Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.018
Filtrar
1.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Quimiocinas , Citocinas , Fibroblastos , Histona-Lisina N-Metiltransferase , Histonas , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibroblastos/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Histonas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/metabolismo , Regiões Promotoras Genéticas , Feminino , Masculino , Células Cultivadas , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Idoso
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732111

RESUMO

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Assuntos
Cartilagem Articular , Condrócitos , Glicoesfingolipídeos , Osteoartrite , Regeneração , Humanos , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Glicoesfingolipídeos/metabolismo , Transdução de Sinais , Gangliosídeos/metabolismo
3.
J Orthop Surg Res ; 19(1): 239, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615043

RESUMO

BACKGROUND: This study aims to explore how miR-98-5p affects osteoarthritis, focusing on its role in chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation. METHODS: Quantitative real-time PCR was used to measure miR-98-5p and CASP3 mRNA levels in OA cartilage tissues and IL-1ß-treated CHON-001 cells. We predicted miR-98-5p and CASP3 binding sites using TargetScan and confirmed them via luciferase reporter assays. Chondrocyte viability was analyzed using CCK-8 assays, while pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) were quantified via ELISA. Caspase-3 activity was examined to assess apoptosis, and Western blotting was conducted for protein marker quantification. RESULTS: Our results showed lower miR-98-5p levels in both OA cartilage and IL-1ß-stimulated cells. Increasing miR-98-5p resulted in reduced pro-inflammatory cytokines, decreased caspase-3 activity, and improved cell viability. Furthermore, miR-98-5p overexpression hindered IL-1ß-induced ECM degradation, evident from the decline in MMP-13 and ß-catenin levels, and an increase in COL2A1 expression. MiR-98-5p's impact on CASP3 mRNA directly influenced its expression. Mimicking miR-98-5p's effects, CASP3 knockdown also inhibited IL-1ß-induced inflammation, apoptosis, and ECM degradation. In contrast, CASP3 overexpression negated the suppressive effects of miR-98-5p. CONCLUSIONS: In conclusion, our data collectively suggest that miR-98-5p plays a protective role against IL-1ß-induced damage in chondrocytes by targeting CASP3, highlighting its potential as a therapeutic target for OA.


Assuntos
Caspase 3 , MicroRNAs , Osteoartrite , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Condrócitos , Citocinas , Inflamação , Interleucina-1beta/farmacologia , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Mensageiro
4.
Mol Med ; 30(1): 55, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664616

RESUMO

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Assuntos
Apoptose , Condrócitos , Matriz Extracelular , Hialuronoglucosaminidase , NF-kappa B , Osteoartrite , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Proteômica/métodos
5.
Int Immunopharmacol ; 132: 112061, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608474

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease characterized by the gradual degeneration of chondrocytes, involving endoplasmic reticulum (ER) stress. Esculin is a natural compound with antioxidant, anti-inflammatory and anti-tumor properties. However, its impact on ER stress in OA therapy has not been thoroughly investigated. We aim to determine the efficiency of Esculin in OA treatment and its underlying mechanism. METHODS: We utilized the tert-butyl hydroperoxide (TBHP) to establish OA model in chondrocytes. The expression of SIRT1, PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins were detected by Western blot and Real-time PCR. The apoptosis was evaluated by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. X-ray imaging, Hematoxylin & Eosin staining, Safranin O staining and immunohistochemistry were used to assess the pharmacological effects of Esculin in the anterior cruciate ligament transection (ACLT) rat OA model. RESULTS: Esculin downregulated the expression of PERK/eIF2α pathway-related proteins, apoptosis-associated proteins and ER stress-related proteins, while upregulated the expression of SIRT1 and Bcl2 in the TBHP-induced OA model in vitro. It was coincident with the results of TUNEL staining and flow cytometry. We further confirmed the protective effect of Esculin in the rat ACLT-related model. CONCLUSION: Our results suggest the potential therapeutic value of Esculin on osteoarthritis. It probably inhibits the PERK-eIF2α-ATF4-CHOP pathway by upregulating SIRT1, thereby mitigating endoplasmic reticulum stress and protecting chondrocytes from apoptosis.


Assuntos
Apoptose , Condrócitos , Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos , Osteoartrite , Estresse Oxidativo , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1 , Fator de Transcrição CHOP , eIF-2 Quinase , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Sirtuína 1/metabolismo , Sirtuína 1/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Ratos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Cultivadas
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 279-289, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645862

RESUMO

Objective: To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods: Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results: A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1ß levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1ß, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion: FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.


Assuntos
Envelhecimento , Biomarcadores , Biologia Computacional , Aprendizado de Máquina , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Biologia Computacional/métodos , Envelhecimento/genética , Inflamação/genética , Inflamação/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Senescência Celular/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo , Perfilação da Expressão Gênica , Idoso , Masculino
7.
PLoS One ; 19(4): e0298575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593124

RESUMO

Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1ß (IL-1ß)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1ß-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Ratos , Apoptose , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645858

RESUMO

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Condrócitos , Subunidade alfa 2 de Fator de Ligação ao Core , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Animais , Desenvolvimento Ósseo/fisiologia , Desenvolvimento Ósseo/genética , Condrócitos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoclastos/metabolismo , Osteoclastos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia
9.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673854

RESUMO

Inflammation is crucial to osteoarthritis (OA) pathogenesis. The aim of this study was to evaluate Siraitia grosvenorii residue extract (NHGRE) obtained by extracting S. grosvenorii fruits with water as a potential food supplement for treating arthritis based on its analgesic, anti-inflammatory, and chondroprotective effects and the remaining residue with 70% ethanol. We observed the analgesic activity of NHGRE based on the acetic acid-induced writhing response in mice, examined its anti-inflammatory efficacy against carrageenan-induced paw oedema in mice, and investigated its effect on inflammatory cytokine expression in interleukin (IL)-1ß-induced SW1353 cells. Furthermore, we determined its effects on cartilage protection in interleukin-1ß (IL-1ß)-treated SW1353 cells. NHGRE at 200 mg/kg significantly reduced the acetic acid-induced writhing response and prevented oedema formation in the carrageenan-induced paw oedema model. In IL-1ß-induced SW1353 cells, NHGRE at 400 µg/mL reduced the expression of inflammation mediators such as tumour necrosis factor (TNF)-α (55.3%), IL-6 (35.4%), and prostaglandin E2 (PGE2) (36.9%) and down-regulated the expression of matrix metalloproteinase (MMP)-1 (38.6%), MMP-3 (29.3%), and MMP-13 (44.8%). Additionally, it restored degraded collagen II levels in chondrocytes. NHGRE plays a protective role in chondrocytes by regulating Nuclear factor kappa B (NF-κB) activation. Overall, NHGRE may be a useful therapeutic agent for OA by controlling pain, oedema formation, and inflammation-related mechanisms.


Assuntos
Analgésicos , Anti-Inflamatórios , Edema , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Edema/tratamento farmacológico , Edema/induzido quimicamente , Masculino , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Carragenina/efeitos adversos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/induzido quimicamente , Citocinas/metabolismo
10.
ACS Appl Mater Interfaces ; 16(17): 21383-21399, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626424

RESUMO

Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1ß-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.


Assuntos
Fatores Ativadores da Transcrição , Condrócitos , Exossomos , Mitocôndrias , Osteoartrite , RNA Mensageiro , Resposta a Proteínas não Dobradas , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Exossomos/metabolismo , Exossomos/química , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/química , Fatores Ativadores da Transcrição/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos
11.
Med Sci Monit ; 30: e943738, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664941

RESUMO

BACKGROUND The pathological mechanism of osteoarthritis is still unclear. The regulation of the immune microenvironment has been of growing interest in the progression and treatment of osteoarthritis. Macrophages with different phenotypes, producing different cytokines, have been linked to the mechanism of cartilage injury in osteoarthritis. Copper ions play a role in the immune response and are involved in the pathological mechanisms of osteoarthritis by affecting the metabolism of the cartilage matrix. Bioactive glass (BG) is an osteogenic material with superior biocompatibility. Here, we report on the regulatory behavior of macrophages using a copper-based composite BG material. MATERIAL AND METHODS Cu-BGC powder was prepared by sol-gel method, and scaffolds were fabricated and characterized using 3D printing. Macrophage cultures grown with Cu-BGC were examined for cell culture and proliferation. The effect of Cu-BGC on the degradation metabolism of chondrocytes, cultured in the environment of inflammatory cytokine IL-1ß, was determined. In addition, the morphology of macrophages, secretion of inflammatory cytokines, and expression of surface markers were examined. RESULTS The results show that Cu-BGC promotes macrophage proliferation at a range of concentrations and increases the secretion of anti-inflammatory cytokines while inhibiting proinflammatory cytokines. At the same time, M2-type cell surface markers are definitely expressed and the morphology of macrophages is altered. In addition, Cu-BGC inhibited the degradation metabolism of chondrocytes in the inflammatory environment induced by IL-1ß. CONCLUSIONS These results suggest that Cu-BGC induced macrophage polarization into an M2 type anti-inflammatory phenotype, and inhibition of immune injury response may play a role in delaying cartilage matrix damage in osteoarthritis.


Assuntos
Proliferação de Células , Condrócitos , Cobre , Citocinas , Macrófagos , Osteoartrite , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Cobre/metabolismo , Cobre/farmacologia , Citocinas/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Células RAW 264.7 , Vidro , Alicerces Teciduais
12.
ACS Biomater Sci Eng ; 10(5): 3355-3377, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38563817

RESUMO

An imbalance between M1 and M2 macrophage polarization is critical in osteoarthritis (OA) development. We investigated the effect of M2 macrophage-derived extracellular vesicles (M2-EVs) to reprogramme macrophages from the M1 to M2 phenotype for OA treatment. M1 macrophages and mouse OA models were treated with M2-EVs. Proteomic analysis was performed to evaluate macrophage polarization in vitro. The OA models were as follows: destabilization of the medial meniscus (DMM) surgery-induced OA and collagenase-induced OA (CIOA). Hyaluronic acid (HA) was used to deliver M2-EVs. M2-EVs decreased macrophage accumulation, repolarized macrophages from the M1 to M2 phenotype, mitigated synovitis, reduced cartilage degradation, alleviated subchondral bone damage, and improved gait abnormalities in the CIOA and DMM models. Moreover, HA increased the retention time of M2-EVs and enhanced the efficiency of M2-EVs in OA treatment. Furthermore, proteomic analysis demonstrated that M2-EVs exhibited a macrophage reprogramming ability similar to IL-4, and the pathways might be the NOD-like receptor (NLR), TNF, NF-κB, and Toll-like receptor (TLR) signaling pathways. M2-EVs reprogrammed macrophages from the M1 to M2 phenotype, which resulted in beneficial effects on cartilage and attenuation of OA severity. In summary, our study indicated that M2-EV-guided reprogramming of macrophages is a promising treatment strategy for OA.


Assuntos
Vesículas Extracelulares , Ácido Hialurônico , Macrófagos , Osteoartrite , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/química , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/transplante , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Células RAW 264.7 , Proteômica , Ativação de Macrófagos/efeitos dos fármacos
13.
J Bone Miner Res ; 39(2): 161-176, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477740

RESUMO

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Membrana Sinovial , Animais , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Camundongos , Osteoartrite/patologia , Osteoartrite/metabolismo , Patela/patologia , Patela/metabolismo
14.
Cells ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534340

RESUMO

Osteoarthritis (OA) is a multifactorial disease depending on molecular, genetic, and environmental factors like mechanical strain. Next to the cartilage and the subchondral bone, OA also affects the synovium, which is critically involved in the maintenance of joint homeostasis. As there is a correlation between the extracellular sodium content in the knee joint and OA, this study investigates the impact of sodium on OA-associated processes like inflammation and bone remodeling without and with mechanical loading in synovial fibroblasts. For that purpose, murine synovial fibroblasts from the knee joint were exposed to three different extracellular sodium chloride concentrations (-20 mM, ±0 mM and +50 mM NaCl) in the absence or presence of compressive or intermittent tensile strain. In addition to the intracellular Na+ content and gene expression of the osmoprotective transcription factor nuclear factor of activated T cells 5 (Nfat5), the gene and protein expression of inflammatory mediators (interleukin-6 (IL6), prostaglandin endoperoxide synthase-2 (Ptgs2)/prostaglandin E2 (PGE2)), and factors involved in bone metabolism (receptor activator of NF-κB ligand (RANKL), osteoprotegerin (OPG)) were analyzed by qPCR and ELISA. Mechanical strain already increased intracellular Na+ and Nfat5 gene expression at standard salt conditions to levels obtained by exposure to increased extracellular Na+ content. Both high salt and compressive strain resulted in elevated IL6 and PGE2 release. Intermittent tensile strain did not increase Il6 mRNA expression or IL6 protein secretion but triggered Ptgs2 expression and PGE2 production. Increased extracellular Na+ levels and compressive strain increased RANKL expression. In contrast, intermittent tension suppressed RANKL expression without this response being subject to modification by extracellular sodium availability. OPG expression was only induced by compressive strain. Changes in extracellular Na+ levels modified the inflammatory response and altered the expression of mediators involved in bone metabolism in cells exposed to mechanical strain. These findings indicate that Na+ balance and Nfat5 are important players in synovial fibroblast responses to mechanical stress. The integration of Na+ and Na+-dependent signaling will help to improve the understanding of the pathogenesis of osteoarthritis and could lead to the establishment of new therapeutic targets.


Assuntos
Interleucina-6 , Osteoartrite , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/metabolismo , Sódio/metabolismo , Estresse Mecânico , Osteoartrite/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fibroblastos/metabolismo
15.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519981

RESUMO

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Osteoartrite/metabolismo , RNA Interferente Pequeno/metabolismo
16.
J Orthop Surg Res ; 19(1): 198, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528538

RESUMO

PURPOSE: This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS: SW 1353 chondrosarcoma cells were stimulated with LPS (5 µg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS: The CCK-8 results showed that 10, 20 and 40 µM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1ß and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION: Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.


Assuntos
Condrossarcoma , Glucosídeos Iridoides , Osteoartrite , Humanos , Condrócitos/metabolismo , Lipopolissacarídeos/toxicidade , Osteoartrite/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hipertrofia , Condrossarcoma/tratamento farmacológico , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
17.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542192

RESUMO

Osteoarthritis is a widespread chronic degenerative disease marked by the deterioration of articular cartilage, modifications in subchondral bone, and a spectrum of symptoms, including pain, stiffness, and disability. Ultimately, this condition impairs the patient's quality of life. This study aimed to evaluate the therapeutic efficacy of standardized Boswellia serrata gum resin extract (BSRE) in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. A total of 60 rats were allocated into six groups: normal control group (NC), osteoarthritis control (injected with MIA, OC), O + B50 (injected with MIA and treated with 50 mg/kg body weight (BW) BSRE), O + B75 (injected with MIA and treated with 75 mg/kg BW BSRE), O + B100 (injected with MIA and treated with 100 mg/kg BW BSRE), and O + M (injected with MIA and treated with 150 mg/kg BW methyl sulfonyl methane). Several parameters, including knee joint swelling, histopathological changes, and the expression of collagen type II alpha 1 (COL2A1) and aggrecan, were comprehensively assessed. Concurrently, the serum levels and mRNA expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) were analyzed in both the serum and knee joint synovium. The results demonstrated that BSRE significantly mitigated knee joint swelling, cartilage destruction, and tissue deformation. Notably, BSRE administration markedly upregulated the expression of COL2A1 and aggrecan while concurrently reducing levels of nitric oxide, prostaglandin E2, leukotriene B4, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Furthermore, a substantial decrease was observed in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-6, TNF-α and MMP-3 and -13, thereby indicating promising therapeutic implications for osteoarthritis. In conclusion, BSRE exhibited anti-inflammatory properties and inhibited cartilage matrix degradation in a rat model of MIA-induced osteoarthritis, with the O + B100 group showing significant reductions in swelling and notable improvements in joint cartilage damage. These findings illuminate the preventive and therapeutic potential of BSRE for osteoarthritis treatment, emphasizing the criticality of exhaustive evaluation of novel compounds.


Assuntos
Boswellia , Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Boswellia/metabolismo , Agrecanas/metabolismo , Qualidade de Vida , Modelos Animais de Doenças , Osteoartrite/metabolismo , Inflamação/metabolismo , Articulação do Joelho/patologia , Ácido Iodoacético/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , Cartilagem Articular/metabolismo
18.
J Cell Mol Med ; 28(7): e18172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494837

RESUMO

M1 macrophage polarization and synovitis play an important role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Reduced molecular weight of hyaluronic acid (HA) in synovial fluid of patients with TMJOA. In addition, high molecular weight hyaluronic acid (HMW-HA) is often used clinically to treat TMJ inflammation. As a pattern recognition receptor of the cytoplasm, ALPK1 was found to be pro-inflammatory in a variety of diseases. However, the relationship of ALPK1, HA and M1 macrophage polarization in TMJ synovitis remains unclear. We aimed to investigate the role of ALPK1 and HA in macrophage polarization and TMJ synovitis and the underlying mechanisms. The results demonstrated that ALPK1 was highly upregulated in the synovial macrophages in the inflamed TMJ synovium of patients. Low molecular weight hyaluronic acid (LMW-HA) promoted the expression of ALPK1 and M1 macrophage-associated genes. Besides, rhALPK1 promoted the expression of M1 macrophage-associated factors and the nuclear translocation of PKM2. Furthermore, ALPK1 knockout mice exhibited limited infiltration of macrophages and decreased expression levels of M1 macrophage-associated genes in CFA-induced TMJ synovitis. While HMW-HA inhibited the expression of ALPK1 and M1 macrophage polarization. Our results elucidated that ALPK1 promoted TMJ synovitis by promoting nuclear PKM2-mediated M1 macrophage polarization, whereas HMW-HA inhibited the expression of ALPK1 as well as M1 macrophage polarization.


Assuntos
Osteoartrite , Sinovite , Humanos , Animais , Camundongos , Ácido Hialurônico , Sinovite/patologia , Articulação Temporomandibular/patologia , Inflamação/patologia , Osteoartrite/metabolismo , Macrófagos/metabolismo , Proteínas Quinases
19.
J Orthop Surg Res ; 19(1): 188, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500177

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint condition marked by inflammation and cartilage breakdown. Currently, there is a dearth of treatment medications that can clearly slow the course of OA. Glaucocalyxin A (GLA) is a diterpene chemical identified and extracted from Rabdosia japonica with antithrombotic, anticoagulant, anti-tumor, anti-inflammatory, anti-oxidant, and other pharmacological properties. Previous research has linked inflammation to abnormalities in the homeostasis of the extracellular matrix (ECM). Although GLA has been shown to have anti-inflammatory qualities, its effects on the progression of OA are unknown. As a result, the goal of this study was to see if GLA could slow the course of OA. METHODS: ATDC5 cells were stimulated by IL-1ß to create an inflammatory chondrocyte damage model. Quantitative polymerase chain reaction, Western Blot, high-density culture, and immunofluorescence were used to detect the expression levels of associated gene phenotypes. We also created a mouse model of OA induced by destabilization of the medial meniscus (DMM) instability, and GLA was administered intraperitoneally once every two days for eight weeks. Mice knee specimens were stained with hematoxylin-eosin, Safranin O/fast green, and immunohistochemical, and the Osteoarthritis Research Society International grade system and Mankin's score were used to assess the protective effect of GLA on cartilage. RESULTS: In vitro and in vivo, we explored the effects and molecular processes of GLA as a therapy for OA. The findings demonstrated that GLA might reduce the expression of associated inflammatory mediators and protect the ECM by inhibiting the NF-κB and MAPK signaling pathways. Animal research revealed that GLA could protect against the DMM-induced OA model mice by stabilizing ECM. CONCLUSION: Taken together, our findings show that GLA has a protective impact on cartilage throughout OA progression, implying that GLA could be employed as a possible therapeutic agent for OA, thus giving a new therapeutic method for the treatment of OA.


Assuntos
Diterpenos do Tipo Caurano , NF-kappa B , Osteoartrite , Camundongos , Animais , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Transdução de Sinais , Condrócitos/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Meniscos Tibiais , Interleucina-1beta/metabolismo
20.
J Orthop Surg Res ; 19(1): 156, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429742

RESUMO

Heat-shock protein beta1 (HSPB1) is a member of the small HSP family, downregulated in osteoarthritis (OA) chondrocytes and demonstrated the capacity to serve as an RNA-binding protein (RBP). This work aimed to explore the profile of HSPB1 bound RNA and reveal the potential regulation mechanism of HSPB1 in OA. In this work, we captured an unbiased HSPB1-RNA interaction map in Hela cells using the iRIP-seq. The results demonstrated that HSPB1 interacted with plentiful of mRNAs and genomic location toward the CDS region. Functional enrichment of HSPB1-related peaks showed the involvement in gene expression, translation initiation, cellular protein metabolic process, and nonsense-mediated decay. HOMER software analysis showed that HSPB1 bound peaks were over-represented in GAGGAG sequences. In addition, ABLIRC and CIMS algorithm indicated that HSPB1 bound to AU-rich motifs and the proportion of AU-rich peaks in 3' UTR were slightly higher than that in other regions. Moreover, HSPB1-binding targets analysis revealed several gens were associated with OA including EGFR, PLEC, COL5A1, and ROR2. The association of OA-related mRNAs to HSPB1 was additionally confirmed in OA tissues by the quantitative RIP-PCR experiments. Further experiment demonstrated the downregulation of HSPB1 in OA tissues. In conclusion, our current study confirmed HSPB1 as an RNA-binding protein and revealed its potential function in the pathological process of OA, providing a reliable insight to further investigate the molecular regulation mechanism of HSPB1 in OA.


Assuntos
Proteínas de Choque Térmico , Osteoartrite , Humanos , Proteínas de Choque Térmico/genética , Células HeLa , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Osteoartrite/metabolismo , Chaperonas Moleculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA