Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
J Neurosci Methods ; 409: 110216, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964474

RESUMO

BACKGROUND: Neurological disorders arise primarily from the dysfunction of brain cells, leading to various impairments. Electroencephalography (EEG) stands out as the most popular method in the discovery of neuromarkers indicating neurological disorders. The proposed study investigates the effectiveness of spectral and synchrony neuromarkers derived from resting state EEG in the detection of Mild Cognitive Impairment (MCI) with controls. NEW METHODS: The dataset is composed of 10 MCI and 10 HC groups. Spectral features and synchrony measures are utilized to detect slowing patterns in MCI. Efficient neuro-markers are classified by 25 classification algorithm. Independent samples t-test and Pearson's Correlation Coefficients are applied to reveal group differences for spectral markers, and repeated measures ANOVA is tested for wPLI-based markers. RESULTS: Lower peak amplitudes are prominent in MCI participants for high frequencies indicating slower physiological behavior of the demented EEG. The MCI and HC groups are correctly classified with 95 % acc. using peak amplitudes of beta band with LGBM classifier. Higher wPLI values are calculated for HC participants in high frequencies. The alpha wPLI values achieve a classification accuracy of 99 % using the LGBM algorithm for MCI detection. COMPARISON WITH EXISTING METHODS: The neuro-markers including peak amplitudes, frequencies, and wPLIs with advanced machine learning techniques showcases the innovative nature of this research. CONCLUSION: The findings suggest that peak amplitudes and wPLI in high frequency bands derived from resting state EEG are effective neuromarkers for detection of MCI. Spectral and synchrony neuro-markers hold great promise for accurate MCI detection.


Assuntos
Disfunção Cognitiva , Eletroencefalografia , Humanos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/fisiopatologia , Idoso , Eletroencefalografia/métodos , Feminino , Masculino , Biomarcadores , Algoritmos , Ondas Encefálicas/fisiologia , Idoso de 80 Anos ou mais , Demência/diagnóstico , Demência/fisiopatologia , Encéfalo/fisiopatologia , Processamento de Sinais Assistido por Computador , Pessoa de Meia-Idade
2.
Thorac Cardiovasc Surg ; 72(S 03): e7-e15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38909608

RESUMO

BACKGROUND: Hypothermia is a neuroprotective strategy during cardiopulmonary bypass. Rewarming entailing a rapid rise in cerebral metabolism might lead to secondary neurological sequelae. In this pilot study, we aimed to validate the hypothesis that a slower rewarming rate would lower the risk of cerebral hypoxia and seizures in infants. METHODS: This is a prospective, clinical, single-center study. Infants undergoing cardiac surgery in hypothermia were rewarmed either according to the standard (+1°C in < 5 minutes) or a slow (+1°C in > 5-8 minutes) rewarming strategy. We monitored electrocortical activity via amplitude-integrated electroencephalography (aEEG) and cerebral oxygenation by near-infrared spectroscopy during and after surgery. RESULTS: Fifteen children in the standard rewarming group (age: 13 days [5-251]) were cooled down to 26.6°C (17.2-29.8) and compared with 17 children in the slow-rewarming group (age: 9 days [4-365]) with a minimal temperature of 25.7°C (20.1-31.4). All neonates in both groups (n = 19) exhibited suppressed patterns compared with 28% of the infants > 28 days (p < 0.05). During rewarming, only 26% of the children in the slow-rewarming group revealed suppressed aEEG traces (vs. 41%; p = 0.28). Cerebral oxygenation increased by a median of 3.5% in the slow-rewarming group versus 1.5% in the standard group (p = 0.9). Our slow-rewarming group revealed no aEEG evidence of any postoperative seizures (0 vs. 20%). CONCLUSION: These results might indicate that a slower rewarming rate after hypothermia causes less suppression of electrocortical activity and higher cerebral oxygenation during rewarming, which may imply a reduced risk of postoperative seizures.


Assuntos
Ponte Cardiopulmonar , Eletroencefalografia , Hipotermia Induzida , Reaquecimento , Convulsões , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Lactente , Estudos Prospectivos , Projetos Piloto , Masculino , Fatores de Tempo , Recém-Nascido , Feminino , Resultado do Tratamento , Hipotermia Induzida/efeitos adversos , Fatores de Risco , Convulsões/fisiopatologia , Convulsões/diagnóstico , Convulsões/etiologia , Convulsões/prevenção & controle , Ponte Cardiopulmonar/efeitos adversos , Ondas Encefálicas , Hipóxia Encefálica/prevenção & controle , Hipóxia Encefálica/etiologia , Hipóxia Encefálica/fisiopatologia , Hipóxia Encefálica/diagnóstico , Fatores Etários , Monitorização Neurofisiológica Intraoperatória , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular
3.
J Integr Neurosci ; 23(5): 99, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38812385

RESUMO

OBJECTIVE: The alterations of the functional network (FN) in anti-N-methyl-Daspartate receptor (NMDAR) encephalitis have been recognized by functional magnetic resonance imaging studies. However, few studies using the electroencephalogram (EEG) have been performed to explore the possible FN changes in anti-NMDAR encephalitis. In this study, the aim was to explore any FN changes in patients with anti-NMDAR encephalitis. METHODS: Twenty-nine anti-NMDAR encephalitis patients and 29 age- and gender-matched healthy controls (HC) were assessed using 19-channel EEG examination. For each participant, five 10-second epochs of resting state EEG with eyes closed were extracted. The cortical source signals of 84 Brodmann areas were calculated using the exact low resolution brain electromagnetic tomography (eLORETA) inverse solution by LORETA-KEY. Phase Lag Index (PLI) matrices were then obtained and graph and relative band power (RBP) analyses were performed. RESULTS: Compared with healthy controls, functional connectivity (FC) in the delta, theta, beta 1 and beta 2 bands significantly increased within the 84 cortical source signals of anti-NMDAR encephalitis patients (p < 0.05) and scalp FC in the alpha band decreased within the 19 electrodes. Additionally, the anti-NMDAR encephalitis group exhibited higher local efficiency and clustering coefficient compared to the healthy control group in the four bands. The slowing band RBP increased while the fast band RBP decreased in multiple-lobes and some of these changes in RBP were correlated with the modified Rankin Scale (mRS) and Mini-mental State Examination (MMSE) in anti-NMDAR encephalitis patients. CONCLUSIONS: This study further deepens the understanding of related changes in the abnormal brain network and power spectrum of anti-NMDA receptor encephalitis. The decreased scalp alpha FC may indicate brain dysfunction, while the increased source beta FC may indicate a compensatory mechanism for brain function in anti-NMDAR encephalitis patients. These findings extend understanding of how the brain FN changes from a cortical source perspective. Further studies are needed to detect correlations between altered FNs and clinical features and characterize their potential value for the management of anti-NMDAR encephalitis.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Eletroencefalografia , Rede Nervosa , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/fisiopatologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Feminino , Masculino , Adulto , Adulto Jovem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Ondas Encefálicas/fisiologia , Adolescente , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Conectoma
4.
Neurology ; 102(9): e209216, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38560817

RESUMO

BACKGROUND AND OBJECTIVES: High-frequency oscillations (HFOs; ripples 80-250 Hz; fast ripples [FRs] 250-500 Hz) recorded with intracranial electrodes generated excitement and debate about their potential to localize epileptogenic foci. We performed a systematic review and meta-analysis on the prognostic value of complete resection of the HFOs-area (crHFOs-area) for epilepsy surgical outcome in intracranial EEG (iEEG) accessing multiple subgroups. METHODS: We searched PubMed, Embase, and Web of Science for original research from inception to October 27, 2022. We defined favorable surgical outcome (FSO) as Engel class I, International League Against Epilepsy class 1, or seizure-free status. The prognostic value of crHFOs-area for FSO was assessed by (1) the pooled FSO proportion after crHFOs-area; (2) FSO for crHFOs-area vs without crHFOs-area; and (3) the predictive performance. We defined high combined prognostic value as FSO proportion >80% + FSO crHFOs-area >without crHFOs-area + area under the curve (AUC) >0.75 and examined this for the clinical subgroups (study design, age, diagnostic type, HFOs-identification method, HFOs-rate thresholding, and iEEG state). Temporal lobe epilepsy (TLE) was compared with extra-TLE through dichotomous variable analysis. Individual patient analysis was performed for sex, affected hemisphere, MRI findings, surgery location, and pathology. RESULTS: Of 1,387 studies screened, 31 studies (703 patients) met our eligibility criteria. Twenty-seven studies (602 patients) analyzed FRs and 20 studies (424 patients) ripples. Pooled FSO proportion after crHFOs-area was 81% (95% CI 76%-86%) for FRs and 82% (73%-89%) for ripples. Patients with crHFOs-area achieved more often FSO than those without crHFOs-area (FRs odds ratio [OR] 6.38, 4.03-10.09, p < 0.001; ripples 4.04, 2.32-7.04, p < 0.001). The pooled AUCs were 0.81 (0.77-0.84) for FRs and 0.76 (0.72-0.79) for ripples. Combined prognostic value was high in 10 subgroups: retrospective, children, long-term iEEG, threshold (FRs and ripples) and automated detection and interictal (FRs). FSO after complete resection of FRs-area (crFRs-area) was achieved less often in people with TLE than extra-TLE (OR 0.37, 0.15-0.89, p = 0.006). Individual patient analyses showed that crFRs-area was seen more in patients with FSO with than without MRI lesions (p = 0.02 after multiple correction). DISCUSSION: Complete resection of the brain area with HFOs is associated with good postsurgical outcome. Its prognostic value holds, especially for FRs, for various subgroups. The use of HFOs for extra-TLE patients requires further evidence.


Assuntos
Eletrocorticografia , Humanos , Prognóstico , Eletrocorticografia/métodos , Epilepsia/cirurgia , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Ondas Encefálicas/fisiologia
5.
Neuroimage ; 292: 120606, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604538

RESUMO

Radon is a naturally occurring gas that contributes significantly to radiation in the environment and is the second leading cause of lung cancer globally. Previous studies have shown that other environmental toxins have deleterious effects on brain development, though radon has not been studied as thoroughly in this context. This study examined the impact of home radon exposure on the neural oscillatory activity serving attention reorientation in youths. Fifty-six participants (ages 6-14 years) completed a classic Posner cuing task during magnetoencephalography (MEG), and home radon levels were measured for each participant. Time-frequency spectrograms indicated stronger theta (3-7 Hz, 300-800 ms), alpha (9-13 Hz, 400-900 ms), and beta responses (14-24 Hz, 400-900 ms) during the task relative to baseline. Source reconstruction of each significant oscillatory response was performed, and validity maps were computed by subtracting the task conditions (invalidly cued - validly cued). These validity maps were examined for associations with radon exposure, age, and their interaction in a linear regression design. Children with greater radon exposure showed aberrant oscillatory activity across distributed regions critical for attentional processing and attention reorientation (e.g., dorsolateral prefrontal cortex, and anterior cingulate cortex). Generally, youths with greater radon exposure exhibited a reverse neural validity effect in almost all regions and showed greater overall power relative to peers with lesser radon exposure. We also detected an interactive effect between radon exposure and age where youths with greater radon exposure exhibited divergent developmental trajectories in neural substrates implicated in attentional processing (e.g., bilateral prefrontal cortices, superior temporal gyri, and inferior parietal lobules). These data suggest aberrant, but potentially compensatory neural processing as a function of increasing home radon exposure in areas critical for attention and higher order cognition.


Assuntos
Atenção , Magnetoencefalografia , Radônio , Humanos , Adolescente , Criança , Masculino , Feminino , Radônio/toxicidade , Radônio/efeitos adversos , Atenção/efeitos da radiação , Atenção/fisiologia , Exposição Ambiental/efeitos adversos , Encéfalo/efeitos da radiação , Ondas Encefálicas/efeitos da radiação , Ondas Encefálicas/fisiologia , Ondas Encefálicas/efeitos dos fármacos , Orientação/fisiologia
6.
Clin Neurophysiol ; 162: 210-218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643614

RESUMO

OBJECTIVE: Focal cortical dysplasias (FCD) are characterized by distinct interictal spike patterns and high frequency oscillations (HFOs; ripples: 80-250 Hz; fast ripples: 250-500 Hz) in the intra-operative electrocorticogram (ioECoG). We studied the temporal relation between intra-operative spikes and HFOs and their relation to resected tissue in people with FCD with a favorable outcome. METHODS: We included patients who underwent ioECoG-tailored epilepsy surgery with pathology confirmed FCD and long-term Engel 1A outcome. Spikes and HFOs were automatically detected and visually checked in 1-minute pre-resection-ioECoG. Channels covering resected and non-resected tissue were compared using a logistic mixed model, assessing event numbers, co-occurrence ratios, and time-based properties. RESULTS: We found pre-resection spikes, ripples in respectively 21 and 20 out of 22 patients. Channels covering resected tissue showed high numbers of spikes and HFOs, and high ratios of co-occurring events. Spikes, especially with ripples, have a relatively sharp rising flank with a long descending flank and early ripple onset over resected tissue. CONCLUSIONS: A combined analysis of event numbers, ratios, and temporal relationships between spikes and HFOs may aid identifying epileptic tissue in epilepsy surgery. SIGNIFICANCE: This study shows a promising method for clinically relevant properties of events, closely associated with FCD.


Assuntos
Eletrocorticografia , Monitorização Neurofisiológica Intraoperatória , Malformações do Desenvolvimento Cortical , Humanos , Feminino , Masculino , Adulto , Adolescente , Malformações do Desenvolvimento Cortical/fisiopatologia , Malformações do Desenvolvimento Cortical/cirurgia , Eletrocorticografia/métodos , Adulto Jovem , Monitorização Neurofisiológica Intraoperatória/métodos , Criança , Pessoa de Meia-Idade , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Epilepsia/diagnóstico , Ondas Encefálicas/fisiologia , Pré-Escolar , Potenciais de Ação/fisiologia , Eletroencefalografia/métodos , Displasia Cortical Focal
7.
Hum Brain Mapp ; 45(6): e26687, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38651629

RESUMO

The unprecedented increase in life expectancy presents a unique opportunity and the necessity to explore both healthy and pathological aspects of ageing. Electroencephalography (EEG) has been widely used to identify neuromarkers of cognitive ageing due to its affordability and richness in information. However, despite the growing volume of data and methodological advancements, the abundance of contradictory and non-reproducible findings has hindered clinical translation. To address these challenges, our study introduces a comprehensive workflow expanding on previous EEG studies and investigates various static and dynamic power and connectivity estimates as potential neuromarkers of cognitive ageing in a large dataset. We also assess the robustness of our findings by testing their susceptibility to band specification. Finally, we characterise our findings using functionally annotated brain networks to improve their interpretability and multi-modal integration. Our analysis demonstrates the effect of methodological choices on findings and that dynamic rather than static neuromarkers are not only more sensitive but also more robust. Consequently, they emerge as strong candidates for cognitive ageing neuromarkers. Moreover, we were able to replicate the most established EEG findings in cognitive ageing, such as alpha oscillation slowing, increased beta power, reduced reactivity across multiple bands, and decreased delta connectivity. Additionally, when considering individual variations in the alpha band, we clarified that alpha power is characteristic of memory performance rather than ageing, highlighting its potential as a neuromarker for cognitive ageing. Finally, our approach using functionally annotated source reconstruction allowed us to provide insights into domain-specific electrophysiological mechanisms underlying memory performance and ageing. HIGHLIGHTS: We provide an open and reproducible pipeline with a comprehensive workflow to investigate static and dynamic EEG neuromarkers. Neuromarkers related to neural dynamics are sensitive and robust. Individualised alpha power characterises cognitive performance rather than ageing. Functional annotation allows cross-modal interpretation of EEG findings.


Assuntos
Eletroencefalografia , Envelhecimento Saudável , Humanos , Eletroencefalografia/métodos , Envelhecimento Saudável/fisiologia , Idoso , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento Cognitivo/fisiologia , Biomarcadores , Rede Nervosa/fisiologia , Ondas Encefálicas/fisiologia , Ritmo alfa/fisiologia , Memória/fisiologia , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais
8.
Brain ; 147(7): 2496-2506, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325327

RESUMO

We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.


Assuntos
Eletrocorticografia , Humanos , Masculino , Feminino , Adulto , Eletrocorticografia/métodos , Adulto Jovem , Adolescente , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Criança , Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia
9.
Sci Rep ; 13(1): 21758, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066035

RESUMO

The interaction between biological tissue and electromagnetic fields (EMF) is a topic of increasing interest due to the rising prevalence of background EMF in the past decades. Previous studies have attempted to measure the effects of EMF on brainwaves using EEG recordings, but are typically hampered by experimental and environmental factors. In this study, we present a framework for measuring the impact of EMF on EEG while controlling for these factors. A Bayesian statistical approach is employed to provide robust statistical evidence of the observed EMF effects. This study included 32 healthy participants in a double-blinded crossover counterbalanced design. EEG recordings were taken from 63 electrodes across 6 brain regions. Participants underwent a measurement protocol comprising two 18-min sessions with alternating blocks of eyes open (EO) and eyes closed (EC) conditions. Group 1 (n = 16) had EMF during the first session and sham during the second session; group 2 (n = 16) had the opposite. Power spectral density plots were generated for all sessions and brain regions. The Bayesian analysis provided statistical evidence for the presence of an EMF effect in the alpha band power density in the EO condition. This measurement protocol holds potential for future research on the impact of novel transmission protocols.


Assuntos
Ondas Encefálicas , Telefone Celular , Humanos , Campos Eletromagnéticos/efeitos adversos , Voluntários Saudáveis , Teorema de Bayes , Ondas de Rádio
10.
Seizure ; 113: 58-65, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984126

RESUMO

OBJECTIVE: High-frequency oscillations (HFOs) are an efficient indicator to locate the epileptogenic zone (EZ). However, physiological HFOs produced in the normal brain region may interfere with EZ localization. The present study aimed to build a machine learning-based classifier to distinguish the properties of each HFO event based on features in different domains. METHODS: HFOs were detected in focal epilepsy patients from two different hospitals who underwent stereoelectroencephalography and subsequent resection surgery. Subsequently, 37 features in four different domains (time, frequency and time-frequency, entropy-based and nonlinear) were extracted for each HFO. After extraction, a fast correlation-based filter (FCBF) algorithm was applied for feature selection. The machine learning classifier was trained on the feature matrix with and without FCBF and then tested on the data set from patients in another hospital. RESULTS: A dataset was compiled, consisting of 89,844 pathological HFOs and 23,613 physiological HFOs from 17 patients assigned to the training dataset. Additionally, 12,695 pathological HFOs and 5,599 physiological HFOs from 9 patients were assigned to the testing dataset. Four features (ripple band power, arithmetic mean, Petrosian fractal dimension and zero crossings) were obtained for classifier training after FCBF. The classifier showed an area under the curve (AUC) of 0.95/0.98 for FCBF/no FCBF features in the training dataset and AUC of 0.82/0.90 for FCBF/no FCBF features in the testing dataset. Our findings indicated that the classifier utilizing all features demonstrated superior performance compared to the one relying on FCBF-processed features. CONCLUSION: Our classifier could reliably differentiate pathological HFOs from physiological ones, which could promote the development of HFOs in EZ localization.


Assuntos
Ondas Encefálicas , Epilepsias Parciais , Humanos , Eletroencefalografia/métodos , Encéfalo , Ondas Encefálicas/fisiologia , Aprendizado de Máquina
11.
Nat Commun ; 14(1): 6435, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833252

RESUMO

We investigated the developmental changes in high-frequency oscillation (HFO) and Modulation Index (MI) - the coupling measure between HFO and slow-wave phase. We generated normative brain atlases, using subdural EEG signals from 8251 nonepileptic electrode sites in 114 patients (ages 1.0-41.5 years) who achieved seizure control following resective epilepsy surgery. We observed a higher MI in the occipital lobe across all ages, and occipital MI increased notably during early childhood. The cortical areas exhibiting MI co-growth were connected via the vertical occipital fasciculi and posterior callosal fibers. While occipital HFO rate showed no significant age-association, the temporal, frontal, and parietal lobes exhibited an age-inversed HFO rate. Assessment of 1006 seizure onset sites revealed that z-score normalized MI and HFO rate were higher at seizure onset versus nonepileptic electrode sites. We have publicly shared our intracranial EEG data to enable investigators to validate MI and HFO-centric presurgical evaluations to identify the epileptogenic zone.


Assuntos
Ascomicetos , Ondas Encefálicas , Epilepsia , Humanos , Pré-Escolar , Eletroencefalografia , Ondas Encefálicas/fisiologia , Mapeamento Encefálico , Epilepsia/cirurgia , Convulsões
12.
Adv Exp Med Biol ; 1425: 545-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37581828

RESUMO

Aroma extracts from plant species have been utilized since ancient times for a variety of discomforting circumstances. Aromatherapy is a recognized complementary therapeutic treatment performed in various ways such as massage or dermal application, with its main uses involving relaxation, pain relief, and stress management. Several studies have outlined that inhalation of fragrance may influence the brain function since their components can cross the blood-brain barrier and interact with central nervous system receptors. The aim of this review was to systematically present findings regarding alpha brain wave activity reported exclusively by electroencephalography. The study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The PubMed and Scopus databases were screened for relevant papers, based on specific eligibility criteria. The final step of the process resulted in 13 studies published between 1998 and 2021, using different essential oils. Most of the studies revealed the increase of alpha brainwave activity post-essential oil inhalation. Given the proven positive outcomes of increased alpha wave activity on several domains such as cognitive performance and better mental state, further research on the impact of essential oil inhalation is warranted.


Assuntos
Aromaterapia , Ondas Encefálicas , Óleos Voláteis , Adulto , Humanos , Óleos Voláteis/uso terapêutico , Óleos de Plantas , Eletroencefalografia
13.
Sci Rep ; 13(1): 4343, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928606

RESUMO

The effectiveness, robustness, and flexibility of memory and learning constitute the very essence of human natural intelligence, cognition, and consciousness. However, currently accepted views on these subjects have, to date, been put forth without any basis on a true physical theory of how the brain communicates internally via its electrical signals. This lack of a solid theoretical framework has implications not only for our understanding of how the brain works, but also for wide range of computational models developed from the standard orthodox view of brain neuronal organization and brain network derived functioning based on the Hodgkin-Huxley ad-hoc circuit analogies that have produced a multitude of Artificial, Recurrent, Convolution, Spiking, etc., Neural Networks (ARCSe NNs) that have in turn led to the standard algorithms that form the basis of artificial intelligence (AI) and machine learning (ML) methods. Our hypothesis, based upon our recently developed physical model of weakly evanescent brain wave propagation (WETCOW) is that, contrary to the current orthodox model that brain neurons just integrate and fire under accompaniment of slow leaking, they can instead perform much more sophisticated tasks of efficient coherent synchronization/desynchronization guided by the collective influence of propagating nonlinear near critical brain waves, the waves that currently assumed to be nothing but inconsequential subthreshold noise. In this paper we highlight the learning and memory capabilities of our WETCOW framework and then apply it to the specific application of AI/ML and Neural Networks. We demonstrate that the learning inspired by these critically synchronized brain waves is shallow, yet its timing and accuracy outperforms deep ARCSe counterparts on standard test datasets. These results have implications for both our understanding of brain function and for the wide range of AI/ML applications.


Assuntos
Inteligência Artificial , Ondas Encefálicas , Humanos , Redes Neurais de Computação , Algoritmos , Encéfalo/fisiologia
14.
Redox Biol ; 51: 102233, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35042677

RESUMO

Using a novel rat model of Down syndrome (DS), the functional role of the cystathionine-ß-synthase (CBS)/hydrogen sulfide (H2S) pathway was investigated on the pathogenesis of brain wave pattern alterations and neurobehavioral dysfunction. Increased expression of CBS and subsequent overproduction of H2S was observed in the brain of DS rats, with CBS primarily localizing to astrocytes and the vasculature. DS rats exhibited neurobehavioral defects, accompanied by a loss of gamma brain wave activity and a suppression of the expression of multiple pre- and postsynaptic proteins. Aminooxyacetate, a prototypical pharmacological inhibitor of CBS, increased the ability of the DS brain tissue to generate ATP in vitro and reversed the electrophysiological and neurobehavioral alterations in vivo. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS, most likely through dysregulation of cellular bioenergetics and gene expression.


Assuntos
Ondas Encefálicas , Síndrome de Down , Sulfeto de Hidrogênio , Animais , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Metabolismo Energético , Sulfeto de Hidrogênio/metabolismo , Ratos
15.
Clin Neurophysiol ; 134: 88-99, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34991017

RESUMO

OBJECTIVE: We hypothesized that spatio-temporal dynamics of interictal spikes reflect the extent and stability of epileptic sources and determine surgical outcome. METHODS: We studied 30 consecutive patients (14 good outcome). Spikes were detected in prolonged stereo-electroencephalography recordings. We quantified the spatio-temporal dynamics of spikes using the variance of the spike rate, line length and skewness of the spike distribution, and related these features to outcome. We built a logistic regression model, and compared its performance to traditional markers. RESULTS: Good outcome patients had more dominant and stable sources than poor outcome patients as expressed by a higher variance of spike rates, a lower variance of line length, and a lower variance of positive skewness (ps < 0.05). The outcome was correctly predicted in 80% of patients. This was better or non-inferior to predictions based on a focal lesion (p = 0.016), focal seizure-onset zone, or complete resection (ps > 0.05). In the five patients where traditional markers failed, spike distribution predicted the outcome correctly. The best results were achieved by 18-h periods or longer. CONCLUSIONS: Analysis of spike dynamics shows that surgery outcome depends on strong, single and stable sources. SIGNIFICANCE: Our quantitative method has the potential to be a reliable predictor of surgical outcome.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Parciais/fisiopatologia , Adulto , Encéfalo/cirurgia , Mapeamento Encefálico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Procedimentos Neurocirúrgicos , Prognóstico , Resultado do Tratamento , Adulto Jovem
16.
Sci Rep ; 12(1): 1301, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079091

RESUMO

Epilepsy surgery can achieve seizure freedom in selected pediatric candidates, but reliable postsurgical predictors of seizure freedom are missing. High frequency oscillations (HFO) in scalp EEG are a new and promising biomarker of treatment response. However, it is unclear if the skull defect resulting from craniotomy interferes with HFO detection in postsurgical recordings. We considered 14 children with focal lesional epilepsy who underwent presurgical evaluation, epilepsy surgery, and postsurgical follow-up of ≥ 1 year. We identified the nearest EEG electrodes to the skull defect in the postsurgical MRI. We applied a previously validated automated HFO detector to determine HFO rates in presurgical and postsurgical EEG. Overall, HFO rates showed a positive correlation with seizure frequency (p < 0.001). HFO rates in channels over the HFO area decreased following successful epilepsy surgery, irrespective of their proximity to the skull defect (p = 0.005). HFO rates in channels outside the HFO area but near the skull defect showed no increase following surgery (p = 0.091) and did not differ from their contralateral channels (p = 0.726). Our observations show that the skull defect does not interfere with postsurgical HFO detection. This supports the notion that scalp HFO can predict postsurgical seizure freedom and thus guide therapy management in focal lesional epilepsy.


Assuntos
Ondas Encefálicas/fisiologia , Craniotomia/métodos , Epilepsias Parciais/cirurgia , Couro Cabeludo/fisiologia , Crânio/cirurgia , Adolescente , Biomarcadores , Criança , Pré-Escolar , Eletrodos , Feminino , Seguimentos , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Convulsões/diagnóstico , Resultado do Tratamento
17.
Clin Neurophysiol ; 134: 1-8, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34922194

RESUMO

OBJECTIVE: Phase-amplitude coupling between high-frequency (≥150 Hz) and delta (3-4 Hz) oscillations - modulation index (MI) - is a promising, objective biomarker of epileptogenicity. We determined whether sevoflurane anesthesia preferentially enhances this metric within the epileptogenic zone. METHODS: This is an observational study of intraoperative electrocorticography data from 621 electrodes chronically implanted into eight patients with drug-resistant, focal epilepsy. All patients were anesthetized with sevoflurane during resective surgery, which subsequently resulted in seizure control. We classified 'removed' and 'retained' brain sites as epileptogenic and non-epileptogenic, respectively. Mixed model analysis determined which anesthetic stage optimized MI-based classification of epileptogenic sites. RESULTS: MI increased as a function of anesthetic stage, ranging from baseline (i.e., oxygen alone) to 2.0 minimum alveolar concentration (MAC) of sevoflurane, preferentially at sites showing higher initial MI values. This phenomenon was accentuated just prior to sevoflurane reaching 2.0 MAC, at which time, the odds of a site being classified as epileptogenic were enhanced by 86.6 times for every increase of 1.0 MI. CONCLUSIONS: Intraoperative MI best localized the epileptogenic zone immediately before sevoflurane reaching 2.0 MAC in this small cohort of patients. SIGNIFICANCE: Prospective, large cohort studies are warranted to determine whether sevoflurane anesthesia can reduce the need for extraoperative, invasive evaluation.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Parciais/fisiopatologia , Sevoflurano/administração & dosagem , Adolescente , Anestesia Geral , Encéfalo/fisiopatologia , Encéfalo/cirurgia , Ondas Encefálicas/fisiologia , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Epilepsias Parciais/cirurgia , Humanos , Procedimentos Neurocirúrgicos , Estudos Prospectivos , Adulto Jovem
18.
Clin Neurophysiol ; 133: 165-174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774442

RESUMO

OBJECTIVE: High frequency oscillations (HFOs) in intraoperative electrocorticography (ioECoG) are thought to be generated by hyperexcitable neurons. Inflammation may promote neuronal hyperexcitability. We investigated the relation between HFOs and inflammation in tumor-related epilepsy. METHODS: We identified HFOs (ripples 80-250 Hz, fast ripples 250-500 Hz) in the preresection ioECoG of 32 patients with low-grade tumors. Localization of recorded HFOs was classified based on magnetic resonance imaging reconstructions: in tumor, in resected non-tumorous area and outside the resected area. We tested if the following inflammatory markers in the tumor or peritumoral tissue were related to HFOs: activated microglia, cluster of differentiation 3 (CD3)-positive T-cells, interleukin 1-beta (IL1ß), toll-like receptor 4 (TLR4) and high mobility group box 1 protein (HMGB1). RESULTS: Tumors that generated ripples were infiltrated by more CD3-positive cells than tumors without ripples. Ripple rate outside the resected area was positively correlated with IL1ß/TLR4/HMGB1 pathway activity in peritumoral area. These two areas did not directly overlap. CONCLUSIONS: Ripple rates may be associated with inflammatory processes. SIGNIFICANCE: Our findings support that ripple generation and spread might be associated with synchronized fast firing of hyperexcitable neurons due to certain inflammatory processes. This pilot study provides arguments for further investigations in HFOs and inflammation.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Doenças Neuroinflamatórias/fisiopatologia , Adolescente , Adulto , Encéfalo/cirurgia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/cirurgia , Criança , Pré-Escolar , Eletrocorticografia , Epilepsia/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neuroinflamatórias/etiologia , Adulto Jovem
19.
J Neurosci ; 42(3): 390-404, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34844988

RESUMO

Sharp wave ripples (SW-Rs) in the hippocampus are synchronized bursts of hippocampal pyramidal neurons (PyNs), critical for spatial working memory. However, the molecular underpinnings of SW-Rs remain poorly understood. We show that SW-Rs in hippocampal slices from both male and female mice were suppressed by neuregulin 1 (NRG1), an epidermal growth factor whose expression is enhanced by neuronal activity. Pharmacological inhibition of ErbB4, a receptor tyrosine kinase for NRG1, increases SW-R occurrence rate in hippocampal slices. These results suggest an important role of NRG1-ErbB4 signaling in regulating SW-Rs. To further test this notion, we characterized SW-Rs in freely moving male mice, chemical genetic mutant mice, where ErbB4 can be specifically inhibited by the bulky inhibitor 1NMPP1. Remarkably, SW-R occurrence was increased by 1NMPP1. We found that 1NMPP1 increased the firing rate of PyN neurons, yet disrupted PyN neuron dynamics during SW-R events. Furthermore, 1NMPP1 increased SW-R occurrence during both nonrapid eye movement (NREM) sleep states and wake states with a greater impact on SW-Rs during wake states. In accord, spatial working memory was attenuated in male mice. Together these results indicate that dynamic activity of ErbB4 kinase is critical to SW-Rs and spatial working memory. This study reveals a novel regulatory mechanism of SW-Rs and a novel function of the NRG1-ErbB4 signaling.SIGNIFICANCE STATEMENT Sharp wave ripples (SW-Rs) are a hippocampal event, important for memory functioning. Yet the molecular pathways that regulate SW-Rs remain unclear. Neuregulin 1 (NRG1), previously known to be increased in pyramidal neuron's (PyNs) in an activity dependent manner, signals to its receptor, ErbB4 kinase, that is in important regulator of GABAergic transmission and long-term potentiation in the hippocampus. Our findings demonstrate that SW-Rs are regulated by this signaling pathway in a dynamic manner. Not only so, we show that this signaling pathway is dynamically needed for spatial working memory. These data suggest a molecular signaling pathway, NRG1-ErbB4, that regulates an important network event of the hippocampus, SW-Rs, that underlies memory functioning.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Potenciais de Ação/fisiologia , Animais , Feminino , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Memória Espacial/fisiologia
20.
Sci Rep ; 11(1): 22716, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811404

RESUMO

Spectral power density (SPD) indexed by electroencephalogram (EEG) recordings has recently gained attention in elucidating neural mechanisms of chronic pain syndromes and medication use. We compared SPD variations between 15 fibromyalgia (FM) women in use of opioid in the last three months (73.33% used tramadol) with 32 non-users. EEG data were obtained with Eyes Open (EO) and Eyes Closed (EC) resting state. SPD peak amplitudes between EO-EC were smaller in opioid users in central theta, central beta, and parietal beta, and at parietal delta. However, these variations were positive for opioid users. Multivariate analyses of variance (ANOVAs) revealed that EO-EC variations in parietal delta were negatively correlated with the disability due to pain, and central and parietal beta activity variations were positively correlated with worse sleep quality. These clinical variables explained from 12.5 to 17.2% of SPD variance. In addition, central beta showed 67% sensitivity / 72% specificity and parietal beta showed 73% sensitivity/62% specificity in discriminating opioid users from non-users. These findings suggest oscillations in EEG might be a sensitive surrogate marker to screen FM opioid users and a promising tool to understand the effects of opioid use and how these effects relate to functional and sleep-related symptoms.


Assuntos
Analgésicos Opioides/uso terapêutico , Mapeamento Encefálico , Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Eletroencefalografia , Fibromialgia/tratamento farmacológico , Descanso , Adulto , Encéfalo/fisiopatologia , Estudos Transversais , Feminino , Fibromialgia/diagnóstico , Fibromialgia/fisiopatologia , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Processamento de Sinais Assistido por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA