Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
1.
Open Biol ; 14(4): 240001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653331

RESUMO

Autophagy is a double-edged sword for cells; it can lead to both cell survival and death. Calcium (Ca2+) signalling plays a crucial role in regulating various cellular behaviours, including cell migration, proliferation and death. In this study, we investigated the effects of modulating cytosolic Ca2+ levels on autophagy using chemical and optogenetic methods. Our findings revealed that ionomycin and thapsigargin induce Ca2+ influx to promote autophagy, whereas the Ca2+ chelator BAPTA-AM induces Ca2+ depletion and inhibits autophagy. Furthermore, the optogenetic platform allows the manipulation of illumination parameters, including density, frequency, duty cycle and duration, to create different patterns of Ca2+ oscillations. We used the optogenetic tool Ca2+-translocating channelrhodopsin, which is activated and opened by 470 nm blue light to induce Ca2+ influx. These results demonstrated that high-frequency Ca2+ oscillations induce autophagy. In addition, autophagy induction may involve Ca2+-activated adenosine monophosphate (AMP)-activated protein kinases. In conclusion, high-frequency optogenetic Ca2+ oscillations led to cell death mediated by AMP-activated protein kinase-induced autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Cálcio , Optogenética , Proteínas Quinases Ativadas por AMP/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Ativação Enzimática , Ionomicina/farmacologia , Optogenética/métodos , Tapsigargina/farmacologia
2.
Nature ; 629(8011): 450-457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658753

RESUMO

Three-dimensional organoid culture technologies have revolutionized cancer research by allowing for more realistic and scalable reproductions of both tumour and microenvironmental structures1-3. This has enabled better modelling of low-complexity cancer cell behaviours that occur over relatively short periods of time4. However, available organoid systems do not capture the intricate evolutionary process of cancer development in terms of tissue architecture, cell diversity, homeostasis and lifespan. As a consequence, oncogenesis and tumour formation studies are not possible in vitro and instead require the extensive use of animal models, which provide limited spatiotemporal resolution of cellular dynamics and come at a considerable cost in terms of resources and animal lives. Here we developed topobiologically complex mini-colons that are able to undergo tumorigenesis ex vivo by integrating microfabrication, optogenetic and tissue engineering approaches. With this system, tumorigenic transformation can be spatiotemporally controlled by directing oncogenic activation through blue-light exposure, and emergent colon tumours can be tracked in real-time at the single-cell resolution for several weeks without breaking the culture. These induced mini-colons display rich intratumoural and intertumoural diversity and recapitulate key pathophysiological hallmarks displayed by colorectal tumours in vivo. By fine-tuning cell-intrinsic and cell-extrinsic parameters, mini-colons can be used to identify tumorigenic determinants and pharmacological opportunities. As a whole, our study paves the way for cancer initiation research outside living organisms.


Assuntos
Carcinogênese , Colo , Neoplasias Colorretais , Organoides , Organoides/patologia , Organoides/citologia , Animais , Neoplasias Colorretais/patologia , Carcinogênese/patologia , Camundongos , Colo/patologia , Colo/citologia , Humanos , Feminino , Optogenética , Análise de Célula Única , Engenharia Tecidual/métodos , Transformação Celular Neoplásica/patologia , Masculino , Luz , Análise Espaço-Temporal , Fatores de Tempo , Microambiente Tumoral
3.
Curr Gene Ther ; 24(3): 208-216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676313

RESUMO

Hearing loss is a prevalent sensory impairment significantly affecting communication and quality of life. Traditional approaches for hearing restoration, such as cochlear implants, have limitations in frequency resolution and spatial selectivity. Optogenetics, an emerging field utilizing light-sensitive proteins, offers a promising avenue for addressing these limitations and revolutionizing hearing rehabilitation. This review explores the methods of introducing Channelrhodopsin- 2 (ChR2), a key light-sensitive protein, into cochlear cells to enable optogenetic stimulation. Viral- mediated gene delivery is a widely employed technique in optogenetics. Selecting a suitable viral vector, such as adeno-associated viruses (AAV), is crucial in efficient gene delivery to cochlear cells. The ChR2 gene is inserted into the viral vector through molecular cloning techniques, and the resulting viral vector is introduced into cochlear cells via direct injection or round window membrane delivery. This allows for the expression of ChR2 and subsequent light sensitivity in targeted cells. Alternatively, direct cell transfection offers a non-viral approach for ChR2 delivery. The ChR2 gene is cloned into a plasmid vector, which is then combined with transfection agents like liposomes or nanoparticles. This mixture is applied to cochlear cells, facilitating the entry of the plasmid DNA into the target cells and enabling ChR2 expression. Optogenetic stimulation using ChR2 allows for precise and selective activation of specific neurons in response to light, potentially overcoming the limitations of current auditory prostheses. Moreover, optogenetics has broader implications in understanding the neural circuits involved in auditory processing and behavior. The combination of optogenetics and gene delivery techniques provides a promising avenue for improving hearing restoration strategies, offering the potential for enhanced frequency resolution, spatial selectivity, and improved auditory perception.


Assuntos
Percepção Auditiva , Terapia Genética , Vetores Genéticos , Perda Auditiva , Optogenética , Optogenética/métodos , Humanos , Terapia Genética/métodos , Percepção Auditiva/genética , Vetores Genéticos/genética , Perda Auditiva/genética , Perda Auditiva/terapia , Channelrhodopsins/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Animais , Implantes Cocleares
4.
Int J Biol Sci ; 20(6): 2072-2091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617528

RESUMO

Background: It had been shown that selective cardiac vagal activation holds great potential for heart regeneration. Optogenetics has clinical translation potential as a novel means of modulating targeted neurons. This study aimed to investigate whether cardiac vagal activation via optogenetics could improve heart regenerative repair after myocardial infarction (MI) and to identify the underlying mechanism. Methods: We used an adeno-associated virus (AAV) as the vector to deliver ChR2, a light-sensitive protein, to the left nodose ganglion (LNG). To assess the effects of the cardiac vagus nerve on cardiomyocyte (CM) proliferation and myocardial regeneration in vivo, the light-emitting diode illumination (470 nm) was applied for optogenetic stimulation to perform the gain-of-function experiment and the vagotomy was used as a loss-of-function assay. Finally, sequencing data and molecular biology experiments were analyzed to determine the possible mechanisms by which the cardiac vagus nerve affects myocardial regenerative repair after MI. Results: Absence of cardiac surface vagus nerve after MI was more common in adult hearts with low proliferative capacity, causing a poor prognosis. Gain- and loss-of-function experiments further demonstrated that optogenetic stimulation of the cardiac vagus nerve positively regulated cardiomyocyte (CM) proliferation and myocardial regeneration in vivo. More importantly, optogenetic stimulation attenuated ventricular remodeling and improved cardiac function after MI. Further analysis of sequencing results and flow cytometry revealed that cardiac vagal stimulation activated the IL-10/STAT3 pathway and promoted the polarization of cardiac macrophages to the M2 type, resulting in beneficial cardiac regenerative repair after MI. Conclusions: Targeting the cardiac vagus nerve by optogenetic stimulation induced macrophage M2 polarization by activating the IL-10/STAT3 signaling pathway, which obviously optimized the regenerative microenvironment and then improved cardiac function after MI.


Assuntos
Interleucina-10 , Infarto do Miocárdio , Adulto , Humanos , Interleucina-10/genética , Optogenética , Infarto do Miocárdio/terapia , Nervo Vago , Miócitos Cardíacos
5.
ACS Nano ; 18(17): 11058-11069, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38630984

RESUMO

Perioperative neurocognitive disorder (PND) is a common complication in surgical patients. While many interventions to prevent PND have been studied, the availability of treatment methods is limited. Thus, it is crucial to delve into the mechanisms of PND, pinpoint therapeutic targets, and develop effective treatment approaches. In this study, reduced dorsal tenia tecta (DTT) neuronal activity was found to be associated with tibial fracture surgery-induced PND, indicating that a neuronal excitation-inhibition (E-I) imbalance could contribute to PND. Optogenetics in the DTT brain region was conducted using upconversion nanoparticles (UCNPs) with the ability to convert 808 nm near-infrared light to visible wavelengths, which triggered the activation of excitatory neurons with minimal damage in the DTT brain region, thus improving cognitive impairment symptoms in the PND model. Moreover, this noninvasive intervention to modulate E-I imbalance showed a positive influence on mouse behavior in the Morris water maze test, which demonstrates that UCNP-mediated optogenetics is a promising tool for the treatment of neurological imbalance disorders.


Assuntos
Nanopartículas , Optogenética , Animais , Optogenética/métodos , Camundongos , Nanopartículas/química , Masculino , Aprendizagem em Labirinto , Complicações Cognitivas Pós-Operatórias/etiologia , Camundongos Endogâmicos C57BL , Neurônios , Fraturas da Tíbia/cirurgia , Raios Infravermelhos
6.
Yeast ; 41(5): 349-363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583078

RESUMO

The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Optogenética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transdução de Sinais , Schizosaccharomyces/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , AMP Cíclico/metabolismo , Técnicas Biossensoriais , Imagem Óptica/métodos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fatores de Transcrição
7.
Nano Lett ; 24(18): 5403-5412, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669639

RESUMO

The efficacy of electrical stimulation facilitating peripheral nerve regeneration is evidenced extensively, while the associated secondary damage resulting from repeated electrode invasion and indiscriminate stimulation is inevitable. Here, we present an optogenetics strategy that utilizes upconversion nanoparticles (UCNPs) to convert deeply penetrating near-infrared excitation into blue emission, which activates an adeno-associated virus-encoding ChR2 photoresponsive ion channel on cell membranes. The induced Ca2+ flux, similar to the ion flux in the electrical stimulation approach, efficiently regulates viability and proliferation, secretion of nerve growth factor, and neural function of RSC96 cells. Furthermore, deep near-infrared excitation is harnessed to stimulate autologous Schwann cells in situ via a UCNP-composited scaffold, which enhances nerve sprouting and myelination, consequently promoting functional recovery, electrophysiological restoration, and reinnervation of damaged nerves. This developed postoperatively noninvasive optogenetics strategy presents a novel, minimally traumatic, and enduring therapeutic stimulus to effectively promote peripheral nerve repair.


Assuntos
Nanopartículas , Regeneração Nervosa , Optogenética , Células de Schwann , Nervo Isquiático , Animais , Optogenética/métodos , Nanopartículas/química , Ratos , Dependovirus/genética , Linhagem Celular , Traumatismos dos Nervos Periféricos/terapia
8.
World J Gastroenterol ; 30(13): 1780-1790, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659489

RESUMO

Colorectal cancer (CRC) has remained the second and the third leading cause of cancer-related death worldwide and in the United States, respectively. Although significant improvement in overall survival has been achieved, death in adult populations under the age of 55 appears to have increased in the past decades. Although new classes of therapeutic strategies such as immunotherapy have emerged, their application is very limited in CRC so far. Microtubule (MT) inhibitors such as taxanes, are not generally successful in CRC. There may be some way to make MT inhibitors work effectively in CRC. One potential advantage that we can take to treat CRC may be the combination of optical techniques coupled to an endoscope or other fiber optics-based devices. A combination of optical devices and photo-activatable drugs may allow us to locally target advanced CRC cells with highly potent MT-targeting drugs. In this Editorial review, we would like to discuss the potential of optogenetic approaches in CRC management.


Assuntos
Neoplasias Colorretais , Microtúbulos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Optogenética/métodos , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/farmacologia
9.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526981

RESUMO

Malignant cardiac tachyarrhythmias are associated with complex spatiotemporal excitation of the heart. The termination of these life-threatening arrhythmias requires high-energy electrical shocks that have significant side effects, including tissue damage, excruciating pain, and worsening prognosis. This significant medical need has motivated the search for alternative approaches that mitigate the side effects, based on a comprehensive understanding of the nonlinear dynamics of the heart. Cardiac optogenetics enables the manipulation of cellular function using light, enhancing our understanding of nonlinear cardiac function and control. Here, we investigate the efficacy of optically resonant feedback pacing (ORFP) to terminate ventricular tachyarrhythmias using numerical simulations and experiments in transgenic Langendorff-perfused mouse hearts. We show that ORFP outperforms the termination efficacy of the optical single-pulse (OSP) approach. When using ORFP, the total energy required for arrhythmia termination, i.e., the energy summed over all pulses in the sequence, is 1 mJ. With a success rate of 50%, the energy per pulse is 40 times lower than with OSP with a pulse duration of 10 ms. We demonstrate that even at light intensities below the excitation threshold, ORFP enables the termination of arrhythmias by spatiotemporal modulation of excitability inducing spiral wave drift.


Assuntos
Arritmias Cardíacas , Optogenética , Animais , Camundongos , Retroalimentação , Arritmias Cardíacas/terapia , Coração , Luz , Potenciais de Ação
10.
Cell Rep Methods ; 4(4): 100740, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521059

RESUMO

Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.


Assuntos
Adenilil Ciclases , AMP Cíclico , Plasticidade Neuronal , Terminações Pré-Sinápticas , Animais , Masculino , Camundongos , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , AMP Cíclico/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Optogenética/métodos , Terminações Pré-Sinápticas/metabolismo , Ratos
11.
Chembiochem ; 25(9): e202400007, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457348

RESUMO

The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as stress granules formed in response to energetic and oxidative stress are closely linked to ageing, cancer, cardiovascular disease, and viral infection. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.


Assuntos
Técnicas Biossensoriais , Profilinas , Profilinas/metabolismo , Humanos , Optogenética/métodos , Estresse Fisiológico
12.
Neuropharmacology ; 247: 109860, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336243

RESUMO

Fetal alcohol spectrum disorder (FASD) is the most common preventable form of developmental and neurobehavioral disability. Animal models have demonstrated that even low to moderate prenatal alcohol exposure (PAE) is sufficient to impair behavioral flexibility in multiple domains. Previously, utilizing a moderate limited access drinking in the dark paradigm, we have shown that PAE 1) impairs touchscreen pairwise visual reversal in male adult offspring 2) leads to small but significant decreases in orbitofrontal (OFC) firing rates 3) significantly increases dorsal striatum (dS) activity and 4) aberrantly sustains OFC-dS synchrony across early reversal. In the current study, we examined whether optogenetic stimulation of OFC-dS projection neurons would be sufficient to rescue the behavioral inflexibility induced by PAE in male C57BL/6J mice. Following discrimination learning, we targeted OFC-dS projections using a retrograde adeno-associated virus (AAV) delivered to the dS which expressed channel rhodopsin (ChR2). During the first four sessions of reversal learning, we delivered high frequency optogenetic stimulation to the OFC via optic fibers immediately following correct choice responses. Our results show that optogenetic stimulation significantly reduced the number of sessions, incorrect responses, and correction errors required to move past the early perseverative phase for both PAE and control mice. In addition, OFC-dS stimulation during early reversal learning reduced the increased sessions, correct and incorrect responding seen in PAE mice during the later learning phase of reversal but did not significantly alter later performance in control ChR2 mice. Taken together these results suggest that stimulation of OFC-dS projections can improve early reversal learning in PAE and control mice, and these improvements can persist even into later stages of the task days later. These studies provide an important foundation for future clinical approaches to improve executive control in those with FASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Camundongos , Masculino , Feminino , Animais , Gravidez , Córtex Pré-Frontal/fisiologia , Optogenética , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal/psicologia , Reversão de Aprendizagem/fisiologia
13.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391026

RESUMO

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Assuntos
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transdução de Sinais
14.
Neuron ; 112(9): 1416-1425.e5, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417435

RESUMO

Brief stimuli can trigger longer-lasting brain states. G-protein-coupled receptors (GPCRs) could help sustain such states by coupling slow-timescale molecular signals to neuronal excitability. Brainstem parabrachial nucleus glutamatergic (PBNGlut) neurons regulate sustained brain states such as pain and express Gs-coupled GPCRs that increase cAMP signaling. We asked whether cAMP in PBNGlut neurons directly influences their excitability and effects on behavior. Both brief tail shocks and brief optogenetic stimulation of cAMP production in PBNGlut neurons drove minutes-long suppression of feeding. This suppression matched the duration of prolonged elevations in cAMP, protein kinase A (PKA) activity, and calcium activity in vivo and ex vivo, as well as sustained, PKA-dependent increases in action potential firing ex vivo. Shortening this elevation in cAMP reduced the duration of feeding suppression following tail shocks. Thus, molecular signaling in PBNGlut neurons helps prolong neural activity and behavioral states evoked by brief, salient bodily stimuli.


Assuntos
Potenciais de Ação , AMP Cíclico , Comportamento Alimentar , Neurônios , Núcleos Parabraquiais , Animais , Núcleos Parabraquiais/fisiologia , Núcleos Parabraquiais/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , AMP Cíclico/metabolismo , Camundongos , Potenciais de Ação/fisiologia , Comportamento Alimentar/fisiologia , Optogenética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Ácido Glutâmico/metabolismo , Tronco Encefálico/fisiologia , Tronco Encefálico/metabolismo , Camundongos Endogâmicos C57BL , Feminino
15.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345221

RESUMO

Our goal was to accurately track the cellular distribution of an optogenetic protein and evaluate its functionality within a specific cytoplasmic location. To achieve this, we co-transfected cells with nuclear-targeted cAMP sensors and our laboratory-developed optogenetic protein, bacterial photoactivatable adenylyl cyclase-nanoluciferase (bPAC-nLuc). bPAC-nLuc, when stimulated with 445 nm light or luciferase substrates, generates adenosine 3',5'-cyclic monophosphate (cAMP). We employed a solid-state laser illuminator connected to a point scanning system that allowed us to create a grid/matrix pattern of small illuminated spots (~1 µm2) throughout the cytoplasm of HC-1 cells. By doing so, we were able to effectively track the distribution of nuclear-targeted bPAC-nLuc and generate a comprehensive cAMP response map. This map accurately represented the cellular distribution of bPAC-nLuc, and its response to light stimulation varied according to the amount of protein in the illuminated spot. This innovative approach contributes to the expanding toolkit of techniques available for investigating cellular optogenetic proteins. The ability to map its distribution and response with high precision has far-reaching potential and could advance various fields of research.


Assuntos
AMP Cíclico , Luz , AMP Cíclico/metabolismo , Optogenética/métodos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo
16.
J Mol Biol ; 436(3): 168452, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246410

RESUMO

Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Criptocromos , Proteínas da Matriz do Complexo de Golgi , Optogenética , Animais , Membrana Celular/química , Membrana Celular/efeitos da radiação , Análise por Conglomerados , Citoplasma/química , Citoplasma/efeitos da radiação , Luz , Criptocromos/química , Criptocromos/efeitos da radiação , Proteínas da Matriz do Complexo de Golgi/química , Proteínas da Matriz do Complexo de Golgi/efeitos da radiação , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/efeitos da radiação , Multimerização Proteica
18.
Sci Rep ; 14(1): 1749, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242937

RESUMO

Optogenetics enables precise regulation of intracellular signaling in target cells. However, the application of optogenetics to induce the differentiation of precursor cells and generate mature cells with specific functions has not yet been fully explored. Here, we focused on osteoclasts, which play an important role in bone remodeling, to develop a novel optogenetics tool, Opto-RANK, which can manipulate intracellular signals involved in osteoclast differentiation and maturation using blue light. We engineered Opto-RANK variants, Opto-RANKc and Opto-RANKm, and generated stable cell lines through retroviral transduction. Differentiation was induced by blue light, and various assays were conducted for functional analysis. Osteoclast precursor cells expressing Opto-RANK differentiated into multinucleated giant cells on light exposure and displayed upregulation of genes normally induced in differentiated osteoclasts. Furthermore, the differentiated cells exhibited bone-resorbing activities, with the possibility of spatial control of the resorption by targeted light illumination. These results suggested that Opto-RANK cells differentiated by light possess the features of osteoclasts, both morphological and functional. Thus, Opto-RANK should be useful for detailed spatiotemporal analysis of intracellular signaling during osteoclast differentiation and the development of new therapies for various bone diseases.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Luz Azul , Optogenética , Diferenciação Celular/genética , Ligante RANK/metabolismo
19.
Cells Tissues Organs ; 213(2): 161-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36599311

RESUMO

The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.


Assuntos
Células Epiteliais , Optogenética , Mitose , Transdução de Sinais
20.
Nat Protoc ; 19(3): 960-983, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38057625

RESUMO

Establishing reliable intravenous catheterization in mice with optical implants allows the combination of neural manipulations and recordings with rapid, time-locked delivery of pharmacological agents. Here we present a procedure for handmade jugular vein catheters designed for head-mounted intravenous access and provide surgical and postoperative guidance for improved survival and patency. A head-mounted vascular access point eliminates the need for a back-mounted button in animals already receiving neural implants, thereby reducing sites of implantation. This protocol, which is readily adoptable by experimenters with previous training and experience in mouse surgery, enables repeated fiber photometry recordings or optogenetic manipulation during drug delivery in adult mice that are awake and behaving, whether head fixed or freely moving. With practice, an experienced surgeon requires ~30 min to perform catheterization on each mouse. Altogether, these techniques facilitate the reliable and repeated delivery of pharmacological agents in mouse models while simultaneously recording at high temporal resolution and/or manipulating neural populations.


Assuntos
Optogenética , Próteses e Implantes , Camundongos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA