Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 720
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 244, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717526

RESUMO

PURPOSE: Cystatin SA (CST2) belongs to the superfamily of cysteine protease inhibitors. Emerging research indicates that CST2 is often dysregulated across various cancers. Its role and molecular mechanisms in gastric cancer remain underexplored. This study aims to explore the expression and function of CST2 in gastric cancer. METHODS: CST2 expression was analyzed and validated through Western blot. CST2 overexpression was induced by lentivirus in GC cells, and the correlation between CST2 expression levels and downstream signaling pathways was assessed. In addition, multiple assays, including cell proliferation, colony formation, wound-healing, and transwell migration/invasion, were considered to ascertain the influence of CST2 overexpression on gastric cancer. The cell cycle and apoptosis were detected by flow cytometry. RESULTS: CST2 expression at the protein level was decreased to be reduced in both gastric cancer tissues and cell lines, and CST2 expression attenuate gastric cancer growth, an effect restricted to gastric cancer cells and absent in gastric epithelial GES-1 cells. Furthermore, CST2 was demonstrated to improve chemosensitivity to Oxaliplatin in gastric cancer cells through the PI3K/AKT signaling pathway. CONCLUSION: These findings indicate that CST2 is downregulated at the protein level in gastric cancer tissues and cell lines. Additionally, CST2 was found to attenuate the growth of gastric cancer cells and to enhance sensitivity to Oxaliplatin through the PI3K/AKT signaling pathway, specific to gastric cancer cell lines. CST2 may serve as a tumor suppressor gene increasing sensitivity to Oxaliplatin in gastric cancer.


Assuntos
Proliferação de Células , Oxaliplatina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Oxaliplatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Cistatinas Salivares/metabolismo , Cistatinas Salivares/genética , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Movimento Celular/efeitos dos fármacos
2.
Sci Rep ; 14(1): 10745, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730240

RESUMO

Gastric cancer is one of the most common malignant tumors, and chemotherapy is the main treatment for advanced gastric cancer. However, chemotherapy resistance leads to treatment failure and poor prognosis in patients with gastric cancer. Multidrug resistance (MDR) is a major challenge that needs to be overcome in chemotherapy. According to recent research, ferroptosis activation is crucial for tumor therapeutic strategies. In this work, we explored the solution to chemoresistance in gastric cancer by investigating the effects of the Chinese medicine monomer baicalin on ferroptosis. Baicalin with different concentrations was used to treat the parent HGC27 and drug-resistant HGC27/L cells of gastric cancer. Cell viability was measured by CCK8, and synergistic effects of baicalin combined with oxaliplatin were evaluated using Synergy Finder software. The effects of baicalin on organelles and cell morphology were investigated using projective electron microscopy. Iron concentration, MDA production and GSH inhibition rate were measured by colorimetry. ROS accumulation was detected by flow cytometry. The ferroptosis-related genes (IREB2, TfR, GPX4, FTH1), P53, and SLC7A11 were analysed by Western blot, and the expression differences of the above proteins between pretreatment and pretreatment of different concentrations of baicalin, were assayed in both parental HGC27 cells and Oxaliplatin-resistant HGC27/L cells. Mechanically, Baicalin disrupted iron homeostasis and inhibits antioxidant defense, resulting in iron accumulation, lipid peroxide aggregation, and specifically targeted and activated ferroptosis by upregulating the expression of tumor suppressor gene p53, thereby activating the SLC7A11/GPX4/ROS pathway mediated by it. Baicalin activates ferroptosis through multiple pathways and targets, thereby inhibiting the viability of oxaliplatin-resistant gastric cancer HGC27/L cells and enhancing the sensitivity to oxaliplatin chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ferroptose , Flavonoides , Oxaliplatina , Neoplasias Gástricas , Proteína Supressora de Tumor p53 , Ferroptose/efeitos dos fármacos , Humanos , Flavonoides/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
BMC Cancer ; 24(1): 587, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741073

RESUMO

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Assuntos
Antineoplásicos , Neoplasias do Colo , Via de Sinalização Hippo , Compostos Organoplatínicos , Oxaliplatina , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteína Supressora de Tumor p53 , Humanos , Oxaliplatina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células HCT116 , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/uso terapêutico , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Linhagem Celular Tumoral , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Proteínas de Sinalização YAP/metabolismo , Porfirinas/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos
4.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673932

RESUMO

Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative-nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [Ca4Mn(DPDP)5; PledOx®], which by mimicking mitochondrial manganese superoxide dismutase (MnSOD) may be expected to overcome oxaliplatin-associated chemotherapy-induced peripheral neuropathy (CIPN). Unfortunately, two recent phase III studies (POLAR A and M trials) applying Ca4Mn(DPDP)5 in colorectal cancer (CRC) patients receiving multiple cycles of FOLFOX6 (5-FU + oxaliplatin) failed to demonstrate efficacy. Instead of an anticipated 50% reduction in the incidence of CIPN in patients co-treated with Ca4Mn(DPDP)5, a statistically significant increase of about 50% was seen. The current article deals with confusing differences between early and positive findings with MnDPDP in comparison to the recent findings with Ca4Mn(DPDP)5. The POLAR failure may also reveal important mechanisms behind oxaliplatin-associated CIPN itself. Thus, exacerbated neurotoxicity in patients receiving Ca4Mn(DPDP)5 may be explained by redox interactions between Pt2+ and Mn2+ and subtle oxidative-nitrosative chain reactions. In peripheral sensory nerves, Pt2+ presumably leads to oxidation of the Mn2+ from Ca4Mn(DPDP)5 as well as from Mn2+ in MnSOD and other endogenous sources. Thereafter, Mn3+ may be oxidized by peroxynitrite (ONOO-) into Mn4+, which drives site-specific nitration of tyrosine (Tyr) 34 in the MnSOD enzyme. Conformational changes of MnSOD then lead to the closure of the superoxide (O2•-) access channel. A similar metal-driven nitration of Tyr74 in cytochrome c will cause an irreversible disruption of electron transport. Altogether, these events may uncover important steps in the mechanism behind Pt2+-associated CIPN. There is little doubt that the efficacy of MnDPDP and its therapeutic improved counterpart Ca4Mn(DPDP)5 mainly depends on their MnSOD-mimetic activity when it comes to their potential use as rescue medicines during, e.g., acute myocardial infarction. However, pharmacokinetic considerations suggest that the efficacy of MnDPDP on Pt2+-associated neurotoxicity depends on another action of this drug. Electron paramagnetic resonance (EPR) studies have demonstrated that Pt2+ outcompetes Mn2+ and endogenous Zn2+ in binding to fodipir (DPDP), hence suggesting that the previously reported protective efficacy of MnDPDP against CIPN is a result of chelation and elimination of Pt2+ by DPDP, which in turn suggests that Mn2+ is unnecessary for efficacy when it comes to oxaliplatin-associated CIPN.


Assuntos
Antineoplásicos , Manganês , Oxaliplatina , Doenças do Sistema Nervoso Periférico , Platina , Humanos , Antineoplásicos/efeitos adversos , Ácido Edético/análogos & derivados , Manganês/efeitos adversos , Estresse Nitrosativo/efeitos dos fármacos , Oxaliplatina/efeitos adversos , Oxaliplatina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Platina/efeitos adversos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fosfato de Piridoxal/metabolismo , Superóxido Dismutase/metabolismo , Ensaios Clínicos Fase III como Assunto
5.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592373

RESUMO

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Assuntos
Adenocarcinoma , Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Neoplasias Esofágicas , Oxaliplatina , Proteína Smad3 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteína Smad3/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Reparo do DNA/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/efeitos dos fármacos
6.
Front Biosci (Landmark Ed) ; 29(4): 158, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38682206

RESUMO

BACKGROUND: Immunogenic cell death (ICD) is a crucial mechanism for triggering the adaptive immune response in cancer patients. Damage-associated molecular patterns (DAMPs) are critical factors in the detection of ICD. Chemotherapeutic drugs can cause ICD and the release of DAMPs. The aim of this study was to assess the potential for paclitaxel and platinum-based chemotherapy regimens to induce ICD in squamous cell carcinoma (SCC) cell lines. In addition, we examined the immunostimulatory effects of clinically relevant chemotherapeutic regimens utilized in the treatment of SCC. METHODS: We screened for differentially expressed ICD markers in the supernatants of three SCC cell lines following treatment with various chemotherapeutic agents. The ICD markers included Adenosine Triphosphate (ATP), Calreticulin (CRT), Annexin A1 (ANXA 1), High Mobility Group Protein B1 (HMGB1), and Heat Shock Protein 70 (HSP70). A vaccination assay was also employed in C57BL/6J mice to validate our in vitro findings. Lastly, the levels of CRT and HMGB1 were evaluated in Serum samples from SCC patients. RESULTS: Addition of the chemotherapy drugs cisplatin (DDP), carboplatin (CBP), nedaplatin (NDP), oxaliplatin (OXA) and docetaxel (DOC) increased the release of ICD markers in two of the SCC cell lines. Furthermore, mice that received vaccinations with cervical cancer cells treated with DDP, CBP, NDP, OXA, or DOC remained tumor-free. Although CBP induced the release of ICD-associated molecules in vitro, it did not prevent tumor growth at the vaccination site in 40% of mice. In addition, both in vitro and in vivo results showed that paclitaxel (TAX) and LBP did not induce ICD in SCC cells. CONCLUSION: The present findings suggest that chemotherapeutic agents can induce an adjuvant effect leading to the extracellular release of DAMPs. Of the agents tested here, DDP, CBP, NDP, OXA and DOC had the ability to act as inducers of ICD.


Assuntos
Antineoplásicos , Calreticulina , Carcinoma de Células Escamosas , Cisplatino , Proteína HMGB1 , Morte Celular Imunogênica , Camundongos Endogâmicos C57BL , Compostos Organoplatínicos , Paclitaxel , Animais , Morte Celular Imunogênica/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Proteína HMGB1/metabolismo , Calreticulina/metabolismo , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Compostos Organoplatínicos/farmacologia , Oxaliplatina/farmacologia , Camundongos , Carboplatina/farmacologia , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Feminino , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Anexina A1/metabolismo
7.
Apoptosis ; 29(5-6): 835-848, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573492

RESUMO

Oxaliplatin resistance poses a significant challenge in colorectal cancer (CRC) therapy, necessitating further investigation into the underlying molecular mechanisms. This study aimed to elucidate the regulatory role of SNHG4 in oxaliplatin resistance and ferroptosis in CRC. Our findings revealed that treatment with oxaliplatin led to downregulation of SNHG4 expression in CRC cells, while resistant CRC cells exhibited higher levels of SNHG4 compared to parental cells. Silencing SNHG4 attenuated oxaliplatin resistance and reduced the expression of resistance-related proteins MRD1 and MPR1. Furthermore, induction of ferroptosis effectively diminished oxaliplatin resistance in both parental and resistant CRC cells. Notably, ferroptosis induction resulted in decreased SNHG4 expression, whereas SNHG4 overexpression suppressed ferroptosis. Through FISH, RIP, and RNA pull-down assays, we identified the cytoplasmic localization of both SNHG4 and PTEN, establishing that SNHG4 directly targets PTEN, thereby reducing mRNA stability in CRC cells. Silencing PTEN abrogated the impact of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells. In vivo experiments further validated the influence of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells through PTEN regulation. In conclusion, SNHG4 promotes resistance to oxaliplatin in CRC cells by suppressing ferroptosis through instability of PTEN, thus serves as a target for patients with oxaliplatin-base chemoresistance.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Oxaliplatina , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Oxaliplatina/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino
8.
Drug Resist Updat ; 74: 101080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579635

RESUMO

BACKGROUND: Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context. METHODS: We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness. RESULTS: Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response. CONCLUSION: Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/administração & dosagem , Oxaliplatina/uso terapêutico , Aprendizado Profundo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medicina de Precisão/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Imunoterapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Multiômica
9.
Talanta ; 274: 125920, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574532

RESUMO

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Assuntos
Metalotioneína , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Metalotioneína/metabolismo , Metalotioneína/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Fluorescência/métodos , Carboplatina/farmacologia , Oxaliplatina/farmacologia , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Platina/química , Metalotioneína 3 , Citostáticos/farmacologia , Citostáticos/química , Espectrometria de Massas/métodos , Humanos
10.
J Mater Chem B ; 12(16): 3947-3958, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38586917

RESUMO

Colorectal cancer (CRC) occurs in the colorectum and ranks second in the global incidence of all cancers, accounting for one of the highest mortalities. Although the combination chemotherapy regimen of 5-fluorouracil (5-FU) and platinum(IV) oxaliplatin prodrug (OxPt) is an effective strategy for CRC treatment in clinical practice, chemotherapy resistance caused by tumor-resided Fusobacterium nucleatum (Fn) could result in treatment failure. To enhance the efficacy and improve the biocompatibility of combination chemotherapy, we developed an antibacterial-based nanodrug delivery system for Fn-associated CRC treatment. A tumor microenvironment-activated nanomedicine 5-FU-LA@PPL was constructed by the self-assembly of chemotherapeutic drug derivatives 5-FU-LA and polymeric drug carrier PPL. PPL is prepared by conjugating lauric acid (LA) and OxPt to hyperbranched polyglycidyl ether. In principle, LA is used to selectively combat Fn, inhibit autophagy in CRC cells, restore chemosensitivity of 5-FU as well as OxPt, and consequently enhance the combination chemotherapy effects for Fn-associated drug-resistant colorectal tumor. Both in vitro and in vivo studies exhibited that the tailored nanomedicine possessed efficient antibacterial and anti-tumor activities with improved biocompatibility and reduced non-specific toxicity. Hence, this novel anti-tumor strategy has great potential in the combination chemotherapy of CRC, which suggests a clinically relevant valuable option for bacteria-associated drug-resistant cancers.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Fluoruracila , Ácidos Láuricos , Fluoruracila/farmacologia , Fluoruracila/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Ácidos Láuricos/química , Ácidos Láuricos/farmacologia , Animais , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Fusobacterium nucleatum/efeitos dos fármacos , Oxaliplatina/farmacologia , Oxaliplatina/química , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Portadores de Fármacos/química
11.
Int Immunopharmacol ; 132: 111998, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593510

RESUMO

BACKGROUND: Given the intricate molecular complexities and heterogeneity inherent in T-cell immunotherapy of gastric cancer (GC), elucidative T-cell-related biomarkers were imperative needed for facilitating the prediction of GC patient prognosis and identify potential synergistic therapeutic targets. METHODS: We conducted COX regression analysis in TISIDB, TCGA-STAD, and GEO databases to identify 19 GC T-cell-mediated sensitivity tumor killing (TTK) genes (key GCTTKs). Based on key GCTTKs, we constructed two TTK patterns and analyzed their metabolic pathways, mutation features, clinical data distribution, immune cell infiltration, and prognosis. LASSO regression was performed to develop a T-cell-mediated GC Prognosis (TGCP) model. We validated the TGCP model in GC patients. TAP1 was further selected for investigation of its biological functions and molecular mechanisms. We assessed the potential of TAP1 as a promising therapeutic target for GC using Patient-derived organoids (PDOs)-derived xenografts (PDOXs) models of GC. RESULTS: The TTK patterns display notable disparities. The TGCP model showcases its proficiency in predicting immune response efficacy, effectively distinguishes immunotherapy difference GC patients. Our findings find further confirmation in PDOX models, affirming TAP1 can enhance immunotherapy facilitated by PDL1 inhibitors. Furthermore, Oxaliplatin, by promoting TAP1 expression, augments PDL1 expression, thereby enhancing the efficacy of immunotherapy. CONCLUSIONS: We constructed a TGCP model, which demonstrates satisfactory predictive accuracy. Out of 9 prognostic genes, TAP1 was validated as a synergistic target for Oxaliplatin and PDL1 inhibitors, offering a genetic-level explanation for the synergy observed in GC treatment involving Oxaliplatin in combination with PDL1 inhibitors.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Imunoterapia , Oxaliplatina , Neoplasias Gástricas , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/terapia , Neoplasias Gástricas/genética , Humanos , Animais , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Imunoterapia/métodos , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Camundongos , Linfócitos T/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Sinergismo Farmacológico , Prognóstico
12.
mSystems ; 9(4): e0132323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38483163

RESUMO

Lung adenocarcinoma (LADC) is the most common lung cancer and the leading cause of cancer-related deaths globally. Accumulating evidence suggests that the gut microbiota regulates the host response to chemotherapeutic drugs and can be targeted to reduce the toxicity of current chemotherapeutic agents. However, the effect of Diaphorobacter nitroreducens synergized with oxaliplatin on the gut microbiota and their impact on LADC have never been explored. This study aimed to evaluate the anti-cancer effects of D. nitroreducens, oxaliplatin, and their combined treatment on tumor growth in tumor-bearing mice. The composition of gut microbiota and the immune infiltration of tumors were evaluated by using 16S rRNA gene high-throughput sequencing and immunofluorescence, respectively. The inhibitory effect of the combination treatment with D. nitroreducens and oxaliplatin was significantly stronger than that of oxaliplatin alone in tumor-bearing mice. Furthermore, we observed that the combination treatment significantly increased the relative abundance of Lactobacillus and Akkermansia in the gut microbiota. Meanwhile, the combination treatment significantly increased the proportions of macrophage but decreased the proportion of regulatory T cells in the LADC tumor tissues of mice. These findings underscored the relationship between D. nitroreducens and the gut microbiota-immune cell-LADC axis, highlighting potential therapeutic avenues for LADC treatment. IMPORTANCE: Oxaliplatin is widely used as an effective chemotherapeutic agent in cancer treatment, but its side effects and response rate still need to be improved. Conventional probiotics potentially benefit cancer chemotherapy by regulating gut microbiota and tumor immune infiltration. This study was novel in reporting a more significant inhibitory effect of Diaphorobacter nitroreducens on lung adenocarcinoma (LADC) cells compared with common traditional probiotics and validating its potential as an adjuvant therapy for LADC chemotherapy in mice. This study investigated the impact of D. nitroreducens combined with oxaliplatin on the gut microbiota and immune infiltration of tumors as a potential mechanism to improve anticancer effects.


Assuntos
Adenocarcinoma de Pulmão , Comamonadaceae , Neoplasias Pulmonares , Animais , Camundongos , Oxaliplatina/farmacologia , RNA Ribossômico 16S/genética , Carga Tumoral , Neoplasias Pulmonares/tratamento farmacológico
13.
ACS Chem Biol ; 19(4): 875-885, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483263

RESUMO

It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.


Assuntos
Antineoplásicos , Nucléolo Celular , Compostos Organoplatínicos , Fenantridinas , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Cisplatino/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Oxaliplatina/farmacologia , Fenantridinas/síntese química , Fenantridinas/química , Fenantridinas/farmacologia , Química Click , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo
14.
J Nanobiotechnology ; 22(1): 93, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443927

RESUMO

Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.


Assuntos
Células Endoteliais , Glioma , Humanos , Oxaliplatina/farmacologia , Peróxido de Hidrogênio , Glioma/tratamento farmacológico , Hidrocarbonetos Aromáticos com Pontes , Ferritinas , Imunossupressores , Microambiente Tumoral
15.
ACS Infect Dis ; 10(4): 1250-1266, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38436588

RESUMO

The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.


Assuntos
Platina , Sideróforos , Humanos , Sideróforos/farmacologia , Platina/farmacologia , Escherichia coli , Oxaliplatina/farmacologia , Antibacterianos/farmacologia , Enterobactina , Dano ao DNA
16.
Gene ; 914: 148406, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521111

RESUMO

PURPOSE: To investigate the mechanism by which S100 calcium-binding protein A6 (S100A6) affects colorectal cancer (CRC) cells to oxaliplatin (L-OHP) chemotherapy, and to explore new strategies for CRC treatment. METHODS: S100A6 expression was assessed in both parental and L-OHP-resistant CRC cells using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assays (ELISA). Lentiviral vectors were utilized to induce the knockdown of S100A6 expression, followed by comprehensive evaluations of cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT). Additionally, RNA-seq analysis was conducted to identify genes associated with the knockdown of S100A6. RESULTS: Elevated S100A6 expression in CRC tissues correlated with an adverse prognosis in patients with CRC. Higher expression of S100A6 was also observed in L-OHP-resistant CRC cells, which showed enhanced proliferation, migration, invasion, and antiapoptotic capabilities. Notably, the knockdown of S100A6 expression resulted in decreased proliferation, increased apoptosis, and suppression of EMT and tumorigenicity in L-OHP-resistant CRC cells. Transcriptome sequencing reveals a noteworthy association between S100A6 and vimentin expression. Application of the EMT agonist, transforming growth factor ß (TGF-ß), induces EMT in CRC cells. S100A6 expression positively correlates with TGF-ß expression. TGF-ß facilitated the expression of EMT-related molecules and reduced the chemosensitivity of L-OHP in S100A6-knockdown cells. CONCLUSION: In conclusion, the knockdown of S100A6 may overcome the L-OHP resistance of CRC cells by modulating EMT.


Assuntos
Apoptose , Proteínas de Ciclo Celular , Proliferação de Células , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Oxaliplatina , Proteína A6 Ligante de Cálcio S100 , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Oxaliplatina/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Feminino , Masculino , Camundongos , Técnicas de Silenciamento de Genes , Vimentina/metabolismo , Vimentina/genética , Prognóstico , Fator de Crescimento Transformador beta/metabolismo
17.
Biochem Pharmacol ; 222: 116117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461903

RESUMO

Oxaliplatin (OXA) is a platinum-based chemotherapeutic agent with promising applications in the treatment of various malignancies, particularly colorectal cancer (CRC). However, the management of OXA resistance remains an ongoing obstacle in CRC therapy. This study aims to comprehensively investigate the immune landscape, targeted therapeutic biomarkers, and mechanisms that influence OXA resistance in CRC. Our results demonstrated that our OXA- resistant CRC prognostic model not only provides risk assessment for patients but also reflects the immune landscape of patients. Additionally, we identified prostate transmembrane protein, androgen-induced1 (PMEPA1) as a promising molecular targeted therapeutic biomarker for patients with OXA-resistant CRC. The mechanism of PMEPA1 may involve cell adhesion, pathways in cancer, and the TGF-ß signaling pathway. Furthermore, analysis of CRC clinical samples indicated that patients resistant to OXA exhibited elevated serum levels of TGF-ß1, increased expression of PMEPA1 in tumors, a lower proportion of CD8+ T cell positivity, and a higher proportion of M0 macrophage positivity, in comparison to OXA-sensitive individuals. Cellular experiments indicated that selective silencing of PMEPA1, alone or in combination with OXA, inhibited proliferation and metastasis in OXA-resistant CRC cells, HCT116R. Animal experiments further confirmed that PMEPA1 silencing suppressed subcutaneous graft tumor growth and liver metastasis in mice bearing HCT116R and synergistically enhanced the efficacy of OXA. These data highlight the potential of leveraging the therapeutic biomarker PMEPA1, CD8+ T cells, and M0 macrophages as innovative targets for effectively addressing the challenges associated with OXA resistance. Our findings hold promising implications for further clinical advancements in this field.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Masculino , Humanos , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
18.
J Inorg Biochem ; 254: 112515, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490045

RESUMO

Chemotherapy resistance is an insurmountable problem in clinical anticancer therapy. Although Oxaliplatin is an effective chemotherapeutic agent for the treatment of colorectal cancer (CRC), it still suffers from serious toxicities as well as drug resistance. In this work, three Oxaliplatin tetravalent platinum prodrugs(O1-O3) and three novel mixed ammine/amine analogs(C1-C3) were constructed, introducing cannabidiol with anti-tumor activity in their axial position. All Pt(IV) prodrugs exhibited potent antitumor effects in a variety of tumor cell lines, especially in HCT-116 cells, where complex O3 showed strong inhibitory effects with the half maximal inhibitory concentrations (IC50) value of 6.02 ± 0.69 µM and about 2.6 times higher than that of Oxaliplatin. Further studies revealed that complex O3 decreased cellular mitochondrial membrane potential in a concentration-dependent manner and enhanced reactive oxygen species (ROS) accumulation by decreasing the expression of catalase, superoxide dismutase 2 (SOD2) and superoxide dismutase 3 (SOD3). Complex O3 induces mitochondrial dysfunction and upregulates the pro-apoptotic protein Noxa, ultimately leading to severe DNA damage. The upregulation of Phosphorylated histone protein H2AX (γ-H2AX) expression is clear evidence. In addition, O3 inhibits the expression of RAD51 protein and prevents DNA damage repair, thus overcoming drug resistance. This strategy of combining bioactive molecules cannabidiol with platinum drugs to improve therapeutic efficacy and overcome drug resistance has been proven to be very effective and deserves further investigation.


Assuntos
Antineoplásicos , Canabidiol , Doenças Mitocondriais , Pró-Fármacos , Humanos , Oxaliplatina/farmacologia , Antineoplásicos/farmacologia , Platina/farmacologia , Canabidiol/farmacologia , Linhagem Celular Tumoral , Pró-Fármacos/farmacologia , Apoptose , Cisplatino/farmacologia
19.
Biomed Pharmacother ; 173: 116360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422657

RESUMO

Chemotherapy remains the cornerstone of pancreatic cancer treatment. However, the dense interstitial and immunosuppressive microenvironment frequently render the ineffective anti-tumor activity of chemotherapeutic agents. Macrophages play a key role in the tumor immunomodulation. In this study, we found that low molecular weight of fucoidan (LF2) directly regulated the differentiation of mononuclear macrophages into the CD86+ M1 phenotype. LF2 significantly upregulated the expressions of M1 macrophage-specific cytokines, including iNOS, IL-6, TNFα and IL-12. LF2 modulated macrophage phenotypic transformation through activation of TLR4-NFκB pathway. Furthermore, we observed that LF2 enhanced the pro-apoptotic activity of oxaliplatin (OXA) in vitro by converting macrophages to a tumoricidal M1 phenotype. Meanwhile, LF2 increased intratumoral M1 macrophage infiltration and ameliorated the immunosuppressed tumor microenvironment, which in turn enhanced the anti-pancreatic ductal adenocarcinoma (PDAC) activity of OXA in vivo. Taken together, our results suggested that LF2 could act as a TLR4 agonist targeting macrophages and has a synergistic effect against PDAC when combined with OXA.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Polissacarídeos , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Microambiente Tumoral , Receptor 4 Toll-Like , Peso Molecular , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Imunossupressores/farmacologia
20.
Cancer Biol Ther ; 25(1): 2314324, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38375821

RESUMO

Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.


Assuntos
Neoplasias Colorretais , Integrina beta4 , Calinina , Fatores de Regulação Miogênica , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Integrina beta4/genética , Integrina beta4/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Oxaliplatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Calinina/genética , Calinina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA