels in both IM-positive animals and humans. However, ADAs had no effect on tissue exposure, TTR messenger RNA, or plasma TTR levels in the long-term monkey study. Similarly, IM showed no effect on plasma TTR levels in clinical studies. Thus, ADAs antibodies were binding antibodies, but not neutralizing antibodies. Finally, no association was observed between IM and toxicity findings (eg, platelet, complement activation, and histopathology findings) in the inotersen 9-month monkey study. In humans, no difference was observed in hematology, including platelets, kidney function tests, or incidence of adverse events between IM-positive and -negative patients. Overall, IM showed no effect on toxicity or safety of inotersen evaluated in both monkeys and humans. ClinicalTrials.gov Identifier: NCT01737398.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Oligorribonucleotídeos/administração & dosagem , Pré-Albumina/genética , Animais , Anticorpos Anti-Idiotípicos/sangue , Anticorpos Anti-Idiotípicos/imunologia , Plaquetas/imunologia , Doença de Charcot-Marie-Tooth/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Haplorrinos , Humanos , Imunogenicidade da Vacina/genética , Imunogenicidade da Vacina/imunologia , Testes de Função Renal , Masculino , Camundongos , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/sangue , Oligonucleotídeos Antissenso/farmacocinética , Oligorribonucleotídeos/efeitos adversos , Oligorribonucleotídeos/sangue , Oligorribonucleotídeos/farmacocinética , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/imunologia
16.
Expert Opin Investig Drugs ; 29(10): 1163-1170, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32741234

RESUMO

INTRODUCTION: Antisense oligonucleotides (ASOs) represent a class of drugs which can be rationally designed to complement the coding or non-coding regions of target RNA transcripts. They could modulate pre-messenger RNA splicing, induce mRNA knockdown, or block translation of disease-causing genes, thereby slowing disease progression. The pharmacokinetics of intravitreal delivery may enable ASOs to be effective in the treatment of inherited retinal diseases. AREAS COVERED: We review the current status of clinical trials of ASO therapies for inherited retinal diseases, which have demonstrated safety, viable durability, and early efficacy. Future applications are discussed in the context of alternative genetic approaches, including gene augmentation and gene editing. EXPERT OPINION: Early efficacy data suggest that the splicing-modulating ASO, sepofarsen, is a promising treatment for Leber congenital amaurosis associated with the common c.2991+1655A>G mutation in CEP290. However, potential variability in clinical response to ASO-mediated correction of splicing defect on one allele in patients who are compound heterozygotes needs to be assessed. ASOs hold great therapeutic potential for numerous other inherited retinal diseases with common deep-intronic and dominant gain-of-function mutations. These would complement viral vector-mediated gene augmentation which is generally limited by the size of the transgene and to the treatment of recessive diseases.


Assuntos
Amaurose Congênita de Leber/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Doenças Retinianas/terapia , Animais , Progressão da Doença , Edição de Genes , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Mutação , Oligonucleotídeos Antissenso/farmacocinética , Doenças Retinianas/genética , Doenças Retinianas/patologia
17.
EBioMedicine ; 58: 102908, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32707450

RESUMO

BACKGROUND: High-molecular-weight kininogen is a cofactor of the human contact system, an inflammatory response mechanism that is activated during sepsis. It has been shown that high-molecular-weight kininogen contributes to endotoxemia, but is not critical for local host defense during pneumonia by Gram-negative bacteria. However, some important pathogens, such as Streptococcus pyogenes, can cleave kininogen by contact system activation. Whether kininogen causally affects antibacterial host defense in S. pyogenes infection, remains unknown. METHODS: Kininogen concentration was determined in course plasma samples from septic patients. mRNA expression and degradation of kininogen was determined in liver or plasma of septic mice. Kininogen was depleted in mice by treatment with selective kininogen directed antisense oligonucleotides (ASOs) or a scrambled control ASO for 3 weeks prior to infection. 24 h after infection, infection parameters were determined. FINDINGS: Data from human and mice samples indicate that kininogen is a positive acute phase protein. Lower kininogen concentration in plasma correlate with a higher APACHE II score in septic patients. We show that ASO-mediated depletion of kininogen in mice indeed restrains streptococcal spreading, reduces levels of proinflammatory cytokines such as IL-1ß and IFNγ, but increased intravascular tissue factor and fibrin deposition in kidneys of septic animals. INTERPRETATION: Mechanistically, kininogen depletion results in reduced plasma kallikrein levels and, during sepsis, in increased intravascular tissue factor that may reinforce immunothrombosis, and thus reduce streptococcal spreading. These novel findings point to an anticoagulant and profibrinolytic role of kininogens during streptococcal sepsis. FUNDING: Full details are provided in the Acknowledgements section.


Assuntos
Bacteriemia/microbiologia , Cininogênios/sangue , Cininogênios/genética , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/patogenicidade , Animais , Bacteriemia/tratamento farmacológico , Bacteriemia/genética , Bacteriemia/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Cininogênios/química , Fígado/metabolismo , Camundongos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Proteólise , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/genética
18.
Amyloid ; 27(4): 250-253, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32578459

RESUMO

OBJECTIVE: Patients with hereditary transthyretin (TTR) amyloidosis (hATTR) often experience disease progression after orthotopic liver transplant (POLT) due in part to wild type ATTR amyloid deposition. The management strategy is not defined. We propose that TTR gene silencing with an antisense oligonucleotide or a small interfering ribonucleic acid may be a treatment for these patients. METHODS: We reviewed the charts of hATTR patients POLT treated with a TTR gene silencing agent at 7 different Amyloid Clinics between 2018-2020. RESULTS: Nine hATTR patients with POLT were treated with TTR gene silencing therapy (Inotersen). The median age was 61 years. The median time from OLT to initiation of TTR gene silencing therapy was 7.5 years. The median duration of therapy was 12 months. Neuropathy impairment score remained stable or improved in all patients. Five patients stopped treatment: 3 because of thrombocytopenia, 2 because of reversible liver rejection. Three patients who discontinued treatment subsequently experienced worsening of their neuropathy. CONCLUSION: TTR gene silencing therapy in hATTR patients with POLT could be a treatment option. Vigilant monitoring of renal, liver and bone marrow functions is necessary because of frequent complications. Further studies are needed to determine efficacy.


Assuntos
Neuropatias Amiloides Familiares/terapia , Inativação Gênica/efeitos dos fármacos , Transplante de Fígado , Oligonucleotídeos/administração & dosagem , Pré-Albumina/genética , Adulto , Idoso , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/administração & dosagem , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/metabolismo , Resultado do Tratamento
19.
Lancet Gastroenterol Hepatol ; 5(9): 829-838, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553151

RESUMO

BACKGROUND: Diacylglycerol-O-acyltransferase 2 (DGAT2) is one of two enzyme isoforms that catalyse the final step in the synthesis of triglycerides. IONIS-DGAT2Rx is an antisense oligonucleotide inhibitor of DGAT2 that is under clinical investigation for the treatment of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). The aim of this trial was to examine the safety, tolerability, and efficacy of IONIS-DGAT2Rx versus placebo in reducing liver fat in patients with type 2 diabetes and NAFLD. METHODS: This double-blind, randomised, placebo-controlled, phase 2 study consisted of a 2-week screening period, a run-in period of up to 4 weeks, a 13-week treatment period of once-weekly dosing, and a 13-week post-treatment follow-up period. The study was done at 16 clinical research sites in Canada, Poland, and Hungary. Eligible participants were aged 18-75 years, had a body-mass index at screening between 27 kg/m2 and 39 kg/m2, haemoglobin A1c (HbA1c) levels from 7·3% to 9·5%, and liver fat content 10% or greater before randomisation, and agreed to maintain a stable diet and exercise routine throughout the study. Enrolled participants were stratified on the basis of liver fat content during the run-in period (<20% or ≥20%) and then centrally randomised (2:1) to receive once weekly subcutaneous injection of 250 mg IONIS-DGAT2Rx or placebo for 13 weeks. Participants, investigators, funder personnel, and the clinical research organisation staff, including central readers of MRI scans, were all masked to treatment identity. The primary endpoints were the safety, tolerability, and pharmacodynamic effect of IONIS-DGAT2Rx on hepatic steatosis, according to absolute reduction from baseline in liver fat percentage as quantified by MRI-estimated proton density fat fraction and assessed in the per-protocol population. Pharmacodynamic performance was determined in the per-protocol population by the change in liver fat content from baseline to 2 weeks after the last dose. The per-protocol population included all randomised participants who received at least ten doses of study drug, with the first four doses administered in the first 5 weeks, did not miss more than three consecutive weekly doses, and who had no protocol deviations that might affect efficacy. All randomised participants who received at least one dose of study drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT03334214. FINDINGS: Between Nov 3, 2017, and Nov 28, 2018, we screened 173 people for eligibility. 44 were enrolled and randomly assigned to receive either IONIS-DGAT2Rx (29 participants) or placebo (15 participants). After 13 weeks of treatment, the mean absolute reduction from baseline was -5·2% (SD 5·4) in the IONIS-DGAT2Rx group compared with -0·6% (6·1) in the placebo group (treatment difference -4·2%, 95% CI -7·8 to -0·5, p=0·026). Reductions in liver fat were not accompanied by hyperlipidaemia, elevations in serum aminotransferases or plasma glucose, changes in bodyweight, or gastrointestinal side-effects compared with placebo. Six serious adverse events occurred in four patients treated with IONIS-DGAT2Rx. No serious adverse events were reported in the placebo group. One of four patients reported three serious adverse events: acute exacerbation of chronic obstructive pulmonary disease, cardiac arrest, and ischaemic cerebral infarction, each considered severe and not related to study drug. Three of four patients reported one serious adverse event of increased blood triglycerides (severe, unrelated to study drug), deep-vein thrombosis (severe, unlikely to be related to study drug), and acute pancreatitis (mild, unrelated to study drug). INTERPRETATION: Our results suggest that DGAT2 antisense inhibition could be a safe and efficacious strategy for treatment of NAFLD and support further investigation in patients with biopsy-proven NASH. Based on the pharmacological target, the response to treatment observed in this study population could extend to the broader population of patients with NAFLD. FUNDING: Ionis Pharmaceuticals.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oligonucleotídeos Antissenso/antagonistas & inibidores , Idoso , Índice de Massa Corporal , Canadá/epidemiologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diacilglicerol O-Aciltransferase/administração & dosagem , Diacilglicerol O-Aciltransferase/efeitos adversos , Diacilglicerol O-Aciltransferase/farmacologia , Método Duplo-Cego , Tolerância a Medicamentos , Feminino , Humanos , Hungria/epidemiologia , Injeções Subcutâneas , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/farmacologia , Placebos/administração & dosagem , Polônia/epidemiologia , Segurança , Resultado do Tratamento
20.
Blood ; 136(17): 1968-1979, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32556142

RESUMO

ß-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction. However, we postulated that combinatorial strategies might be superior to single therapies. Here, we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by ß-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single-allele deletion alone, respectively, exacerbated or did not improve splenomegaly in ß-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, the combination of Tmprss6-ASO + EPO or Tmprss6-ASO + Tfr2 single-allele deletion produced significantly higher hemoglobin levels and reduced splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating IE and anemia in ß-thalassemia and could provide guidance to translate some of these approaches into viable therapies.


Assuntos
Eritropoetina/administração & dosagem , Eritropoetina/genética , Terapia Genética/métodos , Proteínas de Membrana/antagonistas & inibidores , Oligonucleotídeos Antissenso/administração & dosagem , Talassemia beta/terapia , Animais , Células Cultivadas , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/prevenção & controle , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligonucleotídeos Antissenso/farmacologia , Receptores da Transferrina/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Talassemia beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA