Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Nanoscale ; 16(25): 12149-12162, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38833269

RESUMO

Together, tumor and virus-specific tissue-resident CD8+ memory T cells (TRMs) of hepatocellular carcinoma (HCC) patients with Hepatitis B virus (HBV) infection can provide rapid frontline immune surveillance. The quantity and activity of CD8+ TRMs were correlated with the relapse-free survival of patients with improved health. However, HBV-specific CD8+ TRMs have a more exhausted phenotype and respond more actively under anti-PDL1 or PD1 treatment of HBV+HCC patients. Vaccination strategies that induce a strong and sustained CD8+ TRMs response are quite promising. Herein, a biodegradable poly(D,L-lactide-co-glycolide) microsphere and nanosphere particle (PLGA N.M.P) delivery system co-assembled by anti-PD1 antibodies (aPD1) and loaded with ovalbumin (OVA-aPD1 N.M.P) was fabricated and characterized for size (200 nm and 1 µm diameter), charge (-15 mV), and loading efficiencies of OVA (238 µg mg-1 particles) and aPD1 (40 µg mg-1 particles). OVA-aPD1 N.M.P could stimulate the maturation of BMDCs and enhance the antigen uptake and presentation by 2-fold compared to free OVA. The nanoparticles also induced the activation of macrophages (RAW 264.7) to produce a high level of cytokines, including TNF-α, IL-6 and IL-10. In vivo stimulation of mice using OVA-aPD1 N.M.P robustly enhanced IFN-γ-producing-CD8+ T cell infiltration in tumor tissues and the secretion of IgG and IgG2a/IgG1 antibodies. OVA-aPD1 N.M.P delivered OVA to increase the activation and proliferation of OVA-specific CD8+ TRMs, and its combination with anti-PD1 antibodies promoted complete tumor rejection by the reversal of tumor-infiltrating CD8+ T cell exhaustion. Thus, PLGA N.M.P could induce a strong CD8+ TRMs response, further highlighting its therapeutic potential in enhancing an antitumor immune response.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Camundongos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Ovalbumina/química , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Nanopartículas/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Células T de Memória/imunologia , Vacinação , Humanos , Células RAW 264.7 , Memória Imunológica
2.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861966

RESUMO

Synergistic cancer therapies have attracted wide attention owing to their multi-mode tumor inhibition properties. Especially, photo-responsive photoimmunotherapy demonstrates an emerging cancer treatment paradigm that significantly improved treatment efficiency. Herein, near-infrared-II responsive ovalbumin functionalized Gold-Genipin nanosystem (Au-G-OVA NRs) was designed for immunotherapy and deep photothermal therapy of breast cancer. A facile synthesis method was employed to prepare the homogeneous Au nanorods (Au NRs) with good dispersion. The nanovaccine was developed further by the chemical cross-linking of Au-NRs, genipin and ovalbumin. The Au-G-OVA NRs outstanding aqueous solubility, and biocompatibility against normal and cancer cells. The designed NRs possessed enhanced localized surface plasmon resonance (LSPR) effect, which extended the NIR absorption in the second window, enabling promising photothermal properties. Moreover, genipin coating provided complimentary red fluorescent and prepared Au-G-OVA NRs showed significant intracellular encapsulation for efficient photoimmunotherapy outcomes. The designed nanosystem possessed deep photothermal therapy of breast cancer and 90% 4T1 cells were ablated by Au-G-OVA NRs (80µg ml-1concentration) after 1064 nm laser irradiation. In addition, Au-G-OVA NRs demonstrated outstanding vaccination phenomena by facilitating OVA delivery, antigen uptake, maturation of bone marrow dendritic cells, and cytokine IFN-γsecretion for tumor immunosurveillance. The aforementioned advantages permit the utilization of fluorescence imaging-guided photo-immunotherapy for cancers, demonstrating a straightforward approach for developing nanovaccines tailored to precise tumor treatment.


Assuntos
Ouro , Imunoterapia , Raios Infravermelhos , Iridoides , Nanotubos , Ovalbumina , Ouro/química , Iridoides/química , Iridoides/farmacologia , Animais , Ovalbumina/química , Ovalbumina/imunologia , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Feminino , Nanotubos/química , Terapia Fototérmica/métodos , Fototerapia/métodos , Camundongos Endogâmicos BALB C , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Células Dendríticas/imunologia , Ressonância de Plasmônio de Superfície
3.
Food Chem ; 453: 139630, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781895

RESUMO

Rutin is a polyphenol with beneficial pharmacological properties. However, its bioavailability is often compromised due to low solubility and poor stability. Encapsulation technologies, such as emulsion systems, have been proven to be promising delivery vehicles for enhancing the bioavailability of bioactive compounds. Thus, this study was proposed and designed to investigate the colonic targeting and colonic fermentation characteristics of rutin-loaded ovalbumin-ferulic acid-polysaccharide (OVA-FA-PS) complex emulsions. The results indicate that OVA-FA-PS emulsion effectively inhibits the degradation of rutin active substances and facilitates its transport of rutin to the colon. The analysis revealed that the OVA-FA-κ-carrageenan emulsion loaded with rutin exhibited superior elasticity and colon targeting properties compared to the OVA-FA-hyaluronic acid or OVA-FA-sodium alginate emulsions loaded with rutin in the composite emulsion. Additionally, it was observed that the rutin loaded within the OVA-FA-κ-carrageenan emulsion underwent degradation and was converted to 4-hydroxybenzoic acid during colonic fermentation.


Assuntos
Colo , Ácidos Cumáricos , Emulsões , Fermentação , Ovalbumina , Polissacarídeos , Colo/metabolismo , Colo/microbiologia , Emulsões/química , Emulsões/metabolismo , Ovalbumina/química , Ovalbumina/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Animais , Rutina/química , Rutina/metabolismo , Masculino
4.
Food Chem ; 454: 139753, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795625

RESUMO

The utilization of cold plasma (CP) treatment to promote covalent conjugation of ovalbumin (OVA) and gallic acid (GA), as well as its functionality, were investigated. Results demonstrated that CP significantly enhanced the covalent grafting of OVA and GA. The maximum conjugation of GA, 24.33 ± 2.24 mg/g, was achieved following 45 s of CP treatment. Covalent conjugation between GA and OVA were confirmed through analyses of total sulfhydryl (-SH) group, Fourier transform infrared (FTIR) spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Unfolding of the OVA molecule occurred upon conjugation with GA, as evidenced by multiple spectroscopy analyses. Additionally, conjugation with GA resulted in significant improvements in the antioxidant activity and emulsifying properties of OVA. This study demonstrated that CP is a robust and sustainable technique for promoting the covalent conjugate of polyphenols and proteins, offering a novel approach to enhance the functional properties of proteins.


Assuntos
Ácido Gálico , Ovalbumina , Gases em Plasma , Ácido Gálico/química , Ovalbumina/química , Gases em Plasma/química , Antioxidantes/química , Animais
5.
J Agric Food Chem ; 72(23): 13320-13327, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819406

RESUMO

Conventional radical grafting of proteins with catechins consumed the most antioxidant-active hydroxyls during grafting, thus failing to effectively retain antioxidant activity in conjugates. In this study, a novel strategy of selective protection of the most reactive hydroxyls before grafting was developed to preserve the most reactive hydroxyls and effectively retain antioxidant activity in conjugates. Selective protection of the most reactive hydroxyls of (-)-epigallocatechin-3-gallate (EGCG) was successfully realized in a yield of 87% applying trimethyl orthopropionate and catalytic calcium triflate at 40 °C. The novel ovalbumin (OVA)-EGCG conjugate with 93% grafting ratio was prepared by radical grafting with the selectively protected EGCG and subsequent deprotection. Substantially enhanced antioxidant performance of the novel OVA-EGCG conjugate in liposomes was unveiled with notably reduced curcumin degradation and leakage. The strategy and approaches developed in this study will be valuable to effectively improve the antioxidant activities of protein-catechin grafting conjugates.


Assuntos
Antioxidantes , Catequina , Ovalbumina , Ovalbumina/química , Catequina/química , Catequina/análogos & derivados , Antioxidantes/química , Lipossomos/química
6.
Biomater Sci ; 12(12): 3175-3192, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38742916

RESUMO

The tumor immunosuppressive microenvironment (TIME) and uncontrollable release of antigens can lower the efficacy of nanovaccine-based immunotherapy (NBI). Therefore, it is necessary to develop a new strategy for TIME reshaping and controllable release of antigens to improve the NBI efficacy. Herein, an acidity-responsive Schiff base-conjugated polyphenol-coordinated nanovaccine was constructed for the first time to realize bidirectional TIME reshaping and controllable release of antigens for activating T cells. In particular, an acidity-responsive tannic acid-ovalbumin (TA-OVA) nanoconjugate was prepared via a Schiff base reaction. FeIII was coordinated with TA-OVA to produce a FeIII-TA-OVA nanosystem, and 1-methyltryptophan (1-MT) as an indoleamine 2,3-dioxygenase inhibitor was loaded to form a polyphenol-coordinated nanovaccine. The coordination between FeIII and TA could cause photothermal ablation of primary tumors, and the acidity-triggered Schiff base dissociation of TA-OVA could controllably release OVA to realize lysosome escape, initiating the body's immune response. More importantly, oxidative stress generated by a tumor-specific Fenton reaction of Fe ions could promote the polarization of tumor-associated macrophages from the M2 to M1 phenotype, resulting in the upregulation of cytotoxic T cells and helper T cells. Meanwhile, 1-MT could downregulate immunosuppressive regulatory T cells. Overall, such skillful combination of bidirectional TIME reshaping and controllable antigen release into one coordination nanosystem could effectively enhance the NBI efficacy of tumors.


Assuntos
Imunoterapia , Ovalbumina , Polifenóis , Bases de Schiff , Taninos , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Ovalbumina/imunologia , Ovalbumina/química , Ovalbumina/administração & dosagem , Polifenóis/química , Polifenóis/farmacologia , Camundongos , Taninos/química , Taninos/farmacologia , Bases de Schiff/química , Concentração de Íons de Hidrogênio , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Triptofano/química , Triptofano/análogos & derivados , Nanoconjugados/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Linhagem Celular Tumoral , Compostos Férricos/química , Nanovacinas
7.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720322

RESUMO

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Assuntos
Vacinas Anticâncer , Linfonodos , Compostos de Manganês , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Óxidos , Animais , Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Óxidos/química , Nanopartículas/química , Compostos de Manganês/química , Imunidade Celular , Feminino , Linhagem Celular Tumoral , DNA/química , DNA/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Tamanho da Partícula , Antígenos de Neoplasias/imunologia
8.
J Nanobiotechnology ; 22(1): 267, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764014

RESUMO

Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.


Assuntos
Adjuvantes Imunológicos , Melanoma Experimental , Camundongos Endogâmicos C57BL , Ovalbumina , Probióticos , Animais , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Probióticos/farmacologia , Melanoma Experimental/imunologia , Feminino , Células Dendríticas/imunologia , Receptor 4 Toll-Like/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Linfócitos T CD4-Positivos/imunologia
9.
Int J Biol Macromol ; 267(Pt 2): 131564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614174

RESUMO

Contaminating microplastics can interact with food proteins in the food matrix and during digestion. This study investigated adsorption of chicken egg protein ovalbumin to polystyrene (PS, 110 and 260 µm) and polyethylene terephthalate (PET, 140 µm) MPs in acidic and neutral conditions and alterations in ovalbumin structure. Ovalbumin adsorption affinity depended on MPs size (smaller > larger), type (PS > PET) and pH (pH 3 > pH 7). In bulk solution, MPs does not change ovalbumin secondary structure significantly, but induces loosening (at pH 3) and tightening (at pH 7) of tertiary structure. Formed soft corona exclusively consists of full length non-native ovalbumin, while in hard corona also shorter ovalbumin fragments were found. At pH 7 soft corona ovalbumin has rearranged but still preserved level of ordered secondary structure, resulting in preserved thermostability and proteolytic stability, but decreased ability to form fibrils upon heating. Secondary structure changes in soft corona resemble changes in native ovalbumin induced by heat treatment (80 °C). Ovalbumin is abundantly present in corona around microplastics also in the presence of other egg white proteins. These results imply that microplastics contaminating food may bind and change structure and functional properties of the main egg white protein.


Assuntos
Microplásticos , Ovalbumina , Polietilenotereftalatos , Poliestirenos , Ovalbumina/química , Poliestirenos/química , Microplásticos/química , Polietilenotereftalatos/química , Concentração de Íons de Hidrogênio , Adsorção , Animais , Galinhas , Estrutura Secundária de Proteína
10.
J Agric Food Chem ; 72(17): 9856-9866, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635925

RESUMO

The purpose of this study was to identify ovalbumin-derived immunomodulatory peptides by in vitro cell experiments, de novo sequencing, and molecular docking. Ovalbumin hydrolysates were prepared by two enzymes (alkaline protease and papain) individually, sequentially, or simultaneously, respectively. The simultaneous enzymatic hydrolysate (OVAH) had a high degree of hydrolysis (38.12 ± 0.48%) and exhibited immune-enhancing and anti-inflammatory activities. A total of 160 peptides were identified by LC-MS/MS in OVAH. Three novel peptides NVMEERKIK, ADQARELINS, and WEKAFKDE bound to TLR4-MD2 through hydrogen bonds and hydrophobic interactions with high binding affinity and binding energies of -181.40, -178.03, and -168.12 kcal/mol, respectively. These three peptides were synthesized and validated for two-way immunomodulatory activity. NVMEERKIK exhibiting the strongest immunomodulatory activity, increased NO and TNF-α levels by 128.69 and 38.01%, respectively, in normal RAW264.7 cells and reduced NO and TNF-α levels by 27.31 and 39.13%, respectively, in lipopolysaccharide-induced inflammatory RAW264.7 cells. Overall, this study first revealed that ovalbumin could be used as an immunomodulatory source for controlling inflammatory factor secretion.


Assuntos
Simulação de Acoplamento Molecular , Ovalbumina , Peptídeos , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Animais , Células RAW 264.7 , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Óxido Nítrico/metabolismo , Óxido Nítrico/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia
11.
Biomater Sci ; 12(9): 2292-2301, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38498328

RESUMO

Colorectal cancer (CRC) ranks among the most prevalent cancers globally, demanding innovative therapeutic strategies. Immunotherapy, a promising avenue, employs cancer vaccines to activate the immune system against tumors. However, conventional approaches fall short of eliciting robust responses within the gastrointestinal (GI) tract, where CRC originates. Harnessing the potential of all-trans retinoic acid (ATRA) and cytosine-phosphorothioate-guanine (CpG), we developed layered nanoparticles using a layer-by-layer assembly method to co-deliver these agents. ATRA, crucial for gut immunity, was efficiently encapsulated alongside CpG within these nanoparticles. Administering these ATRA@CpG-NPs, combined with ovalbumin peptide (OVA), effectively inhibited orthotopic CRC growth in mice. Our approach leveraged the inherent benefits of ATRA and CpG, demonstrating superior efficacy in activating dendritic cells, imprinting T cells with gut-homing receptors, and inhibiting tumor growth. This mucosal adjuvant presents a promising strategy for CRC immunotherapy, showcasing the potential for targeting gut-associated immune responses in combating colorectal malignancies.


Assuntos
Neoplasias Colorretais , Fosfatos de Dinucleosídeos , Nanopartículas , Tretinoína , Tretinoína/química , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Humanos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Camundongos Endogâmicos C57BL , Feminino , Imunoterapia/métodos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Nanopartículas em Multicamadas
12.
Food Chem ; 448: 138988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522295

RESUMO

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Assuntos
Emulsões , Géis , Óleo de Semente do Linho , Ovalbumina , Oxirredução , Transglutaminases , Ovalbumina/química , Transglutaminases/química , Transglutaminases/metabolismo , Emulsões/química , Óleo de Semente do Linho/química , Géis/química
13.
Biomater Sci ; 12(7): 1771-1787, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38385306

RESUMO

In the development of cancer vaccines, antigens are delivered to elicit potent and specific T-cell responses to eradicate tumour cells. Nonetheless, successful vaccines are often hampered by the poor immunogenicity of tumour antigens, rapid clearance by the innate immunity, and limited cross-presentation on MHC-I to activate CD8+ T-cells arm. To address these issues, we developed dextran-based nanogels to promote antigen uptake, storage, and cross-presentation on MHC-I, while directing immunogenic maturation of the antigen-presenting cells (APCs). To promote the nanocarriers interaction with cells, we modified DX with L-arginine (Arg), whose immunomodulatory activities have been well documented. The ArgDX nanogel performance was compared with the nanogel modified with L-histidine (His) and L-glutamate (Glut). Moreover, we introduced pH-sensitive hydrazone crosslinking during the nanogel formation for the conjugation and controlled release of antigen ovalbumin (OVA). The OVA-laden nanogels have an average size of 325 nm. We demonstrated that the nanogels could rapidly release cargoes upon a pH change from 7 to 5 within 8 days, indicating the controlled release of antigens in the acidic cellular compartments upon internalization. Our results revealed that the ArgDX nanogel could promote greater antigen uptake and storage in DCs in vitro and promoted a stronger immunogenic maturation of DCs and M1 polarization of the macrophages. The OVA signals were co-localized with lysosomal compartments up till 96 hours post-treatment and washing, suggesting the nanogels could facilitate prolonged antigen storage and supply from endo-lysosomal compartments. Furthermore, all the tested nanogel formulations retained antigens at the skin injection sites until day 21. Such delayed clearance could be due to the formation of micron-sized aggregates of OVA-laden nanogels, extending the interactions with the resident DCs. Amongst the amino acid modifications, ArgDX nanogels promoted the highest level of lymph node homing signal CCR7 on DCs. The nanogels also showed higher antigen presentation on both MHC-I and II than DX in vitro. In the in vivo immune studies, ArgDX nanogels were more superior in inducing cellular and humoral immunity than the other treatment groups on day 21 post-treatment. These results suggested that ArgDX nanogel is a promising self-adjuvanted nanocarrier for vaccine delivery.


Assuntos
Vacinas Anticâncer , Imunidade Humoral , Polietilenoglicóis , Polietilenoimina , Animais , Camundongos , Nanogéis , Dextranos , Linfócitos T CD8-Positivos , Preparações de Ação Retardada , Células Dendríticas , Antígenos , Adjuvantes Imunológicos/farmacologia , Ovalbumina/química , Camundongos Endogâmicos C57BL
14.
J Sci Food Agric ; 104(3): 1645-1655, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37850306

RESUMO

BACKGROUND: The interaction between food allergens and plant polyphenols has become a safe and effective management strategy to prevent food allergies. Ovalbumin (OVA) is the most abundant allergen in egg whites. Resveratrol (RES) is a plant polyphenol that is abundant in red grapes, berries, and peanuts, and has an anti-allergic effect on allergy-related immune cells. However, there is little information about the effect of RES on the allergenicity of OVA. In this study, the effect of RES on the allergenicity of OVA was investigated. RESULTS: Molecular docking and spectroscopic studies indicated that the addition of RES changed the structure of OVA. The digestion and transfer rate of OVA-RES were effectively improved with an in vitro gastrointestinal digestion model and Caco-2 cell model, especially when the molar ratio of OVA-RES was 1:20. Meanwhile, the KU812 cell degranulation assay proved that the potential allergenicity was remarkably decreased while the molar ratios of OVA-RES were increased to 1:20. Furthermore, hydrogen bonds and van der Waals forces were the dominating forces to stabilize the OVA-RES complexes. CONCLUSION: All the findings demonstrated that the potential allergenicity of OVA was reduced when interacting with RES, and RES can be a potential food material for preparing a hypoallergenic protein, especially for egg allergy. © 2023 Society of Chemical Industry.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Humanos , Ovalbumina/química , Resveratrol , Simulação de Acoplamento Molecular , Células CACO-2 , Imunoglobulina E , Hipersensibilidade Alimentar/prevenção & controle
15.
Food Res Int ; 175: 113726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128987

RESUMO

Ovalbumin (OVA) has been considered as a nutrient carrier for bioactive, which has high nutrition value and multiple properties. Recently, proteins-phenolic acids composite delivery systems have received widespread attention. Therefore, this research aimed to investigate the interaction between OVA and cereal phenolic acids (CPA) to establish delivery systems for bioactive. Spectroscopy results have found that CPA generated complexes with OVA, causing the microenvironment changes of OVA. Ferulic acid (FA), p-coumaric acid (CA), vanillic acid (VA), syringic acid (SY), sinapic acid (SI), and protocatechuic acid (PA) not only quenched the intrinsic fluorescence of OVA, but also altered protein microenvironment. Further investigation showed these complexes were formed by static quenching mode, while hydrogen bond and hydrophobic interaction were dominant binding forces. Meanwhile, the interaction decreased α-helix contents and increased ß-sheet contents, leading to conformational changes in OVA. Besides, OVA/CPA complexes displayed an increase in hydrophobicity with a reduce in free-SH. After combination with FA, SY, CA, VA, SI, PA, it was found that all formed complexes had superior solubility, emulsifying and antioxidant activities than native OVA. Among them, OVA-PA exhibited the highest emulsifying activity index and emulsion stability index values (36.4 ± 0.39 m2/g and 60.4 ± 0.94 min) and stronger antioxidant activities. Finally, the combination with phenolic acids further improved the digestion efficiency in vitro of OVA. The OVA-CPA complexes showed improved properties for excellent delivery systems. Overall, OVA-CPA complexes could be a good carrier for bioactive, which provided valuable avenues in target delivery system application.


Assuntos
Antioxidantes , Grão Comestível , Ovalbumina/química , Antioxidantes/química , Digestão
16.
Food Chem ; 440: 138263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159316

RESUMO

When subjected to dry-heating, egg white ovalbumin, a phosphoglycoprotein, undergoes fragmentation and forms soluble aggregates. We investigated the mechanisms of dry-heat-induced fragmentation of ovalbumin. SDS-PAGE analysis showed that ovalbumin fragmented into five polypeptides, and their amount increased over 6 h of dry-heat treatment at 120 °C. The fragments contained fewer or no phosphoserine, compared with that in crude ovalbumin. Liquid chromatography-tandem mass spectrometry analysis of tryptic digests revealed that the fragmentation sites were located on phosphoserine residues, S68 and S344. During fragmentation, the phosphoserine residues underwent conversion into dehydroalanine residues, which were subsequently hydrolyzed. The nitrogen from the dehydroalanine became a newly formed terminal amide group on the N-terminal fragment, while the remaining molecule predominantly formed a new terminal pyruvoyl group. Furthermore, the fragments were incorporated into monomers or soluble aggregates of ovalbumin via covalent and non-covalent bonds. This study demonstrated a novel mechanism for dry-heat-induced fragmentation of phosphoproteins.


Assuntos
Temperatura Alta , Peptídeos , Ovalbumina/química , Fosfosserina , Clara de Ovo
17.
J Agric Food Chem ; 71(41): 15363-15374, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37797215

RESUMO

Ovalbumin (OVA) is a major allergen in hen eggs. Enzymolysis has been demonstrated as an efficient method for reducing OVA allergenicity. This study demonstrates that microwave pretreatment (MP) at 400 W for 20 s assisting bromelain enzymolysis further decreases the allergenicity of OVA, which was attributed to the increase in the degree of hydrolysis and promoted the destruction of IgE-binding epitopes. The results showed that MP could promote OVA unfolding, expose hydrophobic domains, and disrupt tightly packed α-helical structures and disulfide bonds, which increased the degree of hydrolysis by 7.28% and the contents of peptides below 1 kDa from 43.55 to 85.06% in hydrolysates compared with that for untreated OVA. Biological mass spectrometry demonstrated that the number of intact IgE-binding epitope peptides in MP-assisted OVA hydrolysates decreased by 533 compared to that in hydrolysis without MP; consequently, their IgG/IgE binding rates decreased more significantly. Therefore, MP-assisted enzymolysis may provide an alternative method for decreasing the OVA allergenicity.


Assuntos
Alérgenos , Galinhas , Animais , Feminino , Ovalbumina/química , Alérgenos/química , Galinhas/metabolismo , Micro-Ondas , Peptídeos , Espectrometria de Massas , Epitopos , Imunoglobulina E/metabolismo
18.
J Sci Food Agric ; 103(14): 7127-7135, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37380626

RESUMO

BACKGROUND: Ovalbumin (OVA), accounting for 50% of proteins in egg white, is a kind of high-quality protein with excellent nutritional and processing functions. Acid heat treatment will induce the deformation and filtration of OVA, endowing it with improved functionality. However, the molecular kinetic process during the fibrillation of OVA and the application of the fabricated OVA fibrils (OVAFs) have not been thoroughly studied and revealed. RESULTS: In this study, the fabrication mechanism and the application OVAFs as an interfacial stabilizer and polyphenol protector were investigated. Acidic (pH 3.0) heat treatment was used to induce the fibrillation of OVA, and thioflavin T fluorescence intensity, molecular weight distribution, and the tertiary and secondary structures of OVAF samples were recorded to determine the fibrillation efficiency and the molecular mechanism. The results showed that, in the initial stage of fibrillation, OVA first hydrolyzed to oligopeptides, accompanied by the exposure of hydrophobic domains. Then, oligopeptides were connected by disulfide bonds to form primary fibril monomers. Hydrophobic interaction and hydrogen bonding may participate in the further polymerization of the fibrils. The fabricated OVAFs were characterized by a ß-sheet-rich structure and possessed improved emulsifying, foaming, and polyphenol protection ability. CONCLUSION: The research work was meaningful for exploring the application of globular water-soluble OVA in an emerging nutritious food with novel texture and sensory properties. © 2023 Society of Chemical Industry.


Assuntos
Clara de Ovo , Temperatura Alta , Ovalbumina/química , Clara de Ovo/química , Oligopeptídeos , Polifenóis
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122966, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327498

RESUMO

With the increasing demand for functional foods, the study on binding of active molecules and ovalbumin (OVA) via weak interaction has attracted widespread attention. In this work, the interaction mechanism of OVA and caffeic acid (CA) was revealed using fluorescence spectroscopy and dynamics simulation. The CA-induced fluorescence decrease of OVA was static quenching. Their binding complex had about 1 binding site and a 3.39 × 105 L·mol-1 affinity ability. Based on thermodynamic calculations and molecular dynamics simulation, the complex structure of OVA and CA were stable using hydrophobic interactions as the main force, where CA preferred to interact with a stable binding pocket consisting of E256, E25, and V200 with N24 amino acid residues. In the binding process of CA and OVA, the conformation of OVA was altered with a slight reduction of α-helix and ß-sheet. The reduced molecular volume and more compact structure of the protein indicated that CA is beneficial to the structural stability of OVA. The research provides some new insights into the interaction between dietary proteins and polyphenols, expanding the application prospects of OVA as a carrier.


Assuntos
Simulação de Dinâmica Molecular , Ovalbumina/química , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligação Proteica
20.
Food Chem ; 426: 136575, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321120

RESUMO

This study aimed to form a novel emulsion gel (EG) through structured oil phase of natural component beeswax (BW), together with ovalbumin (OVA), and to investigate the mechanism of its formation and stabilization in terms of microstructure and processing properties. Confocal laser scanning microscopy (CLSM) demonstrated that the EG formed a continuous double network structure since the superior crystallinity of the oil phase was given by BW. Fourier transform infrared spectroscopy (FT-IR) illustrated that the acylation of the phenolic hydroxyl group in BW with an amide bond in OVA, increased the hydrogen bonding of EG. Furthermore, the immobilization of the oil phase results in better thermal and freeze-thaw stability of EG. Finally, EG was used as a curcumin delivery system, and the presence of BW significantly improved its adaptability to multiple environmental factors. In summary, our study would provide valuable ideas for developing the design of finely structured functional food.


Assuntos
Ceras , Emulsões/química , Ovalbumina/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA