Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582836

RESUMO

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Assuntos
Anopheles , Inseticidas , Malária , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Benin , Organofosfatos/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673741

RESUMO

A widely used organophosphate flame retardant (OPFR), triphenyl phosphate (TPP), is frequently detected in various environmental media and humans. However, there is little known on the human corneal epithelium of health risk when exposed to TPP. In this study, human normal corneal epithelial cells (HCECs) were used to investigate the cell viability, morphology, apoptosis, and mitochondrial membrane potential after they were exposed to TPP, as well as their underlying molecular mechanisms. We found that TPP decreased cell viability in a concentration-dependent manner, with a half maximal inhibitory concentration (IC50) of 220 µM. Furthermore, TPP significantly induced HCEC apoptosis, decreased mitochondrial membrane potential in a dose-dependent manner, and changed the mRNA levels of the apoptosis biomarker genes (Cyt c, Caspase-9, Caspase-3, Bcl-2, and Bax). The results showed that TPP induced cytotoxicity in HCECs, eventually leading to apoptosis and changes in mitochondrial membrane potential. In addition, the caspase-dependent mitochondrial pathways may be involved in TPP-induced HCEC apoptosis. This study provides a reference for the human corneal toxicity of TPP, indicating that the risks of OPFR to human health cannot be ignored.


Assuntos
Apoptose , Sobrevivência Celular , Epitélio Corneano , Retardadores de Chama , Potencial da Membrana Mitocondrial , Mitocôndrias , Humanos , Apoptose/efeitos dos fármacos , Retardadores de Chama/toxicidade , Retardadores de Chama/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Epitélio Corneano/citologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Caspases/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Organofosfatos/farmacologia , Organofosfatos/toxicidade , Células Cultivadas
3.
Cancer Chemother Pharmacol ; 93(5): 509-517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520556

RESUMO

Tazemetostat, a novel oral selective inhibitor of enhancer of zeste homolog 2 (EZH2), was approved by the Food and Drug Administration (FDA) in 2020 for use in patients with advanced epithelioid sarcoma or relapsed/refractory (R/R) EZH2-mutated follicular lymphoma. These indications were approved by the FDA trough accelerated approval based on objective response rate and duration of response that resulted from phase 2 clinical trials. Tazemetostat competes with S-adenosylmethionine (SAM) cofactor to inhibit EZH2, reducing the levels of trimethylated lysine 27 of histone 3 (H3K27me3), considered as pharmacodynamic marker. Tazemetostat is orally bioavailable, characterized by rapid absorption and dose-proportional exposure, which is not influenced by coadministration with food or gastric acid reducing agents. It highly distributes in tissues, but with limited access to central nervous system. Tazemetostat is metabolized by CYP3A in the liver to 3 major inactive metabolites (M1, M3, and M5), has a short half-life and is mainly excreted in feces. Drug-drug interactions were shown with moderate CYP3A inhibitors as fluconazole, leading the FDA to recommend a 50% dose reduction, while studies investigating coadministration of tazemetostat with strong inhibitors/inducers are ongoing. No dosage modifications are recommended based on renal or hepatic dysfunctions. Overall, tazemetostat is the first-in-class EZH2 inhibitor approved by the FDA for cancer treatment. Current clinical studies are evaluating combination therapies in patients with several malignancies.


Assuntos
Benzamidas , Compostos de Bifenilo , Interações Medicamentosas , Morfolinas , Humanos , Morfolinas/farmacocinética , Morfolinas/farmacologia , Morfolinas/administração & dosagem , Compostos de Bifenilo/farmacocinética , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/administração & dosagem , Piridonas/farmacocinética , Piridonas/farmacologia , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Sulfonamidas/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Animais , Organofosfatos/farmacocinética , Organofosfatos/farmacologia
4.
Blood Cells Mol Dis ; 104: 102799, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839173

RESUMO

Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.


Assuntos
Antineoplásicos , Aurora Quinase A , Humanos , Aurora Quinase A/metabolismo , Quinazolinas/farmacologia , Organofosfatos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores de Fator Estimulador de Colônias
5.
Parasit Vectors ; 16(1): 447, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042818

RESUMO

BACKGROUND: Taiwan's warm and humid climate and dense population provide a suitable environment for the breeding of pests. The three major urban insects in Taiwan are house flies, cockroaches, and mosquitoes. In cases where a disease outbreak or high pest density necessitates chemical control, selecting the most effective insecticide is crucial. The resistance of pests to the selected environmental insecticide must be rapidly assessed to achieve effective chemical control and reduce environmental pollution. METHODS: In this study, we evaluated the resistance of various pests, namely, house flies (Musca domestica L.), cockroaches (Blattella germanica L. and Periplaneta americana), and mosquitoes (Aedes aegypti and Ae. albopictus) against 10 commonly used insecticides. Rapid insecticide resistance bioassays were performed using discriminating doses or concentrations of the active ingredients of insecticides. RESULTS: Five field strains of M. domestica (L.) are resistant to all 10 commonly used insecticides and exhibit cross- and multiple resistance to four types of pyrethroids and three types of organophosphates, propoxur, fipronil, and imidacloprid. None of the five field strains of P. americana are resistant to any of the tested insecticides, and only one strain of B. germanica (L.) is resistant to permethrin. One strain of Ae. albopictus is resistant to pirimiphos-methyl, whereas five strains of Ae. aegypti exhibit multiple resistance to pyrethroids, organophosphates, and other insecticides. CONCLUSIONS: In the event of a disease outbreak or high pest density, rapid insecticide resistance bioassays may be performed using discriminating doses or concentrations to achieve precise and effective chemical control, reduce environmental pollution, and increase control efficacy.


Assuntos
Aedes , Baratas , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Taiwan , Piretrinas/farmacologia , Organofosfatos/farmacologia , Bioensaio
6.
Environ Toxicol ; 37(10): 2445-2459, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35776891

RESUMO

Organophosphate flame retardants (OPFRs) have been widely used due to their unique properties. The OPFRs are mainly metabolized in the liver. However, whether the plasma level of OPFRs was involved in the progression of liver cancer remains unclear. Triphenyl phosphate (TPP) is one of the OPFRs that are mostly detected in environment. In this study, we performed CCK8, ATP, and EdU analyses to evaluate the effect of TPP at the concentrations at 0.025-12.8 µM on the proliferation, invasion, and migration of Hep3B, a hepatocellular carcinoma (HCC) cell line. Tumor-bearing mouse model was used for in vivo validation. The results showed that low concentrations of TPP at (0.025-0.1 µM), which are obtained in the plasma of patients with cancers, remarkably promoted cell invasion and migration of Hep3B cells. Animal experiments confirmed that TPP treatment significantly enhanced tumor growth in the xenograft HCC model. To explore the possible molecular mechanisms that might mediate the actions of TPP on Hep3B cells, we profiled gene expression in groups treated with or without TPP at the concentrations of 0.05 and 0.1 µM using transcriptional sequencing. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-protein interaction (PPI) analyses demonstrated that pathways affected by differentially expressed genes (DEGs) were mainly in nuclear-transcribed mRNA catabolic processes, cytosolic ribosome, and ATPase activity. A 0.05 and 0.1 µM TPP led to up-regulation of a series of genes including EREG, DNPH1, SAMD9, DUSP5, PFN1, CKB, MICAL2, SCUBE3, and CXCL8, but suppressed the expression of MCC. These genes have been shown to be associated with proliferation and movement of cells. Taken together, our findings suggest that low concentration of TPP could fuel the proliferation, invasion, and migration of HCC cells. Thus, TPP is a risk factor in the progression of HCC in human beings.


Assuntos
Carcinoma Hepatocelular , Retardadores de Chama , Neoplasias Hepáticas , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Proliferação de Células/genética , Retardadores de Chama/toxicidade , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Organofosfatos/farmacologia , Profilinas/genética , Profilinas/metabolismo
7.
Chem Commun (Camb) ; 58(18): 2954-2966, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170594

RESUMO

A new supramolecular approach to broad spectrum antivirals utilizes host guest chemistry between molecular tweezers and lysine/arginine as well as choline. Basic amino acids in amyloid-forming SEVI peptides (semen-derived enhancers of viral infection) are included inside the tweezer cavity leading to disaggregation and neutralization of the fibrils, which lose their ability to enhance HIV-1/HIV-2 infection. Lipid head groups contain the trimethylammonium cation of choline; this is likewise bound by molecular tweezers, which dock onto viral membranes and thus greatly enhance their surface tension. Disruption of the envelope in turn leads to total loss of infectiosity (ZIKA, Ebola, Influenza). This complexation event also seems to be the structural basis for an effective inihibition of cell-to-cell spread in Herpes viruses. The article describes the discovery of novel molecular recognition motifs and the development of powerful antiviral agents based on these host guest systems. It explains the general underlying mechanisms of antiviral action and points to future optimization and application as therapeutic agents.


Assuntos
Antivirais/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Envelope Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos , Amiloidose/prevenção & controle , Antivirais/farmacologia , Humanos , Vírus/patogenicidade
8.
Eur Rev Med Pharmacol Sci ; 26(1): 168-182, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35049033

RESUMO

OBJECTIVE: The organophosphate compounds chlorpyrifos (O, O-diethyl O-[3,5,6-trichloro-2-pyridinyl] phosphorothioate, CPF) and phenyl saligenin phosphate (PSP) have been widely implicated in developmental neurotoxicity and neurodegeneration. However, the underlying mechanism remains unclear. Transglutaminase (TG)2 is a calcium ion (Ca2+)-dependent enzyme with an important role in neuronal cell outgrowth and differentiation and in neurotoxin activity and is modulated by organophosphates. MATERIALS AND METHODS: We studied TG2 activity modulation by CPO and PSP during differentiation in C6 glioma cells. We studied the effects of CPO or PSP treatment with or without the TG2 inhibitor Z-DON and identified potential TG2 protein substrates via mass spectrometry. RESULTS: PSP and CPO did not affect cell viability but affected TG2 activity in differentiating cells. Our results indicate that the organophosphate-induced amine incorporation activity of TG2 may have a direct effect on neuronal outgrowth, differentiation, and cell survival by modifying several essential microtubule proteins, including tubulin. Inhibiting TG2 reduced neurite length but not cell survival. CONCLUSIONS: TG2 inhibitors can protect against organophosphate-induced neuropathy and could be used for developing novel therapeutic strategies for treating brain cancer and neurodegenerative disorders.


Assuntos
Proteínas de Ligação ao GTP , Transglutaminases , Animais , Diferenciação Celular , Organofosfatos/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos
9.
Sci Rep ; 11(1): 19828, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615901

RESUMO

Organophosphate is the commonly used pesticide to control pest outbreak, such as those by aphids in many crops. Despite its wide use, however, necrotic lesion and/or cell death following the application of organophosphate pesticides has been reported to occur in several species. To understand this phenomenon, called organophosphate pesticide sensitivity (OPS) in sorghum, we conducted QTL analysis in a recombinant inbred line derived from the Japanese cultivar NOG, which exhibits OPS. Mapping OPS in this population identified a prominent QTL on chromosome 5, which corresponded to Organophosphate-Sensitive Reaction (OSR) reported previously in other mapping populations. The OSR locus included a cluster of three genes potentially encoding nucleotide-binding leucine-rich repeat (NB-LRR, NLR) proteins, among which NLR-C was considered to be responsible for OPS in a dominant fashion. NLR-C was functional in NOG, whereas the other resistant parent, BTx623, had a null mutation caused by the deletion of promoter sequences. Our finding of OSR as a dominant trait is important not only in understanding the diversified role of NB-LRR proteins in cereals but also in securing sorghum breeding free from OPS.


Assuntos
Resistência a Medicamentos/genética , Proteínas de Repetições Ricas em Leucina/genética , Organofosfatos/farmacologia , Praguicidas/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/genética , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Ligação Genética , Proteínas de Repetições Ricas em Leucina/metabolismo , Fenótipo , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sorghum/classificação
10.
Mol Biol Rep ; 48(12): 7755-7765, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34647221

RESUMO

BACKGROUND: Cancer cell survival depends on the cross-regulation between apoptosis and autophagy which share common signaling pathways including PI3K/Akt/mTOR and Bcl-2. The aim of this study was to elucidate the modulation patterns between apoptosis and autophagy following dual inhibition by Akt inhibitor erufosine and Bcl-2 inhibitor ABT-737 in castration-resistant prostate cancer (CRPC) cell lines, PC-3 (Bax+) and DU-145 (Bax-). METHODS AND RESULTS: Cell cycle progression, apoptotic and autophagic signaling were examined by flow cytometry, multi-caspase assay, Hoechst staining, acridine orange staining of acidic vesicular organelles (AVOs), qRT-PCR and Western Blot. Dual inhibition increased G2/M arrest in PC-3 and DU-145, but not in the healthy prostate epithelium cells, PNT-1A. Only in PC-3, dual inhibition induced synergistic apoptotic and additive autophagic effects. In DU-145 and PNT-1A cells, ABT-737 did not display any remarkable effect on multicaspase activity and erufosine and ABT-737, neither alone nor in combination induced AVOs. By dual inhibition, AKT, BCL-2 and NF-κB gene expressions were downregulated in PC-3, both ATG-5 and BECLIN-1 gene expressions were upregulated in DU-145 but Beclin-1 protein expression was substantially reduced in both CRPC cells. Dual inhibition-induced synergistic multicaspase activation in PC-3 degrades and disrupts autophagic activity of Beclin-1, enhancing caspase-dependent apoptosis. However, in DU-145, following dual inhibition, rate of multicaspase induction and apoptosis are lower but autophagy is completely abolished despite markedly increased BECLIN-1 gene expression. CONCLUSION: In conclusion, antineoplastic drug combinations may display cell-type specific modulation of apoptotic and autophagic signaling and lack of protective autophagy may not necessarily indicate increased chemotherapeutic sensitivity in heterogenous tumor subpopulations.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Nitrofenóis/farmacologia , Organofosfatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Piperazinas/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Compostos de Amônio Quaternário/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
11.
Biomed Pharmacother ; 142: 112054, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34463267

RESUMO

The main obstacle in the treatment of cancer patients has been resistance to multiple drugs, leading to the need to develop molecules with a higher specificity target. The liposomal formulation DODAC/2-AEH2P has antitumor potential, inducing apoptosis in several tumor types. Human chronic myeloid leukemia K-562 and K-562 Lucena (MDR+) cells were treated with the DODAC carrier and the liposomal formulation 2-AEH2P. Viability, cell cycle phases, apoptosis, marker expression and mitochondrial potential were analyzed. Significant reduction in viability was observed for all treatments. Changes in the distribution of the cell cycle phases and expression of markers involved in the apoptosis pathways were observed. Reduction of the mitochondrial electrical potential mediated by Bcl-2, being regulated by the reduction of the MTCH2 protein linked to the progression of myeloid leukemia and an increase in the pro-apoptotic proteins Bad and Bax, dependent on p53. This study demonstrated a significant therapeutic potential through apoptotic effects in leukemic cells, regardless of the molecular resistance profile (MDR+).


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Organofosfatos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Lipossomos/química , Lipossomos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácidos Oleicos/química , Ácidos Oleicos/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia
12.
J Antibiot (Tokyo) ; 74(10): 743-751, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34290381

RESUMO

Specific inhibitors of protein phosphatase 2A (PP2A) mediate anticancer effects by augmenting the tumor-killing activity of natural killer (NK) cells. In this study, new PP2A inhibitors, aminocytostatins A-E, were isolated from Kitasatospora sp. MJ654-NF4 and structurally characterized. Aminocytostatins are derivatives of cytostatin, which is a specific PP2A inhibitor isolated from the same organism, and aminocytostatins have a characteristic amino group within the lactone moiety. Compared to cytostatin, aminocytostatin A showed a stronger inhibitory activity against PP2A in vitro and augmented the tumor-killing activity of NK cells in vivo. Furthermore, a docking model was generated to demonstrate the favorable activities of aminocytostatin A.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Organofosfatos/química , Organofosfatos/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Pironas/química , Pironas/farmacologia , Streptomycetaceae/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
13.
Acta Trop ; 221: 106014, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146537

RESUMO

The growth of resistance in vector mosquitoes to insecticides, especially the organophosphate Temephos can facilitate the transmission of various disease agents worldwide. Consequently, it arises a challenge to public health agencies, which is the urgency use of other possibilities as botanical insecticides. Such insecticides have specific properties against insects due to the plant's ability to synthesize products derived from its secondary metabolism. The diversity and complexity of active compounds of botanical insecticides can help reduce the selection of resistant individuals and consequently not change susceptibility. To corroborate this hypothesis, the aim of this study was to compare two populations of Aedes aegypti treated with Temephos and Copaifera oleoresin. Thus, Ae. aegypti larvae were exposed from (F1) up to tenth generation (F10) with sublethal doses (±LC25) of these products (Copaifera oleoresin: 40 mg/L and Temephos: 0.0030 mg/L). The triplicates and control groups were monitored every 48 hours and the surviving larvae were separated until the emergence of the adults. Each new population were then subjected to a series of concentrations (LC50 and LC95) of Temephos and Copaifera oleoresin to calculate the Resistance Ratio (RR) of each exposed generation. The population of Ae. aegypti exposed to Temephos had an increase in RR from 05 (considered low) to 13 (considered high). Those population exposed to Copaifera oleoresin, had no increasing in RR and continued susceptible to the oil in all generations. There was a significant difference in mortality between the generations exposed to the two products. The results presented here show that the change in the susceptibility status of Ae. aegypti population to Temephos was already expected. So, we believe that this work will be of great contribution to research related to mosquito control with plant products, and resistance to chemical insecticides.


Assuntos
Aedes , Fabaceae , Resistência a Inseticidas , Inseticidas , Extratos Vegetais/farmacologia , Aedes/efeitos dos fármacos , Animais , Fabaceae/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mosquitos Vetores , Organofosfatos/farmacologia , Temefós/farmacologia
14.
Chem Biol Drug Des ; 98(1): 73-93, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934503

RESUMO

Aurora kinases (AURKs) are serine/threonine protein kinases that play a critical role during cell proliferation. Three isoforms of AURKs reported in mammals include AURKA, AURKB, AURKC, and all share a similar C-terminal catalytic domain with differences in their subcellular location, substrate specificity, and function. Recent research reports indicate an elevated expression of these kinases in several cancer types highlighting their role as oncogenes in tumorigenesis. Inhibition of AURKs is an attractive strategy to design potent inhibitors modulating this target. The last few years have witnessed immense research in the development of AURK inhibitors with few FDA approvals. The current clinical therapeutic regime in cancer is associated with severe side-effects and emerging resistance to existing drugs. This has been the key driver of research initiatives toward designing more potent drugs that can potentially circumvent the emerging resistance. This review is a comprehensive summary of recent research on AURK inhibitors and presents the development of scaffolds, their synthetic schemes, structure-activity relationships, biological activity, and enzyme inhibition potential. We hope to provide the reader with an array of scaffolds that can be selected for further research work and mechanistic studies in the development of new AURK inhibitors.


Assuntos
Antineoplásicos/química , Aurora Quinase A/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Animais , Antineoplásicos/farmacologia , Azepinas/química , Azepinas/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Aprovação de Drogas , Resistência a Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Flavonas/química , Flavonas/farmacologia , Regulação da Expressão Gênica , Humanos , Indazóis/química , Indazóis/farmacologia , Organofosfatos/química , Organofosfatos/farmacologia , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Relação Estrutura-Atividade
15.
Invest Ophthalmol Vis Sci ; 62(3): 16, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33704359

RESUMO

Purpose: Aurora kinase B (AURKB) plays a pivotal role in the regulation of mitosis and is gaining prominence as a therapeutic target in cancers; however, the role of AURKB in retinoblastoma (RB) has not been studied. The purpose of this study was to determine if AURKB plays a role in RB, how its expression is regulated, and whether it could be specifically targeted. Methods: The protein expression of AURKB was determined using immunohistochemistry in human RB patient specimens and immunoblotting in cell lines. Pharmacological inhibition and shRNA-mediated knockdown were used to understand the role of AURKB in cell viability, apoptosis, and cell cycle distribution. Cell viability in response to AURKB inhibition was also assessed in enucleated RB specimens. Immunoblotting was employed to determine the protein levels of phospho-histone H3, p53, p21, and MYCN. Chromatin immunoprecipitation-qPCR was performed to verify the binding of MYCN on the promoter region of AURKB. Results: The expression of AURKB was found to be markedly elevated in human RB tissues, and the overexpression significantly correlated with optic nerve and anterior chamber invasion. Targeting AURKB with small-molecule inhibitors and shRNAs resulted in reduced cell survival and increased apoptosis and cell cycle arrest at the G2/M phase. More importantly, primary RB specimens showed decreased cell viability in response to pharmacological AURKB inhibition. Additional studies have demonstrated that the MYCN oncogene regulates the expression of AURKB in RB. Conclusions: AURKB is overexpressed in RB, and targeting it could serve as a novel therapeutic strategy to restrict tumor cell growth.


Assuntos
Aurora Quinase B/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Neoplasias da Retina/enzimologia , Retinoblastoma/enzimologia , Apoptose/efeitos dos fármacos , Compostos Aza/farmacologia , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Indóis/farmacologia , Organofosfatos/farmacologia , Quinazolinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Células Tumorais Cultivadas
16.
Insect Sci ; 28(3): 627-638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32558234

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a major pest native to the Americas that has recently invaded the Old World. Point mutations in the target-site proteins acetylcholinesterase-1 (ace-1), voltage-gated sodium channel (VGSC) and ryanodine receptor (RyR) have been identified in S. frugiperda as major resistance mechanisms to organophosphate, pyrethroid and diamide insecticides respectively. Mutations in the adenosine triphosphate-binding cassette transporter C2 gene (ABCC2) have also been identified to confer resistance to Cry1F protein. In this study, we applied a whole-genome sequencing (WGS) approach to identify point mutations in the target-site genes in 150 FAW individuals collected from China, Malawi, Uganda and Brazil. This approach revealed three amino acid substitutions (A201S, G227A and F290V) of S. frugiperda ace-1, which are known to be associated with organophosphate resistance. The Brazilian population had all three ace-1 point mutations and the 227A allele (mean frequency = 0.54) was the most common. Populations from China, Malawi and Uganda harbored two of the three ace-1 point mutations (A201S and F290V) with the 290V allele (0.47-0.58) as the dominant allele. Point mutations in VGSC (T929I, L932F and L1014F) and RyR (I4790M and G4946E) were not detected in any of the 150 individuals. A novel 12-bp insertion mutation in exon 15 of the ABCC2 gene was identified in some of the Brazilian individuals but absent in the invasive populations. Our results not only demonstrate robustness of the WGS-based genomic approach for detection of resistance mutations, but also provide insights for improvement of resistance management tactics in S. frugiperda.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera , Acetilcolinesterase/genética , Animais , Diamida/farmacologia , Genes de Insetos , Genoma de Inseto , Organofosfatos/farmacologia , Mutação Puntual/genética , Mutação Puntual/fisiologia , Piretrinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Canais de Sódio Disparados por Voltagem/genética , Sequenciamento Completo do Genoma
17.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926779

RESUMO

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Proteínas do Envelope Viral/efeitos dos fármacos , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Amiloide/antagonistas & inibidores , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Arginina/química , Betacoronavirus/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Lipídeos/química , Lisina/química , Espectroscopia de Ressonância Magnética , Organofosfatos/química , SARS-CoV-2 , Proteínas Secretadas pela Vesícula Seminal/química , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo , Zika virus/efeitos dos fármacos
18.
J Agric Food Chem ; 68(24): 6520-6529, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32433877

RESUMO

In this study, wheat (Triticum aestivum L.) was exposed to three of the most typical chlorinated organophosphate esters (OPEs), which are widely present in farmland soil, at environmental concentrations to assess their accumulation, disruption on metabolism, and oxidative stress in wheat. The three OPEs accumulated distinctly in the root and then translocated to the shoot. After exposure for 7 days, the content of chlorophyll b decreased, while the levels of carotenoid and activities of antioxidases, malonaldehyde, and reactive oxygen species increased significantly in both the root and shoot, indicating that the target OPEs caused significant oxidative stresses and affected photosynthesis in wheat. Untargeted metabolomics revealed concentration- and species-dependent metabolic responses of the three OPEs. Saccharides were downregulated, which might be due to the reduced photosynthesis activities. On the other hand, the chlorinated OPEs induced increases in respiration and antioxidative metabolites, revealing that the antioxidant system of wheat was active in scavenging ROS. The disturbance of tris(1,3-dichloro-2-propyl)phosphate on the metabolisms in wheat tissues was the strongest. These results contribute to the food safety and crop quality assessment of chlorinated OPEs and clarify the underlying mechanisms of their phytotoxicities.


Assuntos
Antioxidantes/metabolismo , Ésteres/farmacologia , Malondialdeído/metabolismo , Organofosfatos/farmacologia , Poluentes do Solo/farmacologia , Triticum/efeitos dos fármacos , Triticum/metabolismo , Ésteres/metabolismo , Halogenação , Metabolômica , Organofosfatos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/metabolismo , Triticum/química
19.
Biomolecules ; 10(5)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455962

RESUMO

Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Organofosfatos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Feminino , Humanos , Bicamadas Lipídicas/química , Células MCF-7 , Fluidez de Membrana , Lipídeos de Membrana/química , Microdomínios da Membrana/ultraestrutura
20.
Pharm Res ; 37(6): 106, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32462253

RESUMO

PURPOSE: Hemolysis is a serious side effect of antitumor alkylphospholipids (APLs) that limits dose levels and is a constraint in their use in therapeutic regimen. Nine prodrugs of promising APLs (miltefosine, perifosine, and erufosine) were synthesized so as to decrease their membrane activity and improve their toxicity profile while preserving their antineoplastic potency. METHODS: The synthesis of the pro-APLs was straightforwardly achieved in one step starting from the parent APLs. The critical aggregation concentration of the prodrugs, their hydrolytic stability under various pH conditions, their blood compatibility and cytotoxicity in three different cell lines were determined and compared to those of the parent antitumor lipids. RESULTS: The APL prodrugs display antitumor activity which is similar to that of the parent alkylphospholipids but without associated hemolytic toxicity. CONCLUSION: The pro-APL compounds may be considered as intravenously injectable derivatives of APLs. They could thus address one of the major issues met in cancer therapies involving antitumor lipids and restricting their utilization to oral and topical administration because of limited maximum tolerated dose.


Assuntos
Antineoplásicos/farmacologia , Hemólise/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Administração Intravenosa , Antineoplásicos/efeitos adversos , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Humanos , Dose Máxima Tolerável , Organofosfatos/efeitos adversos , Organofosfatos/síntese química , Organofosfatos/farmacologia , Organofosfatos/uso terapêutico , Fosforilcolina/efeitos adversos , Fosforilcolina/análogos & derivados , Fosforilcolina/síntese química , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Pró-Fármacos/efeitos adversos , Pró-Fármacos/síntese química , Pró-Fármacos/uso terapêutico , Compostos de Amônio Quaternário/efeitos adversos , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA