Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 7(10): e1002345, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046142

RESUMO

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Assuntos
Onygenales/genética , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , Proteínas Quinases/genética , Metabolismo dos Carboidratos/genética , Sistemas de Liberação de Medicamentos , Evolução Molecular , Genoma Fúngico , Genoma Mitocondrial/genética , Humanos , Família Multigênica/genética , Onygenales/enzimologia , Paracoccidioides/enzimologia , Filogenia , Proteólise , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
2.
J Biol Chem ; 283(23): 16068-76, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18390548

RESUMO

Prenyltransferases are widely distributed in prokaryotes and eukaryotes and play critical roles in cell signaling, protein trafficking, and elaboration of complex molecules in secondary metabolism. Numerous prenylated natural products have been isolated from diverse microorganisms, including bacteria and fungi. These complex metabolites possess a wide range of biological activities, with some showing promise as medicinal agents. On the other hand, many prenylated secondary metabolites have been described as toxins such as ergot alkaloids that have potent psychotropic activity. We have characterized a new prenyltransferase isolated from genomic DNA of Malbranchea aurentiaca RRC1813. Enzyme specificity was investigated with a series of amino acid substrates revealing its function as a 4-dimethylallyltryptophan synthase. Polypeptide sequence alignment analysis showed that it groups with a new class of prenyltransferase enzymes that lack the typical (N/D)DXXD motif found in these polypeptides. MaPT activity was not dependent on a divalent cation cofactor, although it was reversibly inactivated by 5 mm EDTA. Analysis of kinetic parameters showed reduced enzyme efficiency upon simple modification of l-Trp. Moreover, d-Trp had 0.5% relative activity and functioned as a competitive inhibitor with a K(i) of 40.41 microm. Finally, Thr-105, Asp-179, Lys-189, and Lys-261 in MaPT were serially mutated, and the resulting lesions displayed low or complete loss of activity. This study provides a detailed characterization of a prenyltransferase in Malbranchea species, reveals two enzyme inhibitors, and through site-directed mutagenesis identified several key amino acid residues in catalysis, yielding new insights into this important yet understudied class of natural product biosynthetic enzymes.


Assuntos
Alquil e Aril Transferases/química , Dimetilaliltranstransferase/química , Proteínas Fúngicas/química , Onygenales/enzimologia , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Catálise , Dimetilaliltranstransferase/antagonistas & inibidores , Dimetilaliltranstransferase/genética , Ácido Edético/química , Inibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Cinética , Dados de Sequência Molecular , Onygenales/genética , Alinhamento de Sequência , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA