Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 15: 99-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469263

RESUMO

BACKGROUND AND OBJECTIVE: Neurotoxicity is a common side effect of oxaliplatin; the effect of current drugs such as methylcobalamin and gabapentine is not obvious. Astragaloside IV (AS-IV) is an important active ingredient of Astragali Radix, which can protect the nervous system and inhibit tumor growth to a certain extent. However, whether AS-IV can reduce oxaliplatin neurotoxicity and its molecular mechanism remain unclear. METHODS: The network pharmacology method was used to determine the collective targets of AS-IV and oxaliplatin neurotoxicity. The model of neurotoxicity was established by intraperitoneal injection of oxaliplatin in rats. Bodyweight, mechanical withdrawal threshold (MWT), cold allodynia, and nerve conduction velocity (NCV) were examined, pathological changes were observed by hematoxylin-eosin staining, number of Nissl bodies were assessed by Nissl staining, the key collective targets were measured by spectrophotometry and immunohistochemistry. RESULTS: Through network pharmacological analysis, 25 collective targets of AS-IV and oxaliplatin neurotoxicity were identified, mainly related to inflammation and oxidative stress. AS-IV could increase body weight, elevate MWT, and reduce cold allodynia of model rats, it also raised NCV. Neuropathology was improved and the number of Nissl bodies was increased by AS-IV administration. It reduced TNF-α, IL-6, and IL-1ß in the spinal cord of model rats to inhibit inflammation; it also decreased MDA, raised SOD, CAT, and GSH-Px in the spinal cord of model rats to block oxidative stress. CONCLUSION: AS-IV improves oxaliplatin neurotoxicity by regulating neuroinflammation and oxidative stress; the results can provide a new perspective for the potential treatment strategy of oxaliplatin neurotoxicity.


Assuntos
Hiperalgesia/tratamento farmacológico , Síndromes Neurotóxicas/tratamento farmacológico , Oxaliplatina/antagonistas & inibidores , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Inflamação/tratamento farmacológico , Injeções Intraperitoneais , Masculino , Oxaliplatina/administração & dosagem , Oxaliplatina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
2.
Drug Des Devel Ther ; 14: 73-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021093

RESUMO

PURPOSE: Oxaliplatin (OXA)-induced liver injury is one of the main limiting factors affecting the efficacy of OXA-based chemotherapy in patients with colorectal liver metastases. In addition, oxidative stress is an important pathophysiological mechanism of OXA-induced liver injury. Therefore, dietary antioxidants may decrease or prevent hepatic toxicity in vivo and be beneficial to OXA-based chemotherapy. METHODS: An experimental OXA-induced liver injury animal model was established, and the protective effects of curcumin (CUR) against OXA-induced liver injury were investigated. ELISA was used to determine the levels of MDA, SOD, CAT, and GSH in liver tissue. The effect of CUR treatment on the expression of cytokines and the Nrf2 pathway was determined by real-time PCR and Western blotting. RESULTS: CUR treatment alleviated OXA-induced hepatic pathological damage and splenomegaly. The protective effect of CUR was demonstrated to be correlated with inhibition of oxidative stress, inflammation, and the coagulation system. Furthermore, Western blotting revealed that CUR treatment reverses the suppression of Nrf2 nuclear translocation and increases the expression of HO-1 and NOQ1 in mice with OXA-induced liver injury. Moreover, the Nrf2 activation and hepatoprotective effect of CUR were abolished by brusatol. CONCLUSION: Curcumin attenuates oxaliplatin-induced liver injury and oxidative stress by activating the Nrf2 pathway, which suggests that CUR may be potentially used in the prevention and treatment of OXA-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Curcumina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Oxaliplatina/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Curcumina/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Oxaliplatina/administração & dosagem , Oxaliplatina/farmacologia , Substâncias Protetoras/administração & dosagem , Relação Estrutura-Atividade
3.
Neuropharmacology ; 164: 107905, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811874

RESUMO

Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.


Assuntos
Antineoplásicos/toxicidade , Axônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Oxaliplatina/antagonistas & inibidores , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Topiramato/farmacologia , Animais , Feminino , Condução Nervosa/efeitos dos fármacos , Medição da Dor , Ratos , Ratos Wistar
4.
Mar Drugs ; 17(5)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060282

RESUMO

Oxaliplatin is a third-generation platinum drug and is widely used as a first-line therapy for the treatment of colorectal cancer (CRC). However, a large number of patients receiving oxaliplatin develop dose-limiting painful neuropathy. Here, we report that αO-conotoxin GeXIVA[1,2], a highly potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype, can relieve and reverse oxaliplatin-induced mechanical and cold allodynia after single and repeated intramuscular (IM) injections in rats. Treatments were started at 4 days post oxaliplatin injection when neuropathic pain emerged and continued for 8 and 16 days. Cold score and mechanical paw withdrawal threshold (PWT) were detected by the acetone test and von Frey test respectively. GeXIVA[1,2] significantly relieved mechanical and cold allodynia in oxaliplatin-treated rats after a single injection. After repeated treatments, GeXIVA[1,2] produced a cumulative analgesic effect without tolerance and promoted recovery from neuropathic pain. Moreover, the long lasting analgesic effect of GeXIVA[1,2] on mechanical allodynia continued until day 10 after the termination of the 16-day repeated treatment procedure. On the contrary, GeXIVA[1,2] did not affect acute mechanical and thermal pain behaviors in normal rats after repeated injections detected by the von Frey test and tail flick test. GeXIVA[1,2] had no influence on rat hind limb grip strength and body weight after repeated treatments. These results indicate that αO-conotoxin GeXIVA[1,2] could provide a novel strategy to treat chemotherapy-induced neuropathic pain.


Assuntos
Analgésicos/farmacologia , Conotoxinas/farmacologia , Neuralgia/tratamento farmacológico , Oxaliplatina/efeitos adversos , Oxaliplatina/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Masculino , Neuralgia/induzido quimicamente , Oxaliplatina/administração & dosagem , Ratos , Ratos Sprague-Dawley
5.
J Pharmacol Sci ; 138(3): 214-217, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30409714

RESUMO

Oxaliplatin causes acute cold hypersensitivity in most patients. We previously reported oxalate derived from oxaliplatin induced cold allodynia via overexpression of transient receptor potential melastatin 8 (TRPM8) in the dorsal root ganglion (DRG) in rats. In this study, we examined the effect of riluzole on oxaliplatin-induced cold allodynia. In cultured DRG neurons, riluzole suppressed oxalate-induced increase of the number of menthol (TRPM8 agonist)-sensitive cells. Moreover, riluzole prevented cold allodynia and increase in levels of TRPM8 mRNA in oxaliplatin-treated rats. These results suggest that riluzole prevents oxaliplatin-induced cold allodynia via inhibition of TRPM8 overexpression in the DRG.


Assuntos
Síndromes Periódicas Associadas à Criopirina/prevenção & controle , Oxaliplatina/antagonistas & inibidores , Riluzol/farmacologia , Canais de Cátion TRPM/biossíntese , Animais , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Masculino , Oxaliplatina/farmacologia , Ratos
6.
Neuropharmacology ; 140: 43-61, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30056126

RESUMO

Neurotoxicity remains the most common adverse effect of oxaliplatin, limiting its clinical use. In the present study, we developed a mouse model of chronic oxaliplatin-induced neuropathy, which mimics both sensory and motor deficits observed in patients, in a clinically relevant time course. Repeated oxaliplatin administration in mice induced both cephalic and extracephalic long lasting mechanical and cold hypersensitivity after the first injection as well as delayed sensorimotor deficits and a depression-like phenotype. Using this model, we report that riluzole prevents both sensory and motor deficits induced by oxaliplatin as well as the depression-like phenotype induced by cumulative chemotherapeutic drug doses. All the beneficial effects are due to riluzole action on the TREK-1 potassium channel, which plays a central role in its therapeutic action. Riluzole has no negative effect on oxaliplatin antiproliferative capacity in human colorectal cancer cells and on its anticancer effect in a mouse model of colorectal cancer. Moreover, riluzole decreases human colorectal cancer cell line viability in vitro and inhibits polyp development in vivo. The present data in mice may support the need to clinically test riluzole in oxaliplatin-treated cancer patients and state for the important role of the TREK-1 channel in pain perception.


Assuntos
Depressão/prevenção & controle , Síndromes Neurotóxicas/prevenção & controle , Oxaliplatina/efeitos adversos , Oxaliplatina/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Riluzol/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Depressão/induzido quimicamente , Humanos , Masculino , Camundongos , Camundongos Knockout , Neoplasias/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA