Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(17): e0101422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35946937

RESUMO

Reactive oxygen species (ROS) play an important role in tissue inflammation. In this study, we measured the intracellular level of ROS in herpes stromal keratitis (HSK) corneas and determined the outcome of manipulating ROS level on HSK severity. Our results showed the predominance of ROS generation in neutrophils but not CD4 T cells in HSK corneas. NADPH oxidase 2 (NOX2) enzyme is known to generate ROS in myeloid cells. Our results showed baseline expression of different NOX2 subunits in uninfected corneas. After corneal herpes simplex virus-1 (HSV-1) infection, an enhanced expression of NOX2 subunits was detected in infected corneas. Furthermore, flow cytometry results showed a higher level of gp91 (Nox2 subunit) protein in neutrophils from HSK corneas, suggesting the involvement of NOX2 in generating ROS. However, no significant decrease in ROS level was noticed in neutrophils from HSV-1-infected gp91-/- mice than in C57BL/6J (B6) mice, suggesting NOX2 is not the major contributor in generating ROS in neutrophils. Next, we used diphenyleneiodonium (DPI), a flavoenzyme inhibitor, to pharmacologically manipulate the ROS levels in HSV-1-infected mice. Surprisingly, the neutrophils from peripheral blood and corneas of the DPI-treated group exhibited an increased level of ROS than the vehicle-treated group of infected B6 mice. Excessive ROS is known to cause cell death. Accordingly, DPI treatment resulted in a significant decrease in neutrophil frequency in peripheral blood and corneas of infected mice and was associated with reduced corneal pathology. Together, our results suggest that regulating ROS levels in neutrophils can ameliorate HSK severity. IMPORTANCE Neutrophils are one of the primary immune cell types involved in causing tissue damage after corneal HSV-1 infection. This study demonstrates that intracellular ROS production in the neutrophils in HSK lesions is not NOX2 dependent. Furthermore, manipulating ROS levels in neutrophils ameliorates the severity of HSK lesions. Our findings suggest that excessive intracellular ROS in neutrophils disrupt redox homeostasis and affect their survival, resulting in a decrease in HSK lesion severity.


Assuntos
Herpes Simples , Ceratite Herpética , Neutrófilos , Oniocompostos , Animais , Linfócitos T CD4-Positivos , Córnea , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1 , Ceratite Herpética/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/metabolismo , Neutrófilos/metabolismo , Oniocompostos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo
2.
Brain Behav Immun ; 84: 242-252, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31841660

RESUMO

BACKGROUND: Research indicates that sepsis increases the risk of developing cognitive impairment. After systemic inflammation, a corresponding activation of microglia is rapidly induced in the brain, and multiple neurotoxic factors, including inflammatory mediators (e.g., cytokines) and reactive oxygen species (e.g., superoxide), are also released that contribute to neuronal injury. NADPH oxidase (NOX) enzymes play a vital role in microglial activation through the generation of superoxide anions. We hypothesized that NOX isoforms, particularly NOX2, could exhibit remarkable abilities in developing cognitive deficits induced by systemic inflammation. METHODS: Mice with deficits of NOX2 organizer p47phox (p47phox-/-) and wild-type (WT) mice treated with the NOX inhibitor diphenyleneiodonium (DPI) were used in this study. Intraperitoneal lipopolysaccharide (LPS) injection was used to induce systemic inflammation. Spatial learning and memory were compared among treatment groups using the radial arm maze task. Brain tissues were collected for evaluating the transcript levels of proinflammatory cytokines, whereas immunofluorescence staining and immunoblotting were conducted to determine the percentage of activated glia (microglia and astroglia) and damaged neurons and the expression of synaptic proteins and BDNF. RESULTS: Cognitive impairment induced by systemic inflammation was significantly attenuated in the p47phox-/- mice compared to that in the WT mice. The p47phox-/- mice exhibited reduced microglial and astroglial activation and neuronal damage and attenuated the induction of multiple proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and CCL2. Similar to that observed in the p47phox-/- mice, the administration of DPI significantly attenuated the cognitive impairment, reduced the glial activation and brain cytokine concentrations, and restored the expression of postsynaptic proteins (PSD-95) and BDNF in neurons and astrocytes, compared to those in the vehicle-treated controls within 10 days after LPS injection. CONCLUSIONS: This study clearly demonstrates that NOX2 contributes to glial activation with subsequent reduction in the expression of BDNF, synaptic dysfunction, and cognitive deficits after systemic inflammation in an LPS-injected mouse model. Our results provide evidence that NOX2 might be a promising pharmacological target that could be used to protect against synaptic dysregulation and cognitive impairment following systemic inflammation.


Assuntos
Disfunção Cognitiva , Inflamação , NADPH Oxidase 2 , Oniocompostos , Animais , Doença Crônica , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , NADPH Oxidase 2/metabolismo , Oniocompostos/farmacologia , Oniocompostos/uso terapêutico , Espécies Reativas de Oxigênio
3.
Cancer Res ; 79(23): 5907-5914, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31434645

RESUMO

Since Warburg's observation that most cancers exhibit elevated glycolysis, decades of research have attempted to reduce tumor glucose utilization as a therapeutic approach. Hexokinase (HK) activity is the first glycolytic enzymatic step; despite many attempts to inhibit HK activity, none has reached clinical application. Identification of HK isoforms, and recognition that most tissues express only HK1 while most tumors express HK1 and HK2, stimulated reducing HK2 activity as a therapeutic option. However, studies using HK2 shRNA and isogenic HK1+HK2- and HK1+HK2+ tumor cell pairs demonstrated that tumors expressing only HK1, while exhibiting reduced glucose consumption, progressed in vivo as well as tumors expressing both HK1 and HK2. However, HK1-HK2+ tumor subpopulations exist among many cancers. shRNA HK2 suppression in HK1-HK2+ liver cancer cells reduced xenograft tumor progression, in contrast to HK1+HK2+ cells. HK2 inhibition, and partial inhibition of both oxidative phosphorylation and fatty acid oxidation using HK2 shRNA and small-molecule drugs, prevented human liver HK1-HK2+ cancer xenograft progression. Using human multiple myeloma xenografts and mouse allogeneic models to identify potential clinical translational agents, triple therapies that include antisense HK2 oligonucleotides, metformin, and perhexiline prevent progression. These results suggest an agnostic approach for HK1-HK2+ cancers, regardless of tissue origin.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Glicólise/efeitos dos fármacos , Hexoquinase/antagonistas & inibidores , Hexoquinase/genética , Neoplasias/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Glicólise/genética , Hexoquinase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Neoplasias/genética , Neoplasias/patologia , Oniocompostos/farmacologia , Oniocompostos/uso terapêutico , Fosforilação Oxidativa/efeitos dos fármacos , Perexilina/farmacologia , Perexilina/uso terapêutico , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Med ; 12(5): 518-524, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29260383

RESUMO

The increased levels of intracellular reactive oxygen species (ROS) in granulosa cells (GCs) may affect the pregnancy results in women with polycystic ovary syndrome (PCOS). In this study, we compared the in vitro fertilization and embryo transfer (IVF-ET) results of 22 patients with PCOS and 25 patients with tubal factor infertility and detected the ROS levels in the GCs of these two groups. Results showed that the PCOS group had significantly larger follicles on the administration day for human chorionic gonadotropin than the tubal factor group (P < 0.05); however, the number of retrieved oocytes was not significantly different between the two groups (P > 0.05). PCOS group had slightly lower fertilization, cleavage, grade I/II embryo, clinical pregnancy, and implantation rates and higher miscarriage rate than the tubal factor group (P > 0.05). We further found a significantly higher ROS level of GCs in the PCOS group than in the tubal factor group (P < 0.05). The increased ROS levels in GCs caused GC apoptosis, whereas NADPH oxidase 2 (NOX2) specific inhibitors (diphenyleneiodonium and apocynin) significantly reduced the ROS production in the PCOS group. In conclusion, the increased ROS expression levels in PCOS GCs greatly induced cell apoptosis, which further affected the oocyte quality and reduced the positive IVF-ET pregnancy results of women with PCOS. NADPH oxidase pathway may be involved in the mechanism of ROS production in GCs of women with PCOS.


Assuntos
Células da Granulosa/metabolismo , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo , Síndrome do Ovário Policístico/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Aborto Espontâneo/epidemiologia , Acetofenonas/uso terapêutico , Adulto , Apoptose/efeitos dos fármacos , Transferência Embrionária , Feminino , Fertilização in vitro , Humanos , Oniocompostos/uso terapêutico , Recuperação de Oócitos , Gravidez , Taxa de Gravidez
5.
Int Immunopharmacol ; 43: 33-39, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939823

RESUMO

Both resveratrol(Res) and diphenyleneiodonium(DPI) have been shown to have radioprotective effects on hematopoietic system injury. However, the cooperative effect of Res and DPI are unknown. In this study, we explored the radioprotective effect of the combination of Res and DPI both in vitro and in vivo. Our results showed that the combined treatment of Res and DPI was more effective in protecting irradiated BMMNCs in terms of cell viability, colony-forming ability, and reconstitution ability in vitro compared with Res or DPI treatment alone. However, in mice, the combination of Res and DPI had no enhanced protection on 4Gy total body irradiation (TBI)-induced hematopoietic system injury, including TBI-induced myelosuppression, induction of the splenic index, and increases in HSC/HPC numbers and the colony-forming ability of BMCs,compared to Res or DPI alone. An exception was the number of BMCs. These studies illustrated the inconsistency between experiments carried out in vitro and in vivo and suggest an interaction between Res or DPI in vivo.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Sistema Hematopoético/efeitos dos fármacos , Oniocompostos/uso terapêutico , Lesões Experimentais por Radiação/tratamento farmacológico , Estilbenos/uso terapêutico , Animais , Células da Medula Óssea/efeitos da radiação , Células Cultivadas , Interações Medicamentosas , Quimioterapia Combinada , Sistema Hematopoético/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resveratrol , Irradiação Corporal Total
6.
Anticancer Drugs ; 26(4): 388-98, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25563770

RESUMO

The objective of this study was to detect the effect of NADPH oxidase (NOX) inhibition on metastasis of lung cancer. Primary human lung cancer cells were isolated from surgical tissues using the Cancer Cell Isolation Kit. Invasion was detected using the BD Biocoat Matrigel Invasion Chamber assay. Expressions of microRNA-21 (miR-21), PTEN, MMP9, and p47 were detected by qPCR. Groups of nude mice were challenged with A549 cells with or without DPI and detected for tumor metastasis and survival. NOX inhibition in human lung cancer cells significantly reduced their invasive potential in vitro. NOX inhibition in vivo led to decreased metastasis of human lung cancer and prolonged the survival time of tumor-bearing nude mice. Further, NOX inhibition resulted in decreased expression of miR-21 in human lung cancer cells. Increased expression of miR-21 abrogated the effect of NOX inhibitor on metastasis of human lung cancer in vitro and in vivo. Decreased expression of miR-21 facilitated the effect of NOX inhibitor on metastasis of human lung cancer in vitro and in vivo. Furthermore, increased expression of PTEN and decreased expression of MMP9 were observed in human lung cancer cells in response to NOX inhibition. Finally, close correlations of miR-21 expression levels with NADPH oxidase expression level and differentiation state of tumor cells were observed in lung cancer patients. Inhibition of NADPH oxidase protected against metastasis of human lung cancer cells by decreasing miR-21 expression, which could facilitate the understanding of lung cancer pathogenesis and provided clues for the development of novel therapeutics for lung cancer patients.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/metabolismo , NADPH Oxidases/antagonistas & inibidores , Oniocompostos/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , Células Tumorais Cultivadas
8.
J Neurochem ; 123 Suppl 2: 98-107, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23050647

RESUMO

Diphenyleneiodonium (DPI), a NADPH oxidase inhibitor, reduces production of reactive oxygen species (ROS) and confers neuroprotection to focal cerebral ischemia. Our objective was to investigate whether the neuroprotective action of DPI extends to averting the immune response. DPI-induced gene changes were analyzed by microarray analysis from rat brains subjected to 90 min of middle cerebral artery occlusion, treated with NaCl (ischemia), dimethylsulfoxide (DMSO), or DMSO and DPI (DPI), and reperfused for 48 h. The genomic expression profile was compared between groups using ingenuity pathway analysis at the pathway and network level. DPI selectively up-regulated 23 genes and down-regulated 75 genes more than twofold compared with both DMSO and ischemia. It significantly suppressed inducible nitric oxide synthase signaling and increased the expression of methionine adenosyltransferasesynthetase 2A and adenosylmethionine decarboxylase 1 genes, which are involved in increasing the production of the antioxidant glutathione. The most significantly affected gene network comprised genes implicated in the inflammatory response with an expression change indicating an overall suppression. Both integrin- and interleukin-17A-signaling pathways were also significantly associated and suppressed. In conclusion, the neuroprotective effects of DPI are mediated not only by suppressing ischemia-triggered oxidative stress but also by limiting leukocyte migration and infiltration.


Assuntos
Anti-Inflamatórios/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/complicações , Inflamação/tratamento farmacológico , Inflamação/etiologia , Oniocompostos/uso terapêutico , Análise de Variância , Animais , Anti-Inflamatórios/farmacologia , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Integrinas/genética , Integrinas/metabolismo , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/prevenção & controle , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
J Pharmacol Exp Ther ; 336(3): 734-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21098090

RESUMO

Previous in vitro data suggest that ethanol (EtOH) activates NADPH oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption observed in vivo after EtOH exposure. In a rat model in which cycling females were infused intragastrically with EtOH-containing liquid diets, EtOH significantly decreased bone formation and stimulated osteoblast-dependent osteoclast differentiation. These effects were reversed by exogenous 17-ß-estradiol coadministration. Moreover, coadministration of N-acetyl cysteine (NAC), an antioxidant, or diphenylene iodonium (DPI), a specific Nox inhibitor, also abolished chronic EtOH-associated bone loss. EtOH treatment up-regulated mRNA levels of Nox1, 2, 4, and the receptor activator of nuclear factor-κB ligand (RANKL), an essential factor for differentiation of osteoclasts in bone. Protein levels of Nox4, a major Nox isoform expressed in nonphagocytic cells, was also up-regulated by EtOH in bone. 17-ß-Estradiol, NAC, and DPI were able to normalize EtOH-induced up-regulation of Nox and RANKL. In vitro experiments demonstrated that EtOH directly up-regulated Nox expression in osteoblasts. Pretreatment of osteoblasts with DPI eliminated EtOH-induced RANKL promoter activity. Furthermore, EtOH induced RANKL gene expression, and RANKL promoter activation in osteoblasts was ROS-dependent. These data suggest that inhibition of Nox expression and activity may be critical for prevention of chronic EtOH-induced osteoblast-dependent bone loss.


Assuntos
Reabsorção Óssea/enzimologia , Reabsorção Óssea/prevenção & controle , Etanol/toxicidade , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Reabsorção Óssea/induzido quimicamente , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Oniocompostos/farmacologia , Oniocompostos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Cancer ; 57(2): 247-53, 1994 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-8157363

RESUMO

Cationic phosphonium salts are interesting because they inhibit the proliferation of carcinoma cells more than untransformed epithelial cells in vitro. This differential anti-proliferative effect has been used to identify phosphonium salts and other lipophilic cations that later demonstrated effects in animals. Using 6 carcinoma-derived and 2 untransformed epithelial cell lines, tetraphenylphosphonium chloride (TPP) and other cationic aryl phosphonium salts (CAPS) demonstrated a growth inhibition pattern similar to that of cation rhodamine 123, suggesting that CAPS may inhibit mitochondrial function. We tested this hypothesis for the effect of phosphonium salt TPP on FaDu human hypopharyngeal carcinoma cells. TPP inhibited the proliferation of FaDu carcinoma cells at submicromolar concentrations. Uptake of 3H-TPP by FaDu cells was partially inhibited in medium containing high K+ and fully inhibited by valinomycin in this medium, indicating that TPP accumulates preferentially in mitochondria, and to a lesser extent in the cytoplasm. FaDu cells exposed to TPP exhibited damage to mitochondrial inner membranes, reduced ATP/ADP ratios, decreased oxygen uptake rates and decreased mitochondrial membrane potentials. The treated cells secreted lactate more rapidly than untreated controls and exhibited hypersensitivity to 2-deoxyglucose, an inhibitor of glycolysis. TPP's antimitochondrial effects apparently enhance cytoplasmic glycolysis. In conclusion, TPP inhibits FaDu carcinoma cell growth by inhibiting mitochondrial respiration and ATP synthesis. Cationic phosphonium salts that inhibit carcinoma cell growth through antimitochondrial effects might be used to treat solid tumors without the risk of secondary tumors associated with agents affecting nuclear DNA.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Neoplasias Hipofaríngeas/patologia , Oniocompostos/farmacologia , Compostos Organofosforados/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Neoplasias Hipofaríngeas/tratamento farmacológico , Potenciais da Membrana , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oniocompostos/metabolismo , Oniocompostos/uso terapêutico , Compostos Organofosforados/metabolismo , Compostos Organofosforados/uso terapêutico , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Células Tumorais Cultivadas
11.
Brain ; 115 ( Pt 4): 991-1000, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1393515

RESUMO

Chronic administration of diphenylene iodonium (DPI) to rats has been shown to model the characteristics of mitochondrial myopathy. Using this model the efficacy of menadione therapy has been assessed. Menadione treatment of rats injected with DPI was associated with improved weight gain and increased survival rate. This was accompanied by an improvement in muscle function as judged by analysis of isometric twitch tension of the gastrocnemius muscle (1 Hz for 20 min). The decline in phosphocreatine (PCr) levels in the gastrocnemius muscle during stimulation and delayed recovery in PCr after stimulation were similar in the menadione treated and untreated models. Menadione treatment of the DPI model resulted in a resting intramuscular pH significantly lower than control or untreated DPI rats, but a similar decline in intramuscular pH to the DPI rats during stimulation. The changes in metabolite levels were broadly similar in both the menadione treated and untreated DPI models following stimulation, although the changes, except for increased lactate concentration, were generally less marked in the menadione-treated DPI model.


Assuntos
Miopatias Mitocondriais/tratamento farmacológico , NADH NADPH Oxirredutases/deficiência , Vitamina K/uso terapêutico , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos de Bifenilo/administração & dosagem , Compostos de Bifenilo/uso terapêutico , Quimioterapia Combinada , Transporte de Elétrons , Complexo I de Transporte de Elétrons , Membro Posterior , Espectroscopia de Ressonância Magnética , Masculino , Miopatias Mitocondriais/metabolismo , Músculos/metabolismo , Oniocompostos/administração & dosagem , Oniocompostos/uso terapêutico , Fosfatos/metabolismo , Fosfocreatina/metabolismo , Ratos , Ratos Wistar , Vitamina K/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA