Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 187(3): 543-552, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28068511

RESUMO

Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the United States. Timely initiation of compensatory liver regeneration after APAP hepatotoxicity is critical for final recovery, but the mechanisms of liver regeneration after APAP-induced ALF have not been extensively explored yet. Previous studies from our laboratory have demonstrated that activation of ß-catenin signaling after APAP overdose is associated with timely liver regeneration. Herein, we investigated the role of glycogen synthase kinase 3 (GSK3) in liver regeneration after APAP hepatotoxicity using a pharmacological inhibition strategy in mice. Treatment with specific GSK3 inhibitor (L803-mts), starting from 4 hours after 600 mg/kg dose of APAP, resulted in early initiation of liver regeneration in a dose-dependent manner, without modifying the peak regenerative response. Acceleration of liver regeneration was not secondary to alteration of APAP-induced hepatotoxicity, which remained unchanged after GSK3 inhibition. Early cell cycle initiation in hepatocytes after GSK3 inhibition was because of rapid induction of cyclin D1 and phosphorylation of retinoblastoma protein. This was associated with increased activation of ß-catenin signaling after GSK3 inhibition. Taken together, our study has revealed a novel role of GSK3 in liver regeneration after APAP overdose and identified GSK3 as a potential therapeutic target to improve liver regeneration after APAP-induced ALF.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Regeneração Hepática , Animais , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Overdose de Drogas/enzimologia , Overdose de Drogas/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Regeneração Hepática/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , beta Catenina/metabolismo
2.
Toxicol Sci ; 155(2): 363-378, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28123000

RESUMO

Epidermal growth factor receptor (EGFR) plays a crucial role in hepatocyte proliferation. Its role in acetaminophen (APAP)-mediated hepatotoxicity and subsequent liver regeneration is completely unknown. Role of EGFR after APAP-overdose in mice was studied using pharmacological inhibition strategy. Rapid, sustained and dose-dependent activation of EGFR was noted after APAP-treatment in mice, which was triggered by glutathione depletion. EGFR-activation was also observed in primary human hepatocytes after APAP-treatment, preceding elevation of toxicity markers. Treatment of mice with an EGFR-inhibitor (EGFRi), Canertinib, 1h post-APAP resulted in robust inhibition of EGFR-activation and a striking reduction in APAP-induced liver injury. Metabolic activation of APAP, formation of APAP-protein adducts, APAP-mediated JNK-activation and its mitochondrial translocation were not altered by EGFRi. Interestingly, EGFR rapidly translocated to mitochondria after APAP-treatment. EGFRi-treatment abolished mitochondrial EGFR activity, prevented APAP-mediated mitochondrial dysfunction/oxidative-stress and release of endonucleases from mitochondria, which are responsible for DNA-damage/necrosis. Treatment with N-acetylcysteine (NAC), 4h post-APAP in mice did not show any protection but treatment of EGFRi in combination with NAC showed decrease in liver injury. Finally, delayed treatment with EGFRi, 12-h post-APAP, did not alter peak injury but caused impairment of liver regeneration resulting in sustained injury and decreased survival after APAP overdose in mice. Impairment of regeneration was due to inhibition of cyclinD1 induction and cell cycle arrest. Our study has revealed a new dual role of EGFR both in initiation of APAP-injury and in stimulation of subsequent compensatory regeneration after APAP-overdose.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Overdose de Drogas/enzimologia , Receptores ErbB/fisiologia , Hepatócitos/efeitos dos fármacos , Regeneração Hepática , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Animais , Receptores ErbB/antagonistas & inibidores , Glutationa/metabolismo , Hepatócitos/enzimologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/enzimologia , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Estresse Oxidativo , Ligação Proteica
3.
Acta Histochem ; 116(1): 182-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23953641

RESUMO

Heroin is one of the most dangerous drugs of abuse, which may exert various neurotoxic actions on the brain (such as gray matter loss, neuronal apoptosis, mitochondrial dysfunction, synaptic defects, depression of adult neurogenensis, as well as development of spongiform leucoencephalopathy). Some of these toxic effects are probably mediated by the gas nitric oxide (NO). We studied by morphometric analysis the numerical density of neurons expressing neuronal nitric oxide synthase (nNOS) in cortical and hypothalamic areas of eight heroin overdose victims and nine matched controls. Heroin addicts showed significantly increased numerical densities of nNOS immunoreactive cells in the right temporal cortex and the left paraventricular nucleus. Remarkably, in heroin abusers, but not in controls, we observed not only immunostained interneurons, but also cortical pyramidal cells. Given that increased cellular expression of nNOS was accompanied by elevated NO generation in brains of heroin addicts, these elevated levels of NO might have contributed to some of the known toxic effects of heroin (for example, reduced adult neurogenesis, mitochondrial pathology or disturbances in synaptic functioning).


Assuntos
Overdose de Drogas/enzimologia , Dependência de Heroína/enzimologia , Heroína/intoxicação , Entorpecentes/intoxicação , Óxido Nítrico Sintase/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Lobo Temporal/enzimologia , Adolescente , Adulto , Estudos de Casos e Controles , Overdose de Drogas/mortalidade , Feminino , Glutamato Descarboxilase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Dependência de Heroína/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA