Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.274
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675946

RESUMO

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Assuntos
Galinhas , Infecções por Coronavirus , Perfilação da Expressão Gênica , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Traqueia , Animais , Traqueia/virologia , Traqueia/imunologia , Galinhas/virologia , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Células Epiteliais/virologia , Células Epiteliais/imunologia , Transcriptoma , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Replicação Viral , Organismos Livres de Patógenos Específicos
2.
Poult Sci ; 103(5): 103642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537408

RESUMO

Fowl adenovirus serotype 11 (FAdV-11) is one of the primary causative agents of inclusion body hepatitis (IBH), which causes substantial economic losses in the world poultry industry. In this study, we characterized the genome of the fowl adenovirus serotype 11 (FAdV-11) isolate FJSW/2021. The full genome of FJSW/2021 was 44, 154 base pairs (bp) in length and had a similar organization to that of previously reported FAdV-11 isolates. Notably, compared with those of other reported FAdV-11 strains, the preterminal protein (pTP) of FAdV-11 FJSW/2021 has six amino acid (aa) insertions (S-L-R-I-I-C) between 470 and 475 and one aa mutation of L476F; moreover, the tandem repeat (TR) regions of TR1 and TR2 were 33 bp (1 repeat) and 1,080 bp (8 repeats) shorter than those of the Canadian nonpathogenic isolate ON NP2, respectively. The pathogenicity of FJSW/2021 was studied in 10-day-old specific pathogen-free chicken embryos following allantoic cavity inoculation and in 1-day-old, 1-wk-old and 2-wk-old SPF chickens following intramuscular inoculation with 107 TCID50 of the virus. The results showed that FJSW/2021 can induce typical severe IBH in chicks less than 2 wk old. These findings highlighted the genetic differences between the pathogenic and non-pathogenic FAdV-11 isolates. The data will provide guidance for identifying the virulence factors of FAdV-11 strains. The animal challenge model developed in our study will allow precise evaluation of the efficacy of potential FAdV-11 vaccine candidates.


Assuntos
Aviadenovirus , Galinhas , Genoma Viral , Doenças das Aves Domésticas , Sorogrupo , Animais , Doenças das Aves Domésticas/virologia , China , Aviadenovirus/genética , Aviadenovirus/patogenicidade , Virulência , Organismos Livres de Patógenos Específicos , Hepatite Viral Animal/virologia , Embrião de Galinha , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia
3.
Poult Sci ; 102(10): 102953, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542940

RESUMO

Infectious bronchitis (IB) Gammacoronavirus causes a highly contagious respiratory disease in chickens that is listed by the World Organisation for Animal Health (WOAH). Its high mutation ability has resulted in numerous variants against which the commercially available live or recombinant vaccines singly offer limited protection. Agrobacterium-mediated transient expression in Nicotiana benthamiana (tobacco) plants was used here to produce a virus-like particle (VLP) vaccine expressing a modified full-length IBV spike (S) protein of a QX-like IB variant. In a challenge study with the homologous live IB QX-like virus, VLP-vaccinated birds produced S protein-specific antibodies comparable to those produced by live-vaccinated birds seroconverting with mean geometric titers of 6.8 and 7.2 log2, respectively. The VLP-vaccinated birds had reduced oropharyngeal and cloacal viral shedding compared to an unvaccinated challenged control and were more protected against tracheal ciliostasis than the live-vaccinated birds. While the results appeared similar, plant-produced IB VLPs are safer, more affordable, easier to produce and update to antigenically match any emerging IB variant, making them a more suitable alternative to IBV control than live-attenuated vaccines.


Assuntos
Bronquite , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Organismos Livres de Patógenos Específicos , Bronquite/veterinária , Vacinas Atenuadas
4.
Free Radic Biol Med ; 206: 143-161, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392951

RESUMO

Trastuzumab (TRZ) is a first-line chemotherapeutic agent for HER-2 (ErbB2)-positive breast cancer. Unfortunately, its clinical use is limited due to its cardiotoxicity, referred to as TRZ-induced cardiotoxicity (TIC). However, the exact molecular mechanisms underlying the development of TIC remain unclear. Iron and lipid metabolism and redox reactions participate in the development of ferroptosis. Here, we show that ferroptosis-mediated mitochondrial dysfunction is involved in TIC in vivo and in vitro. We first established TIC models with BALB/c mice or neonatal rat cardiomyocytes and confirmed cardiomyopathy with echocardiography and inhibition of cell viability with a cell counting kit-8 examination, respectively. We showed that TRZ downregulated glutathione peroxidase 4 (GPx4) and elevated lipid peroxidation by-products, 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), by inactivating the ErbB2/PI3K/AKT/Nrf2 signalling pathway. Additionally, upregulated mitochondrial 4-HNE binds to voltage-dependent anion channel 1 (VDAC1), increases VDAC1 oligomerization, and subsequently induces mitochondrial dysfunction, as evidenced by mitochondrial permeability transition pore (mPTP) opening and decreased mitochondrial membrane potential (MMP) and ATP levels. Concomitantly, TRZ affected the mitochondrial levels of GSH/GSSG and iron ions and the stability of mitoGPx4. Ferroptosis inhibitors, such as ferrostatin-1 (Fer-1) or the iron chelator deferoxamine (DFO), ameliorate TRZ-induced cardiomyopathy. Overexpression of mitoGPx4 also suppressed mitochondrial lipid peroxidation and prevented TRZ-induced ferroptosis. Our study strongly suggests that targeting ferroptosis-mediated mitochondrial dysfunction is a potential cardioprotective strategy.


Assuntos
Antineoplásicos Imunológicos , Cardiomiopatias , Mitocôndrias , Trastuzumab , Feminino , Animais , Camundongos , Camundongos Endogâmicos BALB C , Organismos Livres de Patógenos Específicos , Ferroptose , Trastuzumab/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Cardiomiopatias/induzido quimicamente , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Ferro/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
5.
Poult Sci ; 102(8): 102846, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354616

RESUMO

Fowl adenovirus serotype 8b (FAdV-8b), as causative agent of inclusion body hepatitis (IBH), poses a great threat to the poultry industry. Considering the importance of innate immune response in host against viral infections, we investigated pathogenicity of a FAdV-8b strain HLJ/151129 in 1-mo-old specific pathogen-free (SPF) chickens and immune responses of host to FAdV-8b infection in this study. The results demonstrated that no obvious clinical signs were observed in infected birds. Neither mobility nor mortality was observed in both FAdV-8b infected and control chickens, as well. However, hepatic necrosis and a small amount of inflammatory cell infiltration were observed by pathological analysis. Viral load was detected in bursa of Fabricius, cecal tonsils, liver, heart, spleen, Harderian glands, and thymus. Virus shedding and viremia generated as early as 3 days postinfection (dpi) (9/10) and reached the peak at 7 dpi (10/10). In addition, the infected birds had developed FAdV-specific antibodies at 7 dpi, and the antibody titers reached the peak at 14 dpi. Furthermore, the results demonstrated that the mRNA expression levels of most of toll-like receptors (TLRs), most of avian ß-defensins (AvBDs), and cytokines [interleukin (IL)-2, IL-6, and interferon (IFN)-γ], were significantly upregulated in most tissues at early phases of FAdV-8b infection, especially in liver and spleen. In contrast, FAdV-8b infection results in downregulation of TLR4, TLR5, and TLR21 expressions in some tissues of infected chickens. In addition, FAdV-8b infection upregulated myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB) p65, and TIR-domain-containing adapter inducing interferon-ß (TRIF) expression in some tissues, while decreased NF-κBp65 and TRIF in spleen at both 72 hpi and 21 dpi. Taken together, these results confirmed that FAdV-8b could replicate in all investigated tissues of infected birds, and then, result in production of FAdV-specific antibody titers. Meanwhile, the FAdV-8b infection induces strong innate immune responses at early stage in chickens, which may associate with the viral pathogenesis.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Galinhas , Virulência , Sorogrupo , Infecções por Adenoviridae/veterinária , Aviadenovirus/genética , Imunidade Inata , Organismos Livres de Patógenos Específicos
6.
Sci Adv ; 9(19): eade4443, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163587

RESUMO

The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.


Assuntos
Neoplasias da Mama , Neurônios , Neoplasias Ovarianas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Camundongos , Modelos Animais de Doenças , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Substância P/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/secundário , Neurônios/patologia , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Ovário/inervação , Papillomavirus Humano , Análise de Sobrevida
7.
Vet Ital ; 59(4)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38685825

RESUMO

Fowl Pox Viruses (FPV) infect chickens and turkeys giving rise to pock lesions on various body parts like combs, wattles, legs, shanks, eyes, mouth etc. The birds, affected with FPV, also show anemia and ruffled appearance which are clinical symptoms of Reticuloendotheliosis. Interestingly, the field strains of FPV are integrated with the provirus of Reticuloendotheliosis Virus (REV). Due to this integration, the infected birds, upon replication of FPV, give rise to free REV virions, causing severe immunosuppression and anemia. Pox scabs, collected from the infected birds, not only show positive PCR results upon performing FPV-specific 4b core protein gene PCR but also show positive results for the PCR of REV-specific env gene and FPV-REV 5'LTR junction. Homogenized suspension of the pock lesions, upon inoculating to the Chorio-allantoic Membrane (CAM) of 10 days old specific pathogen-free embryonated chicken eggs, produces characteristic pock lesions in serial passages. But the lesions also harbor REV mRNA or free virion, which can be identified by performing REV-specific env gene PCR using REV RNA from FPV-infected CAMs. The study suggests successful replication and availability of REV mRNA and free virion alongside the FPV virus, although the CAM is an ill-suited medium for any retroviral (like REV) growth and replication.


Assuntos
Galinhas , Vírus da Varíola das Aves Domésticas , Doenças das Aves Domésticas , Vírus da Reticuloendoteliose , Animais , Vírus da Reticuloendoteliose/isolamento & purificação , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/isolamento & purificação , Organismos Livres de Patógenos Específicos , Embrião de Galinha , Varíola Aviária/virologia , Membrana Corioalantoide/virologia , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia
8.
PLoS Pathog ; 18(2): e1010283, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108336

RESUMO

Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Candida albicans/metabolismo , Candidíase/microbiologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Candida albicans/genética , Candida albicans/patogenicidade , DNA Fúngico , Estresse do Retículo Endoplasmático , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/genética , Deleção de Sequência , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Virulência
9.
Front Immunol ; 13: 680559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154089

RESUMO

Human cytomegalovirus (HCMV) is an ubiquitous herpesvirus that can cause serious morbidity and mortality in immunocompromised or immune-immature individuals. A vaccine that induces immunity to CMV in these target populations is therefore highly needed. Previous attempts to generate efficacious CMV vaccines primarily focused on the induction of humoral immunity by eliciting neutralizing antibodies. Current insights encourage that a protective immune response to HCMV might benefit from the induction of virus-specific T cells. Whether addition of antiviral T cell responses enhances the protection by antibody-eliciting vaccines is however unclear. Here, we assessed this query in mouse CMV (MCMV) infection models by developing synthetic vaccines with humoral immunity potential, and deliberately adding antiviral CD8+ T cells. To induce antibodies against MCMV, we developed a DNA vaccine encoding either full-length, membrane bound glycoprotein B (gB) or a secreted variant lacking the transmembrane and intracellular domain (secreted (s)gB). Intradermal immunization with an increasing dose schedule of sgB and booster immunization provided robust viral-specific IgG responses and viral control. Combined vaccination of the sgB DNA vaccine with synthetic long peptides (SLP)-vaccines encoding MHC class I-restricted CMV epitopes, which elicit exclusively CD8+ T cell responses, significantly enhanced antiviral immunity. Thus, the combination of antibody and CD8+ T cell-eliciting vaccines provides a collaborative improvement of humoral and cellular immunity enabling enhanced protection against CMV.


Assuntos
Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Infecções por Citomegalovirus/imunologia , Epitopos/imunologia , Imunidade Celular , Imunidade Humoral , Imunização Secundária/métodos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Vacinação , Vacinas de DNA/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
10.
Pak J Pharm Sci ; 35(1): 151-155, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221284

RESUMO

Proteomic analysis of reserpine-induced depression and the effects of berberine on this were investigated to delineate the possible underlying mechanism. Reserpine was used for the model of behavioral depression. Model mice were treated with berberine. Mice brain proteomic analysis was carried out by label-free nano LC-ESI-OrbiTrap MS/MS technology. The data were processed by Maxquant software. The differentially-expressed proteins were evaluated on GO and KEGG analysis, and key protein expression was validated by Western blot analysis. A total of 278 differentially-expressed proteins were identified. Reserpine could cause cerebral injury and depressive disorder in mice, the mechanism of which is related to steroid hormone biosynthesis, chemical carcinogenesis, nucleotide excision repair and the retinoic acid-inducible gene I-like (RIG-I-like) receptor signaling. Berberine treatments involve 3 distinct proteins in the RIG-I-like receptor signaling. RIG-I was validated, which was over-expressed in the model group and negative in the normal and administration groups. RIG-I mediated neuroinflammation could participate in the process of depression and RIG-I may become a target for berberine against depression.


Assuntos
Berberina/uso terapêutico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Proteômica/métodos , Reserpina/toxicidade , Animais , Antipsicóticos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Organismos Livres de Patógenos Específicos
11.
Gene ; 819: 146240, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35114275

RESUMO

BACKGROUND: Liver metastasis of colorectal cancer (CRC) remains high mortality and the mechanism is still unknown. Here we investigated the effects of inhibitor of DNA binding 2 (Id2) on growth and liver metastasis of CRC. METHODS: qPCR and western blotting were used to demonstrate mRNA and protein expressions in Id2-knockdown HCT116 cells. Cell growth was observed by cell proliferation assay, colony formation assay and flow cytometry. Cell migration and invasion were observed with wound healing assay and transwell migration and invasion assay. The effects of Id2 knockdown on tumor growth and liver metastasis in vivo were evaluated respectively with subcutaneous tumor model and colorectal liver metastasis model by injecting HCT116 cells into the mesentery triangle of cecum in mice. RESULTS: Id2 overexpression was found in CRC cell lines. Id2 knockdown resulted in a reduction in the proliferation, colony formation, migration and invasion of HCT116 cells. The suppression of cell proliferation was accompanied by the cell cycle arrest in the G0/G1 phase with down-regulation of Cyclin D1, Cyclin E, p-Cdk2/3, Cdk6, p-p27 and up-regulation of p21 and p27. Id2 knockdown reversed epithelial-mesenchymal transition (EMT) through increasing E-Cadherin and inhibiting N-Cadherin, Vimentin, ß-catenin, Snail and Slug. Id2 was also found to inhibit CRC metastasis via MMP2, MMP9 and TIMP-1. Furthermore, Id2 knockdown suppressed CRC liver metastasis in vivo. CONCLUSION: Id2 promotes CRC growth through activation of the PI3K/AKT signaling pathway, and triggers EMT to enhance CRC migration and invasion.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fígado/metabolismo , Metástase Neoplásica , Animais , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Células HCT116 , Humanos , Neoplasias Hepáticas/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Organismos Livres de Patógenos Específicos
12.
Food Funct ; 13(5): 2952-2965, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35191911

RESUMO

Green tea polyphenols (GTP) play an important role in shaping the gut microbiome, comprising a range of densely colonizing microorganisms, including bacteriophages. Previous studies focused on the effect of GTP on the bacteria in the gut microbiota. However, little is known about the role of GTP in the bacteriophage composition of healthy intestines. In this study, SPF male C57BL/6J mice were divided into a polyphenol-free diet group and a tea polyphenol diet group where drinking water was supplemented with 0.1% GTP for 28 days. The ultra-deep metagenomic sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on mouse stool samples. Changes in the gut bacteriome, bacteriophages, and bacterial-bacteriophage correlations were then compared between the groups. The results revealed an abundance of Firmicutes, a significant decrease in Bacteroidetes, and a significant increase in the ratio of F/B after GTP exposure. The GTP altered the abundance (relative abundance > 1.00%) of Bifidobacterium (regulation rate of 89.78% and the abundance up-regulated by 0.89%) and Akkermansia (regulation rate of 99.70% and the abundance down-regulated by 1.77%). The abundance of Faecalibaculum (regulation rate of 60.17%) increased by 24.38% following GTP treatment. The GTP also altered the abundance of Salmonella phage (regulation rate of 98.64% and the abundance up-regulated by 3.16%) and that of Gordonia_phage_Yakult (regulation rate of 99.99% and the abundance down-regulated by 5.44%). It significantly increased the intestine's lytic phages and reduced the temperate phages by 29.22%. The dominant microorganisms (relative abundance >1.00%) of Bifidobacterium and Dubosiella had a significantly negative relationship with the Faecalibacterium phage and a significantly positive relationship with the Lactobacillus prophage. Exposure to GTP positively promoted changes in the gut bacteriophage community and interaction network in the microbial community of the SPF mice. These findings highlight the importance of "profitable" bacteriophage-bacteria relationships and reveal a potential mechanism of GTP towards the regulation of intestinal flora via intestinal phage communities.


Assuntos
Antioxidantes/farmacologia , Polifenóis/farmacologia , Chá , Animais , Antioxidantes/química , Bacteroidetes/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polifenóis/química , Organismos Livres de Patógenos Específicos
13.
Toxicology ; 468: 153103, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090963

RESUMO

Benzene can impair peripheral immunity and immune organs; however, the recovery of benzene impairment has rarely been reported. In this study, we developed an immune dysfunction mouse model using a benzene gavage (500 mg/kg). Female Balb/c mice were treated with Bombyx batryticatus (BB, 5 g/kg), raw pinellia (RP, 5 g/kg), or a combination of Valproic acid and Coenzyme Q10 (CM, 150 mg/kg VPA & 100 mg/kg CoQ10) medication for four weeks. The immune function of the peripheral blood mononuclear cells (PBMCs), spleen, and thymus was determined to evaluate whether the observed impairment could be altered by medications in the mouse model. Results showed that medications could alleviate benzene-induced structural and functional damage of spleen and thymus. Benzene exposure decreased the ATP level of PBMC, which can be improved by BB, RP or CM. Importantly, BB, RP or CM could relieve benzene induced-oxidative stress by increasing the activities of glutathione peroxidase (GSH) and superoxide dismutase (SOD) and decreasing the contents of malondialdehyde (MDA). In conclusion, BB, RP, and CM were able to alleviate the benzene-induced immune dysfunction and redox imbalance. Improvement of the oxidative and antioxidant imbalance may represent a mechanism by which medicine prevents benzene-induced immune dysfunction.


Assuntos
Benzeno/toxicidade , Imunidade/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Baço/efeitos dos fármacos , Timo/efeitos dos fármacos , Trifosfato de Adenosina/sangue , Animais , Bombyx/química , Feminino , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pinellia/química , Extratos Vegetais/farmacologia , Organismos Livres de Patógenos Específicos , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ubiquinona/farmacologia , Ácido Valproico/farmacologia
14.
Food Funct ; 13(3): 1603-1616, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35076647

RESUMO

Obesity, often accompanied by hepatic steatosis, has been associated with an increased risk of health complications such as fatty liver disease and certain cancers. Ferula lehmannii Boiss., a food and medicine homologue, has been used for centuries as a seasoning showing anti-bacterial and anti-oxidant effects on digestive discomfort. In the present study, we sought to investigate whether a short-term oral administration of water extract of Ferula lehmanni Boiss. (WEFL) could prevent high-fat diet (HFD)-induced abnormal weight gain and hepatic steatosis in mice and its underlying mechanisms. WEFL reduced HFD-increased body weight, liver injury markers and inflammatory cytokines (i.e. IL-6 and IL-1ß), and inhibited the elevation of AMPKα, SREBP-1c and FAS in HFD. Moreover, WEFL reconstructed the gut microbiota composition by increasing the relative abundances of beneficial bacteria, e.g. Akkermansia spp., while decreasing Desulfovibrio spp. and so on, thereby reversing the detrimental effects of HFD in mice. Removal of the gut microbiota with antibiotics partially eliminated the hepatoprotective effects of WEFL. Notably, WEFL substantially promoted the levels of short-chain fatty acids, especially butyric acid. To clarify the functional components at play in WEFL, we used UPLC-MS/MS to comprehensively detect its substance composition and found it to be a collection of polyphenol-rich compounds. Together, our findings demonstrate that WEFL prevented HFD-induced obesity and liver injury through the hepatic-microbiota axis, and such health-promoting value might be explained by the enriched abundant polyphenols.


Assuntos
Fígado Gorduroso/prevenção & controle , Ferula , Obesidade , Extratos Vegetais/farmacologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Alimento Funcional , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
15.
Parasit Vectors ; 15(1): 16, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991711

RESUMO

BACKGROUND: There is ample evidence demonstrating a reverse relationship between helminth infection and immune-mediated diseases. Accordingly, several studies have shown that Echinococcus granulosus infection and hydatid cyst compounds are able to suppress immune responses in allergic airway inflammation. Previous studies have documented the ability of hydatid cysts to suppress aberrant Th2 immune response in a mouse model of allergic asthma. However, there is a paucity of research on the effects of protoscoleces on allergic asthma. Thus, this study was designed to evaluate the effects of somatic antigens of protoscoleces in a murine model of allergic airway inflammation. METHODS: Ovalbumin (OVA)/aluminum hydroxide (alum) was injected intraperitoneally to sensitize BALB/c mice over a period of 0 to 7 days, followed by challenge with 1% OVA. The treatment group received somatic antigens of protoscoleces emulsified with PBS on these days in each sensitization before being challenged with 1% OVA on days 14, 15, and 16. The effects of somatic antigens of protoscoleces on allergic airway inflammation were evaluated by examining histopathological changes, the recruitment of inflammatory cells in the bronchoalveolar lavage, cytokine production in the homogenized lung tissue (IL-4, IL-5, IL-10, IL-17, and IFN-γ), and total antioxidant capacity in serum. RESULTS: Overall, administration of somatic antigens of protoscoleces exacerbated allergic airway inflammation via increased Th2 cytokine levels in the lung homogenate, recruitment of eosinophils into bronchoalveolar lavage fluid, and pathological changes. In addition, total antioxidant capacity and IFN-γ levels declined following the administration of somatic antigens. CONCLUSIONS: The results revealed that the co-administration of somatic products of protoscoleces with OVA/alum contributed to the exacerbation of allergic airway inflammation in BALB/c mice. Currently, the main cause of allergic-type inflammation exacerbation is unknown, and further research is needed to understand the mechanism of these interactions.


Assuntos
Antígenos de Helmintos/imunologia , Asma/patologia , Equinococose Pulmonar/imunologia , Echinococcus granulosus/imunologia , Animais , Antioxidantes/análise , Asma/complicações , Asma/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/análise , Modelos Animais de Doenças , Equinococose Pulmonar/complicações , Equinococose Pulmonar/patologia , Feminino , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovinos , Organismos Livres de Patógenos Específicos
16.
J Oleo Sci ; 71(2): 301-310, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35034939

RESUMO

The intake of moderate oils and fats is necessary to maintain the body's energy balance, and the fatty acid composition of different oils and fats varies in their nutrition and function. The study aimed to investigate the effects of lard and vegetable blend oil on gut microbiota, intestinal enzyme activities, and blood routine. Kunming mice were assigned to the three groups: (1) Control group (CK) was gavage administration with distilled water, (2) Plant oil group (ZWY) was gavage administration with edible vegetable blend oil, (3) Lard group (DWY) was gavage administration with lard. After 42 days, microbiological, digestive enzymes, and blood routine were performed. Compared with the CK group, Escherichia coli, Lactobacilli, and Bifidobacteria were significantly decreased (p < 0.05), the activities of protease, cellulase, amylase, and xylanase were markedly reduced (p < 0.05), the hemoglobin was significantly increased (p < 0.05) in the ZWY group and DWY groups, and the hematocrit was increased in the ZWY group (p < 0.05), while other routine blood indices were increased (p > 0.05). Compared to the ZWY group, the activity of cellulase and amylase were significantly increased (p < 0.05), the intestinal microorganism and the routine blood indexes had no significant difference in the DWY group. Lard and vegetable blend oil diet affected the composition of the intestinal microorganisms, and the functions of digestive enzymes. Meanwhile, the levels of digestive enzymes may be correlated with the intestinal microbiota.


Assuntos
Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/farmacologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hematócrito , Hemoglobinas , Intestinos/enzimologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacologia , Amilases/metabolismo , Animais , Bifidobacterium , Celulase/metabolismo , Testes Diagnósticos de Rotina , Escherichia coli , Feminino , Testes Hematológicos , Lactobacillus , Masculino , Camundongos Endogâmicos , Peptídeo Hidrolases/metabolismo , Organismos Livres de Patógenos Específicos
17.
Food Funct ; 13(1): 102-112, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34878454

RESUMO

Recent clinical studies have demonstrated a beneficial effect of Saccharomyces boulardii (S. boulardii) in inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly defined. In this study, we investigated the modulating effect of S. boulardii on the intestinal microbiota in humanized mice with dextran sulfate sodium (DSS)-induced colitis. The mice were fed an S. boulardii-supplement diet for 16 days before DSS treatment. The results showed that feeding S. boulardii significantly ameliorated the colon damage and regulated inflammatory responses by modulating the cytokine profile. These changes were found to be associated with an altered microbiome composition and short-chain fatty acid (SCFA) metabolism. Further analysis demonstrated that S. boulardii-derived polysaccharides and polypeptides promoted the growth of certain probiotics and increased the microbial metabolite SCFAs levels. Overall, these findings demonstrated the role of S. boulardii as a potential gut microbiota modulator to prevent and treat IBD.


Assuntos
Microbioma Gastrointestinal , Inflamação/metabolismo , Probióticos , Saccharomyces boulardii , Animais , Sulfato de Dextrana/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação/induzido quimicamente , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Probióticos/química , Probióticos/farmacologia , Organismos Livres de Patógenos Específicos
18.
Virology ; 566: 75-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890893

RESUMO

The infectious bronchitis virus (IBV) 4/91 was one of the common IBV variants isolated in Eastern Canada between 2013 and 2017 from chicken flocks showing severe respiratory and production problems. We designed an in vivo experiment, using specific pathogen free (SPF) chickens, to study the pathogenesis of, and host response to, Canadian (CAN) 4/91 IBV infection. At one week of age, the chickens were infected with 4/91 IBV/Ck/Can/17-038913 isolate. Swab samples were collected at predetermined time points. Five birds from the infected and the control groups were euthanized at 3, 7- and 10-days post-infection (dpi) to collect lung and kidney tissues. The results indicate IBV replication in these tissues at all three time points with prominent histological lesions, significant immune cell recruitment and up regulation of proinflammatory mediators. Overall, our findings add to the understanding of the pathogenesis of 4/91 infection and the subsequent host responses in the lungs and kidneys following experimental infection.


Assuntos
Infecções por Coronavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Rim/imunologia , Pulmão/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Animais Recém-Nascidos , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Canadá , Movimento Celular , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Rim/virologia , Pulmão/virologia , Macrófagos/imunologia , Macrófagos/virologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Carga Viral , Replicação Viral
19.
Food Funct ; 13(1): 437-450, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918725

RESUMO

Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate their antioxidant and antidiabetic activities in in vitro and in vivo studies. A. tsao-ko methanol extracts possessed a high flavonoid content (1.21 mg QE per g DW) and a total of 29 flavonoids were identified by employing UPLC-MS/MS. In vitro, A. tsao-ko demonstrated antioxidant activity (ORAC value of 34276.57 µM TE/100 g DW, IC50 of ABTS of 3.49 mg mL-1 and FRAP value of 207.42 µM Fe2+ per g DW) and α-amylase and α-glucosidase inhibitory ability with IC50 values of 14.23 and 1.76 mg mL-1, respectively. In vivo, type 2 diabetes mellitus (T2DM) models were induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection in rats. Treatment with the A. tsao-ko extract (100 mg freeze-dried powder per kg bw) for 6 weeks could significantly improve impaired glucose tolerance, decrease the levels of fasting blood glucose (FBG), insulin, and malondialdehyde (MDA), and increase the superoxide dismutase (SOD) level. Histopathology revealed that the A. tsao-ko extract preserved the architecture and function of the pancreas. In conclusion, the flavonoid composition of A. tsao-ko exhibits excellent antioxidant and antidiabetic activity in vitro and in vivo. A. tsao-ko could be a novel natural material and developed as a related functional food and medicine in T2DM management.


Assuntos
Amomum/química , Antioxidantes , Diabetes Mellitus Experimental , Flavonoides , Hipoglicemiantes , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Medicamentos de Ervas Chinesas , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Hipoglicemiantes/análise , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos
20.
Antiviral Res ; 197: 105232, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968527

RESUMO

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Assuntos
Adenosina/análogos & derivados , Genoma Viral/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Adenosina/farmacologia , Animais , Embrião de Galinha , Chlorocebus aethiops , Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Farmacorresistência Viral/efeitos dos fármacos , Genoma Viral/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Dose Letal Mediana , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , RNA Viral/metabolismo , Coelhos , SARS-CoV-2/genética , Organismos Livres de Patógenos Específicos , Transcrição Gênica/efeitos dos fármacos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA