Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962983

RESUMO

Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were delayed, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF, and GnRH3 coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Oligopeptídeos/fisiologia , Oryzias , Ácido Pirrolidonocarboxílico/análogos & derivados , Comportamento Sexual Animal/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Química Encefálica , Feminino , Técnicas de Inativação de Genes , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/genética , Masculino , Neurônios/química , Neurônios/fisiologia , Oligopeptídeos/análise , Oligopeptídeos/genética , Filogenia , Ácido Pirrolidonocarboxílico/análise , Alinhamento de Sequência
2.
Cancer Sci ; 112(6): 2118-2125, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33793015

RESUMO

Cell-penetrating peptides, such as antibodies, have gained great attention as tools for the development of specific delivery systems for payloads, which might be applied as non-invasive carriers in vivo. Among these, tumor-homing peptides recently have been studied for use in tumor medicine. Tumor-homing peptides are oligopeptides, usually consisting of 30 or fewer amino acids that are efficiently and specifically incorporated into tumor cells, suggesting their potential use in establishing novel non-invasive tumor imaging systems for diagnostic and therapeutic applications. Here, we briefly introduce the biological characteristics of our tumor-homing peptides, focusing especially on those developed using a random peptide library constructed using mRNA display technology. The advantage of the tumor-homing peptides is their biological safety, given that these molecules do not show significant cytotoxicity against non-neoplastic cells; lack serious antigenicity, which alternatively might evoke unfavorable immune responses and inflammation in vivo; and are rapidly incorporated into target cells/tissues, with rates exceeding those seen for antibodies. Given their small size, tumor-homing peptides also are easy to modify and redesign. Based on these merits, tumor-homing peptides are expected to find wide application in various aspects of tumor medicine, including imaging diagnostics (eg, with dye-conjugated probes for direct visualization of invasive/metastatic tumor lesions in vivo) and therapeutics (eg, using peptide-drug conjugates [PDCs] for tumor targeting). Although further evidence will be required to demonstrate their practical utility, tumor-homing peptides are expected to show great potential as a next-generation bio-tool contributing to precision medicine for cancer patients.


Assuntos
Peptídeos Penetradores de Células/fisiologia , Peptídeos Penetradores de Células/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/fisiologia , Oligopeptídeos/uso terapêutico , Biblioteca de Peptídeos , Medicina de Precisão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Behav Brain Res ; 404: 113192, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33607163

RESUMO

Transgenic mouse models of Aß amyloidosis generated by knock-in of a humanized Aß sequence can offer some advantages over the transgenic models that overexpress amyloid precursor protein (APP). However, systematic comparison of memory, behavioral, and neuropathological phenotypes between these models has not been well documented. In this study, we compared memory and affective behavior in APPNLGF mice, an APP knock-in model, to two widely used mouse models of Alzheimer's disease, 5xFAD and APP/PS1 mice, at 10 months of age. We found that, despite similar deficits in working memory, object recognition, and social recognition memory, APPNLGF and 5xFAD mice but not APP/PS1 mice show compelling anxiety- and depressive-like behavior, and exhibited a marked impairment of social interaction. We quantified corticolimbic Aß plaques, which were lowest in APPNLGF, intermediate in APP/PS1, and highest in 5xFAD mice. Interestingly, analysis of plaque size revealed that plaques were largest in APP/PS1 mice, intermediate in 5xFAD mice, and smallest in APPNLGF mice. Finally, we observed a significantly higher percentage of the area occupied by plaques in both 5xFAD and APP/PS1 relative to APPNLGF mice. Overall, our findings suggest that the severity of Aß neuropathology is not directly correlated with memory and affective behavior impairments between these three transgenic mouse models. Additionally, APPNLGF may represent a valid mouse model for studying AD comorbid with anxiety and depression.


Assuntos
Afeto , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patologia , Memória , Oligopeptídeos/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Feminino , Locomoção , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris , Oligopeptídeos/metabolismo , Oligopeptídeos/fisiologia , Teste de Campo Aberto , Interação Social
4.
Front Endocrinol (Lausanne) ; 12: 802768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975771

RESUMO

Red pigment concentrating hormone (RPCH) and pigment dispersing hormone (PDH) are crustacean neuropeptides involved in broad physiological processes including body color changes, circadian rhythm, and ovarian growth. In this study, the full-length cDNA of RPCH and PDH were identified from the brain of the Chinese mitten crab Eriocheir sinensis. The deduced RPCH and PDH mature peptides shared identical sequence to the adipokinetic hormone/RPCH peptides family and the ß-PDH isoforms and were designated as Es-RPCH and Es-ß-PDH, respectively. Es-RPCH and Es-ß-PDH transcripts were distributed in the brain and eyestalks. The positive signals of Es-RPCH and Es-ß-PDH were localized in the neuronal clusters 6, 8, 9, 10, and 17 of the brain as revealed by in situ hybridization. The expression level of Es-RPCH and Es-ß-PDH mRNA in nervous tissues were all significantly increased at vitellogenic stage, and then decreased at the final meiotic maturation stage. The administrated with synthesized Es-RPCH peptide results in germinal vesicles shift toward the plasma membrane in vitellogenic oocyte, and significant decrease of the gonad-somatic index (GSI) and mean oocyte diameter as well as the expression of vitellogenin mRNA at 30 days post injection in vivo. Similar results were also found when injection of the Es-ß-PDH peptide. In vitro culture demonstrated that Es-RPCH and Es-ß-PDH induced germinal vesicle breakdown of the late vitellogenic oocytes. Comparative ovarian transcriptome analysis indicated that some reproduction/meiosis-related genes such as cdc2 kinase, cyclin B, 5-HT-R and retinoid-X receptor were significantly upregulated in response to Es-RPCH and Es-ß-PDH treatments. Taken together, these results provided the evidence for the inductive effect of Es-RPCH and Es-ß-PDH on the oocyte meiotic maturation in E. sinensis.


Assuntos
Braquiúros/fisiologia , Meiose/fisiologia , Oligopeptídeos/fisiologia , Oócitos/fisiologia , Peptídeos/fisiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Química Encefálica , China , DNA Complementar/análise , Feminino , Expressão Gênica , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oócitos/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Peptídeos/genética , Peptídeos/farmacologia , Ácido Pirrolidonocarboxílico/farmacologia , RNA Mensageiro/análise , Vitelogênese
5.
Elife ; 92020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164751

RESUMO

Pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 19 disease (COVID-19) which presents a large spectrum of manifestations with fatal outcomes in vulnerable people over 70-years-old and with hypertension, diabetes, obesity, cardiovascular disease, COPD, and smoking status. Knowledge of the entry receptor is key to understand SARS-CoV-2 tropism, transmission and pathogenesis. Early evidence pointed to angiotensin-converting enzyme 2 (ACE2) as SARS-CoV-2 entry receptor. Here, we provide a critical summary of the current knowledge highlighting the limitations and remaining gaps that need to be addressed to fully characterize ACE2 function in SARS-CoV-2 infection and associated pathogenesis. We also discuss ACE2 expression and potential role in the context of comorbidities associated with poor COVID-19 outcomes. Finally, we discuss the potential co-receptors/attachment factors such as neuropilins, heparan sulfate and sialic acids and the putative alternative receptors, such as CD147 and GRP78.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/virologia , Ligação Viral , Enzima de Conversão de Angiotensina 2 , Basigina/fisiologia , COVID-19 , Comorbidade , Infecções por Coronavirus/epidemiologia , Chaperona BiP do Retículo Endoplasmático , Regulação Enzimológica da Expressão Gênica , Heparitina Sulfato/fisiologia , Humanos , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Neuropilina-1/fisiologia , Oligopeptídeos/fisiologia , Especificidade de Órgãos , Pandemias , Pneumonia Viral/epidemiologia , Ligação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Virais , Sistema Renina-Angiotensina/fisiologia , Sistema Respiratório/enzimologia , SARS-CoV-2 , Ácidos Siálicos/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Internalização do Vírus
6.
Chemosphere ; 259: 127490, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650166

RESUMO

Insect resistance to chemical insecticide is a global problem that presents an ongoing threat to sustainable agriculture. Although the increased production of detoxification enzymes has been frequently implicated in resistance development, the mechanisms employed by insecticide-resistant insects for overexpression of these genes remain elusive. Here we report that neuropeptide adipokinetic hormone (AKH) negatively regulates the expression of CYP6ER1 and CYP6AY1, two important cytochrome P450 monooxygenases (P450s) that confer resistance to neonicotinoid imidacloprid in the brown planthopper (BPH). Imidacloprid exposure suppresses AKH synthesis in the susceptible BPH, and AKH is inhibited in the imidacloprid-resistant strain. RNA interference (RNAi) and AKH peptide injection revealed that imidacloprid exposure inhibits the AKH signaling cascade and then provokes reactive oxygen species (ROS) burst. These in turn activate the transcription factors cap 'n' collar isoform-C (CncC) and muscle aponeurosis fibromatosis (MafK). RNAi and ROS scavenger assays showed that ROS induces CYP6ER1 expression by activating CncC and MafK, while ROS mediates induction of CYP6AY1 through another unidentified pathway in the resistant BPH. Collectively, these results provide new insights into the regulation of insecticide resistance and implicate both the neuropeptide AKH-mediated ROS burst and transcription factors are involved in the overexpression of P450 detoxification genes in insecticide-resistant insects.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hemípteros/química , Hormônios de Inseto/fisiologia , Resistência a Inseticidas/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oligopeptídeos/fisiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Família 6 do Citocromo P450/metabolismo , Hemípteros/fisiologia , Imidazóis/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/fisiologia
7.
Neurotox Res ; 37(1): 136-145, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31691186

RESUMO

During vascular aging or in pathological conditions in humans, elastin is degraded and its by-products, the elastin-derived peptides (EDPs), enter the blood circulation. EDPs may be detected in the serum of healthy subjects or people who suffered a stroke. Moreover, recent evidence suggests a potential role of inflammatory mechanisms in neurological conditions, which are usually not categorized as inflammatory. Therefore, the present in vitro study was conducted to investigate the impact of the VGVAPG peptide on the activation of inflammatory process in mouse primary astrocytes, which were maintained in phenol red-free DMEM/F12 supplemented with 10% fetal bovine serum. The cells were exposed to VGVAPG or VVGPGA peptides for 24 and 48 h; this was followed by the determination of the activity of caspase-1 and levels of SOD, CAT, PPARγ, NF-κB, IL-1ß, and IL-1ßR1. Furthermore, rosiglitazone-a PPARγ agonist-was applied. Our study pioneered the finding that the VGVAPG peptide increases caspase-1 activity in astrocytes in vitro. The VGVAPG peptide simultaneously decreases the release of IL-1ß into the cell-culture medium from astrocytes. The ELISA method revealed that the VGVAPG peptide increases the protein expression of SOD1 whereas it decreases the expression of IL-1ßR1, CAT, and NF-κB. Therefore, the available data suggest that the VGVAPG peptide (concentration 10 nM) synergistically acts with agonists of PPARγ in mouse astrocytes. However, given the lack of sufficient data to explain the molecular mechanism of action of the VGVAPG peptide in the nervous system, more studies in this area are necessary.


Assuntos
Astrócitos/fisiologia , Elastina/fisiologia , Mediadores da Inflamação/metabolismo , Inflamação/fisiopatologia , Oligopeptídeos/fisiologia , Peptídeos/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Expressão Gênica/fisiologia , Camundongos , Cultura Primária de Células , Rosiglitazona/farmacologia
8.
Arch Biochem Biophys ; 675: 108113, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31568752

RESUMO

Transactive Response DNA-Binding Protein of 43 kDa (TDP-43) is an essential human protein implicated in Amyotrophic Lateral Sclerosis (ALS) and common dementias. Its C-terminal disordered region, composed of residues 264-414 includes a hydrophobic segment (residues 320-340), which drives physiological liquid/liquid phase separation and a Q/N-rich segment (residues 341-357), which is essential for pathological amyloid formation. Due to TDP-43's relevance for pathology, identifying inhibitors and characterizing their mechanism of action are important pharmacological goals. The Polyglutamine Binding Peptide 1 (QBP1), whose minimal active core is the octapeptide WGWWPGIF, strongly inhibits the aggregation of polyQ-containing amyloidogenic proteins such as Huntingtin. Rather promiscuous, this inhibitor also blocks the aggregation of other glutamine containing amyloidogenic proteins, but not Aß, and its mechanism of action remains unknown. Using a series of spectroscopic assays and biochemical tests, we establish that QBP1 binds and inhibits amyloid formation by TDP-43's Q/N-rich region. NMR spectroscopic data evince that the aromatic rings of QBP1 accept hydrogen bonds from the HN groups of the Asn and Gln to block amyloidogenesis. This mechanism of blockage may be general to polyphenol amyloid inhibitors.


Assuntos
Amiloide/biossíntese , Proteínas de Ligação a DNA/antagonistas & inibidores , Oligopeptídeos/fisiologia , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Fluorescência , Humanos , Oligopeptídeos/química
9.
Neuron ; 100(3): 609-623.e3, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30244886

RESUMO

In the ocean, the crab Cancer borealis is subject to daily and seasonal temperature changes. Previous work, done in the presence of descending modulatory inputs, had shown that the pyloric rhythm of the crab increases in frequency as temperature increases but maintains its characteristic phase relationships until it "crashes" at extremely high temperatures. To study the interaction between neuromodulators and temperature perturbations, we studied the effects of temperature on preparations from which the descending modulatory inputs were removed. Under these conditions, the pyloric rhythm was destabilized. We then studied the effects of temperature on preparations in the presence of oxotremorine, proctolin, and serotonin. Oxotremorine and proctolin enhanced the robustness of the pyloric rhythm, whereas serotonin made the rhythm less robust. These experiments reveal considerable animal-to-animal diversity in their crash stability, consistent with the interpretation that cryptic differences in many cell and network parameters are revealed by extreme perturbations.


Assuntos
Potenciais de Ação/fisiologia , Gânglios dos Invertebrados/fisiologia , Rede Nervosa/fisiologia , Neurotransmissores/fisiologia , Temperatura , Animais , Braquiúros , Masculino , Neuropeptídeos/fisiologia , Oligopeptídeos/fisiologia , Oxotremorina/metabolismo , Serotonina/fisiologia
10.
J Neurosci ; 38(42): 8976-8988, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30185461

RESUMO

Neurons in the central pattern-generating circuits in the crustacean stomatogastric ganglion (STG) release neurotransmitter both as a graded function of presynaptic membrane potential that persists in TTX and in response to action potentials. In the STG of the male crab Cancer borealis, the modulators oxotremorine, C. borealis tachykinin-related peptide Ia (CabTRP1a), red pigment concentrating hormone (RPCH), proctolin, TNRNFLRFamide, and crustacean cardioactive peptide (CCAP) produce and sustain robust pyloric rhythms by activating the same modulatory current (IMI), albeit on different subsets of pyloric network targets. The muscarinic agonist oxotremorine, and the peptides CabTRP1a and RPCH elicited rhythmic triphasic intracellular alternating fluctuations of activity in the presence of TTX. Intracellular waveforms of pyloric neurons in oxotremorine and CabTRP1a in TTX were similar to those in the intact rhythm, and phase relationships among neurons were conserved. Although cycle frequency was conserved in oxotremorine and TTX, it was altered in CabTRP1a in the presence of TTX. Both rhythms were primarily driven by the pacemaker kernel consisting of the Anterior Burster and Pyloric Dilator neurons. In contrast, in TTX the circuit remained silent in proctolin, TNRNFLRFamide, and CCAP. These experiments show that graded synaptic transmission in the absence of voltage-gated Na+ current is sufficient to sustain rhythmic motor activity in some, but not other, modulatory conditions, even when each modulator activates the same ionic current. This further demonstrates that similar rhythmic motor patterns can be produced by qualitatively different mechanisms, one that depends on the activity of voltage-gated Na+ channels, and one that can persist in their absence.SIGNIFICANCE STATEMENT The pyloric rhythm of the crab stomatogastric ganglion depends both on spike-mediated and graded synaptic transmission. We activate the pyloric rhythm with a wide variety of different neuromodulators, all of which converge on the same voltage-dependent inward current. Interestingly, when action potentials and spike-mediated transmission are blocked using TTX, we find that the muscarinic agonist oxotremorine and the neuropeptide CabTRP1a sustain rhythmic alternations and appropriate phases of activity in the absence of action potentials. In contrast, TTX blocks rhythmic activity in the presence of other modulators. This demonstrates fundamental differences in the burst-generation mechanisms in different modulators that would not be suspected on the basis of their cellular actions at the level of the targeted current.


Assuntos
Potenciais de Ação/fisiologia , Geradores de Padrão Central/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurotransmissores/fisiologia , Transmissão Sináptica , Animais , Braquiúros , Geradores de Padrão Central/efeitos dos fármacos , Gânglios dos Invertebrados/diagnóstico por imagem , Masculino , Agonistas Muscarínicos/administração & dosagem , Neuropeptídeos/administração & dosagem , Neuropeptídeos/fisiologia , Neurotransmissores/administração & dosagem , Oligopeptídeos/administração & dosagem , Oligopeptídeos/fisiologia , Oxotremorina/administração & dosagem , Piloro/fisiologia , Ácido Pirrolidonocarboxílico/administração & dosagem , Ácido Pirrolidonocarboxílico/análogos & derivados , Bloqueadores dos Canais de Sódio/administração & dosagem , Tetrodotoxina/administração & dosagem
11.
J Neurosci ; 38(40): 8549-8562, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30126969

RESUMO

Multiple neuromodulators act in concert to shape the properties of neural circuits. Different neuromodulators usually activate distinct receptors but can have overlapping targets. Therefore, circuit output depends on neuromodulator interactions at shared targets, a poorly understood process. We explored quantitative rules of co-modulation of two principal targets of neuromodulation: synapses and voltage-gated ionic currents. In the stomatogastric ganglion of the male crab Cancer borealis, the neuropeptides proctolin (Proc) and the crustacean cardioactive peptide (CCAP) modulate synapses of the pyloric circuit and activate a voltage-gated current (IMI) in multiple neurons. We examined the validity of a simple dose-dependent quantitative rule, that co-modulation by Proc and CCAP is predicted by the linear sum of the individual effects of each modulator up to saturation. We found that this rule is valid for co-modulation of synapses, but not for the activation of IMI, in which co-modulation was sublinear. The predictions for the co-modulation of IMI activation were greatly improved if we assumed that the intracellular pathways activated by two peptide receptors inhibit one another. These findings suggest that the pathways activated by two neuromodulators could have distinct interactions, leading to distinct co-modulation rules for different targets even in the same neuron. Given the evolutionary conservation of neuromodulator receptors and signaling pathways, such distinct rules for co-modulation of different targets are likely to be common across neuronal circuits.SIGNIFICANCE STATEMENT We examine the quantitative rules of co-modulation at multiple shared targets, the first such characterization to our knowledge. Our results show that dose-dependent co-modulation of distinct targets in the same cells by the same two neuromodulators follows different rules: co-modulation of synaptic currents is linearly additive up to saturation, whereas co-modulation of the voltage-gated ionic current targeted in a single neuron is nonlinear, a mechanism that is likely generalizable. Given that all neural systems are multiply modulated and neuromodulators often act on shared targets, these findings and the methodology could guide studies to examine dynamic actions of neuromodulators at the biophysical and systems level in sensory and motor functions, sleep/wake regulation, and cognition.


Assuntos
Braquiúros/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Oligopeptídeos/fisiologia , Potenciais Sinápticos , Animais , Geradores de Padrão Central , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Masculino , Modelos Neurológicos , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Oligopeptídeos/administração & dosagem
13.
Gen Comp Endocrinol ; 241: 4-23, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27133544

RESUMO

The article presents an overview of the comparative distribution, structure and functions of the nonapeptide hormones in chordates and non chordates. The review begins with a historical preview of the advent of the concept of neurosecretion and birth of neuroendocrine science, pioneered by the works of E. Scharrer and W. Bargmann. The sections which follow discuss different vertebrate nonapeptides, their distribution, comparison, precursor gene structures and processing, highlighting the major differences in these aspects amidst the conserved features across vertebrates. The vast literature on the anatomical characteristics of the nonapeptide secreting nuclei in the brain and their projections was briefly reviewed in a comparative framework. Recent knowledge on the nonapeptide hormone receptors and their intracellular signaling pathways is discussed and few grey areas which require deeper studies are identified. The sections on the functions and regulation of nonapeptides summarize the huge and ever increasing literature that is available in these areas. The nonapeptides emerge as key homeostatic molecules with complex regulation and several synergistic partners. Lastly, an update of the nonapeptides in non chordates with respect to distribution, site of synthesis, functions and receptors, dealt separately for each phylum, is presented. The non chordate nonapeptides share many similarities with their counterparts in vertebrates, pointing the system to have an ancient origin and to be an important substrate for changes during adaptive evolution. The article concludes projecting the nonapeptides as one of the very first common molecules of the primitive nervous and endocrine systems, which have been retained to maintain homeostatic functions in metazoans; some of which are conserved across the animal kingdom and some are specialized in a group/lineage-specific manner.


Assuntos
Evolução Biológica , Oligopeptídeos/química , Oligopeptídeos/fisiologia , Hormônios Peptídicos/química , Hormônios Peptídicos/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Sistemas Neurossecretores/metabolismo , Ocitocina/química , Ocitocina/fisiologia , Relação Estrutura-Atividade , Vertebrados/genética , Vertebrados/metabolismo
14.
Anaerobe ; 41: 113-124, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27492724

RESUMO

Bacteria produce some of the most potent biomolecules known, of which many cause serious diseases such as tetanus. For prevention, billions of people and countless animals are immunised with the highly effective vaccine, industrially produced by large-scale fermentation. However, toxin production is often hampered by low yields and batch-to-batch variability. Improved productivity has been constrained by a lack of understanding of the molecular mechanisms controlling toxin production. Here we have developed a reproducible experimental framework for screening phenotypic determinants in Clostridium tetani under a process that mimics an industrial setting. We show that amino acid depletion induces production of the tetanus toxin. Using time-course transcriptomics and extracellular metabolomics to generate a 'fermentation atlas' that ascribe growth behaviour, nutrient consumption and gene expression to the fermentation phases, we found a subset of preferred amino acids. Exponential growth is characterised by the consumption of those amino acids followed by a slower exponential growth phase where peptides are consumed, and toxin is produced. The results aim at assisting in fermentation medium design towards the improvement of vaccine production yields and reproducibility. In conclusion, our work not only provides deep fermentation dynamics but represents the foundation for bioprocess design based on C. tetani physiological behaviour under industrial settings.


Assuntos
Clostridium tetani/metabolismo , Toxina Tetânica/biossíntese , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/fisiologia , Clostridium tetani/crescimento & desenvolvimento , Meios de Cultura/química , Metabolismo Energético , Fermentação , Ferro/metabolismo , Oligopeptídeos/química , Oligopeptídeos/fisiologia , Plasmídeos/genética , Toxina Tetânica/genética , Transcriptoma , Fatores de Virulência/genética
15.
Exp Biol Med (Maywood) ; 241(18): 2015-2022, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27465142

RESUMO

The inhibitors of apoptosis proteins are implicated in promoting cancer cells survival and resistance toward immune surveillance and chemotherapy. Second mitochondria-derived activator of caspases (SMAC) mimetics are novel compounds developed to mimic the inhibitory effect of the endogenous SMAC/DIABLO on these IAPs. Here, we examined the potential effects of the novel SMAC mimetic BV6 on different human cancer cell lines. Our results indicated that BV6 was able to induce cell death in different human cancer cell lines. Mechanistically, BV6 dose dependently induced degradation of IAPs, including cIAP1 and cIAP2. This was coincided with activating the non-canonical NF -kappa B (NF-κB) pathway, as indicated by stabilizing NF-κB-inducing kinase (NIK) for p100 processing to p52. More interestingly, BV6 was able to sensitize some of the resistant cancer cell lines to apoptosis induced by the death ligands tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) that are produced by different cells of the immune system. Such cell death enhancement was mediated by inducing an additional cleavage of caspase-9 to augment that of caspase-8 induced by death ligands. This eventually led to more processing of the executioner caspase-3 and poly (ADP-ribose) polymerase (PARP). In conclusion, therapeutic targeting of IAPs by BV6 might be an effective approach to enhance cancer regression induced by immune system. Our data also open up the future possibility of using BV6 in combination with other antitumor therapies to overcome cancer drug resistance.


Assuntos
Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Oligopeptídeos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Mieloma Múltiplo/metabolismo , Oligopeptídeos/fisiologia
16.
J Insect Physiol ; 91-92: 39-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27374982

RESUMO

The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects.


Assuntos
Adenosina/metabolismo , Drosophila melanogaster/fisiologia , Hormônios de Inseto/metabolismo , Hormônios de Inseto/fisiologia , Inseticidas/toxicidade , Oligopeptídeos/metabolismo , Oligopeptídeos/fisiologia , Estresse Oxidativo , Paraquat/toxicidade , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mutação , Ácido Pirrolidonocarboxílico/metabolismo
17.
Theranostics ; 6(2): 177-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877777

RESUMO

Cell penetrating peptides (CPPs) were widely used for drug delivery to tumor. However, the nonselective in vivo penetration greatly limited the application of CPPs-mediated drug delivery systems. And the treatment of malignant tumors is usually followed by poor prognosis and relapse due to the existence of extravascular core regions of tumor. Thus it is important to endue selective targeting and stronger intratumoral diffusion abilities to CPPs. In this study, an RGD reverse sequence dGR was conjugated to a CPP octa-arginine to form a CendR (R/KXXR/K) motif contained tandem peptide R8-dGR (RRRRRRRRdGR) which could bind to both integrin αvß3 and neuropilin-1 receptors. The dual receptor recognizing peptide R8-dGR displayed increased cellular uptake and efficient penetration ability into glioma spheroids in vitro. The following in vivo studies indicated the active targeting and intratumoral diffusion capabilities of R8-dGR modified liposomes. When paclitaxel was loaded in the liposomes, PTX-R8-dGR-Lip induced the strongest anti-proliferation effect on both tumor cells and cancer stem cells, and inhibited the formation of vasculogenic mimicry channels in vitro. Finally, the R8-dGR liposomal drug delivery system prolonged the medium survival time of intracranial C6 bearing mice by 2.1-fold compared to the untreated group, and achieved an exhaustive anti-glioma therapy including anti-tumor cells, anti-vasculogenic mimicry and anti-brain cancer stem cells. To sum up, all the results demonstrated that R8-dGR was an ideal dual receptor recognizing CPP with selective glioma targeting and efficient intratumoral diffusion, which could be further used to equip drug delivery system for effective glioma therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/farmacocinética , Glioma/tratamento farmacológico , Integrina alfaVbeta3/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Peptídeos Penetradores de Células/efeitos adversos , Peptídeos Penetradores de Células/química , Células HeLa , Humanos , Lipossomos/efeitos adversos , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Oligopeptídeos/efeitos adversos , Oligopeptídeos/fisiologia , Ligação Proteica
18.
Inorg Chem ; 55(1): 29-36, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684435

RESUMO

In case of a nuclear event, contamination (broad or limited) of the population or of specific workers might occur. In such a senario, the fate of actinide contaminants may be of first concern, in particular with regard to human target organs like the skeleton. To improve our understanding of the toxicological processes that might take place, a mechanistic approach is necessary. For instance, ∼50% of Pu(IV) is known from biokinetic data to accumulate in bone, but the underlining mechanisms are almost unknown. In this context, and to obtain a better description of the toxicological mechanisms associated with actinides(IV), we have undertaken the investigation, on a molecular scale, of the interaction of thorium(IV) with osteopontin (OPN) a hyperphosphorylated protein involved in bone turnover. Thorium is taken here as a simple model for actinide(IV) chemistry. In addition, we have selected a phosphorylated hexapeptide (His-pSer-Asp-Glu-pSer-Asp-Glu-Val) that is representative of the peptidic sequence involved in the bone interaction. For both the protein and the biomimetic peptide, we have determined the local environment of Th(IV) within the bioactinidic complex, combining isothermal titration calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, theoretical calculations with density functional theory, and extended X-ray absorption fine structure spectroscopy at the Th LIII edge. The results demonstrate a predominance of interaction of metal with the phosphate groups and confirmed the previous physiological studies that have highlighted a high affinity of Th(IV) for the bone matrix. Data are further compared with those of the uranyl case, representing the actinyl(V) and actinyl(VI) species. Last, our approach shows the importance of developing simplified systems [Th(IV)-peptide] that can serve as models for more biologically relevant systems.


Assuntos
Elementos da Série Actinoide/metabolismo , Osso e Ossos/metabolismo , Osteopontina/fisiologia , Tório/química , Humanos , Oligopeptídeos/fisiologia , Osteopontina/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Sci China Life Sci ; 58(5): 425-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25833803

RESUMO

Due to its essential roles in angiogenesis, Notch pathway has emerged as an attractive target for the treatment of pathologic angiogenesis. Although both activation and blockage of Notch signal can impede angiogenesis, activation of Notch signal may be more promising because it was shown that long-term Notch signal blockage resulted in vessel neoplasm. However, an in vivo deliverable Notch ligand with highly efficient Notch-activating capacity has not been developed. Among all the Notch ligands, Delta-like4 (Dll4) is specifically involved in angiogenesis. In this study, we generated a novel soluble Notch ligand hD4R, which consists of the Delta-Serrate-Lag-2 fragment of human Dll4 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We demonstrated that hD4R could bind to ECs through its RGD motif and effectively triggered Notch signaling in ECs. Further, we confirmed that hD4R could suppress angiogenesis in vitro as manifested by network formation assay and sprouting assay. More importantly, hD4R efficiently repressed neonatal retinal angiogenesis and laser-induced choroidal neovascularization (CNV) as well in vivo. In conclusion, we have developed an in vivo deliverable Notch ligand hD4R, which suppresses angiogenesis both in vitro and in vivo, thus providing a new approach to tackle excessive angiogenesis relevant disease such as CNV.


Assuntos
Neovascularização de Coroide/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neovascularização Retiniana/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Neovascularização de Coroide/prevenção & controle , Células Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Receptores Notch/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Neovascularização Retiniana/prevenção & controle , Transdução de Sinais , Solubilidade
20.
Am J Respir Cell Mol Biol ; 53(6): 834-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25923142

RESUMO

Mechanisms of vascular endothelial cell (EC) barrier regulation during acute lung injury (ALI) or other pathologies associated with increased vascular leakiness are an active area of research. Adaptor protein krev interaction trapped-1 (KRIT1) participates in angiogenesis, lumen formation, and stabilization of EC adherens junctions (AJs) in mature vasculature. We tested a role of KRIT1 in the regulation of Rho-GTPase signaling induced by mechanical stimulation and barrier dysfunction relevant to ventilator-induced lung injury and investigated KRIT1 involvement in EC barrier protection by prostacyclin (PC). PC stimulated Ras-related protein 1 (Rap1)-dependent association of KRIT1 with vascular endothelial cadherin at AJs, with KRIT1-dependent cortical cytoskeletal remodeling leading to EC barrier enhancement. KRIT1 knockdown exacerbated Rho-GTPase activation and EC barrier disruption induced by pathologic 18% cyclic stretch and thrombin receptor activating peptide (TRAP) 6 and attenuated the protective effects of PC. In the two-hit model of ALI caused by high tidal volume (HTV) mechanical ventilation and TRAP6 injection, KRIT1 functional deficiency in KRIT1(+/-) mice increased basal lung vascular leak and augmented vascular leak and lung injury caused by exposure to HTV and TRAP6. Down-regulation of KRIT1 also diminished the protective effects of PC against TRAP6/HTV-induced lung injury. These results demonstrate a KRIT1-dependent mechanism of vascular EC barrier control in basal conditions and in the two-hit model of ALI caused by excessive mechanical forces and TRAP6 via negative regulation of Rho activity and enhancement of cell junctions. We also conclude that the stimulation of the Rap1-KRIT1 signaling module is a major mechanism of vascular endothelial barrier protection by PC in the injured lung.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Oligopeptídeos/fisiologia , Prostaglandinas I/farmacologia , Proteínas Proto-Oncogênicas/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Antígenos CD/metabolismo , Fenômenos Biomecânicos , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Proteína KRIT1 , Pulmão/irrigação sanguínea , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transporte Proteico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA