Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375389

RESUMO

This paper describes the synthesis of new heterocycles from oxazol-5(4H)-one and 1,2,4-triazin-6(5H)-one classes containing a phenyl-/4-bromophenylsulfonylphenyl moiety. The oxazol-5(4H)-ones were obtained via condensation of 2-(4-(4-X-phenylsulfonyl)benzamido)acetic acids with benzaldehyde/4-fluorobenzaldehyde in acetic anhydride and in the presence of sodium acetate. The reaction of oxazolones with phenylhydrazine, in acetic acid and sodium acetate, yielded the corresponding 1,2,4-triazin-6(5H)-ones. The structures of the compounds were confirmed using spectral (FT-IR, 1H-NMR, 13C-NMR, MS) and elemental analysis. The toxicity of the compounds was evaluated on Daphnia magna Straus crustaceans and on the budding yeast Saccharomyces cerevisiae. The results indicate that both the heterocyclic nucleus and halogen atoms significantly influenced the toxicity against D. magna, with the oxazolones being less toxic than triazinones. The halogen-free oxazolone had the lowest toxicity, and the fluorine-containing triazinone exhibited the highest toxicity. The compounds showed low toxicity against yeast cells, apparently due to the activity of plasma membrane multidrug transporters Pdr5 and Snq2. The predictive analyses indicated an antiproliferative effect as the most probable biological action. The PASS prediction and CHEMBL similarity studies show evidence that the compounds could inhibit certain relevant oncological protein kinases. These results correlated with toxicity assays suggest that halogen-free oxazolone could be a good candidate for future anticancer investigations.


Assuntos
Oxazolona , Triazinas , Oxazolona/química , Triazinas/toxicidade , Acetato de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae
2.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163939

RESUMO

Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a-k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Oxazolona/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Virulência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum , Fatores de Virulência/metabolismo
3.
Org Biomol Chem ; 19(12): 2773-2783, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33690764

RESUMO

Different Pd-complexes containing orthometallated push-pull oxazolones were inserted by supramolecular Pd-amino acid coordination on two genetically engineered modified variants of the thermoalkalophilic Geobacillus thermocatenolatus lipase (GTL). Pd-lipase conjugation was performed on the solid phase in the previously immobilized form of GTL under mild conditions, and soluble conjugated Pd-GTL complexes were obtained by simply desorbing by washing with an acetonitrile aqueous solution. Three different Pd complexes were incorporated into two different genetically modified enzyme variants, one containing all the natural cysteine residues changed to serine residues, and another variant including an additional Cys mutation directly in the catalytic serine (Ser114Cys). The new Pd-enzyme conjugates were fluorescent even at ppm concentrations, while under the same conditions free Pd complexes did not show fluorescence at all. The Pd conjugation with the enzyme extremely increases the catalytic profile of the corresponding Pd complex from 200 to almost 1000-fold in the hydrogenation of arenes in aqueous media, achieving in the case of GTL conjugated with orthopalladated 4a an outstanding TOF value of 27 428 min-1. Also the applicability of GTL-C114 conjugated with orthopalladated 4b in a site-selective C-H activation reaction under mild conditions has been demonstrated. Therefore, the Pd incorporation into the enzyme produces a highly stable conjugate, and improves remarkably the catalytic activity and selectivity, as well as the fluorescence intensity, of the Pd complexes.


Assuntos
Complexos de Coordenação/química , Fluorescência , Lipase/química , Oxazolona/química , Paládio/química , Engenharia de Proteínas , Adsorção , Catálise , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Geobacillus/enzimologia , Lipase/genética , Lipase/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxazolona/metabolismo , Paládio/metabolismo
4.
J Med Chem ; 63(24): 15821-15851, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33290061

RESUMO

Acid ceramidase (AC) is a cysteine hydrolase that plays a crucial role in the metabolism of lysosomal ceramides, important members of the sphingolipid family, a diversified class of bioactive molecules that mediate many biological processes ranging from cell structural integrity, signaling, and cell proliferation to cell death. In the effort to expand the structural diversity of the existing collection of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides were designed and synthesized. Herein, we present the chemical optimization of our initial hits, 2-oxo-4-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 8a and 2-oxo-5-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 12a, which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo-N-pentyl-oxazole-3-carboxamide 32b as a potent AC inhibitor with optimal physicochemical and metabolic properties, showing target engagement in human neuroblastoma SH-SY5Y cells and a desirable pharmacokinetic profile in mice, following intravenous and oral administration. 32b enriches the arsenal of promising lead compounds that may therefore act as useful pharmacological tools for investigating the potential therapeutic effects of AC inhibition in relevant sphingolipid-mediated disorders.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Oxazolona/química , Ceramidase Ácida/metabolismo , Administração Oral , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Concentração Inibidora 50 , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/metabolismo , Simulação de Acoplamento Molecular , Oxazolona/metabolismo , Oxazolona/farmacocinética , Solubilidade , Relação Estrutura-Atividade
5.
J Fluoresc ; 30(5): 1063-1073, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32617721

RESUMO

The aim of this study is to synthesize oxazol-5-one derivatives, which have multi-functional properties. Nomenclatures of newly synthesized molecules are 4-(4-N,N-diethylaminophenylmethylene)-2-(3-thienyl)oxazol-5-one (4a) and 4-(4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)phenylmethylene)-2-(3-thienyl)oxazol-5-one (4b). These two novel derivatives contain pH sensitive and polymerizable groups. 3-Thienyl group was attached to position-2 of the oxazol-5-one ring to provide electrochemical polymerization capability. pH sensing properties were provided by attaching p-N,N-diethylaminophenylmethylene and p-aza-15-crown-5-phenylmethylene groups to the arylmethylene moiety at position-4 of the ring. Target molecules were synthesized by classical process known as Erlenmeyer-Plöchl Azlactone Synthesis Erlenmeyer (Justus Liebigs Ann Chem 275:1-12, 1893), Rodrigues et al. (J Chem Educ 92:1543-1546, 2015) . After structural characterization of 4a and 4b, absorption and emission characteristics were determined in solvents that have different polarities. Difference in maximum absorption and emission wavelengths of the molecules related to solvent polarities were observed at around 6-7 nm and 35-36 nm respectively. In pH studies of the target derivatives in PVC polymer matrix, ratiometric changes were observed at isosbestic point around 398 nm. Polymeric depositions of the molecules (4a, 4b) were proved by using cyclic voltammetry, electrochemical impedance spectrometry studies and scanning electron microscope images. MTT assay studies showed significant results like, 4b derivative's strong cytotoxic activity on PC-3 (cancerous cell line) with IC50 value of 12.57 ± 0.41 µg/ml without exhibiting any cytotoxic effect on HEK293 (healthy cell line).


Assuntos
Antineoplásicos/farmacologia , Oxazolona/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas Eletroquímicas , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Oxazolona/síntese química , Oxazolona/química , Relação Estrutura-Atividade
6.
Comb Chem High Throughput Screen ; 22(9): 625-634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31696809

RESUMO

BACKGROUND: The oxazolone class of compounds is known to exert a profound effect on malignant cell proliferation, tumor angiogenesis and /or on the established neoplastic vasculature. Additionally, these compounds are generally known to have a low tendency to interact with DNA which is not common with most of the conventional cytotoxic agents. Thus, this class of compounds is of particular interest for the discovery and development of patient-friendly anticancer agents. OBJECTIVE: The initial objective of this study was to synthesize and evaluate 2-substituted 4-arylidene- 5(4H)-oxazolones for their potential anticancer properties. METHODS: A simple, mild and non-hazardous synthetic methodology has been developed for the preparation of 2-substituted 4-arylidene-5(4H)-oxazolones. The methodology involved lemon juice mediated condensation of N-acyl glycine derivatives including hippuric acid with arylaldehydes in PEG-400 under ultrasound irradiation. All the synthesized compounds were screened via an MTT assay for their potential cytotoxic properties in vitro using the cancerous cell lines e.g. K562 (human chronic myeloid leukemia), Colo-205 (human colon carcinoma), and A549 (human lung carcinoma) and a non-cancerous HEK293 (human embryonic kidney) cell line. RESULTS: Compounds 3a, 3c and 3i showed promising growth inhibition against A549 cell line but no significant effects on HEK293 cell line, indicating their selectivity towards cancer cells. Moreover, their IC50 values suggested that all these compounds were comparable to the reference drug doxorubicin indicating their potential against lung cancer. CONCLUSION: The 4-arylidene-5(4H)-oxazolone framework presented here could be a new template for the design and discovery of potential anticancer agents especially for lung cancer.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Biocatálise/efeitos dos fármacos , Citrus/química , Citotoxinas/farmacologia , Sucos de Frutas e Vegetais , Oxazolona/síntese química , Oxazolona/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Oxazolona/química , Relação Estrutura-Atividade
7.
Biomolecules ; 10(1)2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905797

RESUMO

To investigate the potential effects of acorn shells on atopic dermatitis (AD), we utilized oxazolone (OX)- or 2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesion mouse models. Our research demonstrates that Acorn shell extract (ASE) improved the progression of AD-like lesions, including swelling, which were induced by oxazolone on Balb/c mouse ears. Additionally, ASE significantly decreased the ear thickness (OX: 0.42 ± 0.01 mm, OX-ASE: 0.32 ± 0.02 mm) and epidermal thickness (OX: 75.3 ± 32.6 µm, OX-ASE: 46.1 ± 13.4 µm). The continuous DNCB-induced AD mouse model in SKH-1 hairless mice demonstrated that ASE improved AD-like symptoms, including the recovery of skin barrier dysfunction, Immunoglobulin E hyperproduction (DNCB: 340.1 ± 66.8 ng/mL, DNCB-ASE: 234.8 ± 32.9 ng/mL) and an increase in epidermal thickness (DNCB: 96.4 ± 21.9 µm, DNCB-ASE: 52.4 ± 16.3 µm). In addition, we found that ASE suppressed the levels of AD-involved cytokines, such as Tumor Necrosis Factor α, IL-1ß, IL-25 and IL-33 in both animal models. Furthermore, gallic acid and ellagic acid isolated from ASE suppressed ß-hexosaminidase release and IL-4 expression in RBL-2H3 cells. The acorn shell and its active phytochemicals have potential as a new remedy for the improvement of atopic dermatitis and other inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Dermatite Atópica/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Quercus/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Dinitroclorobenzeno/química , Dinitroclorobenzeno/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Pelados , Camundongos Endogâmicos BALB C , Oxazolona/química , Oxazolona/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos
8.
J Pept Sci ; 24(10): e3120, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30221432

RESUMO

Four cyclic octapeptides were designed from ascidiacyclamide [cyclo(-Ile-Oxz-D-Val- Thz-)2 ] (ASC, 1) to investigate the effects of oxazoline (Oxz) and thiazole (Thz) rings on the structures and cytotoxicities of the peptides. cyclo(-Ile-Thz-D-Val-Oxz-)2 (2) had the same number of Oxz and Thz rings as ASC, but the ring positions were switched. cyclo(-Ile-Oxz-D-Val-Thz-Ile-Thz-D-Val-Thz-) (3) and cyclo(-Ile-Thz-D-Val-Oxz-Ile-Thz-D-Val-Thz-) (4) contained one Oxz and three Thz rings within the molecule. All Oxz rings were substituted with Thz in cyclo(-Ile-Thz-D-Val-Thz-)2 (5). These analogues had new Oxz and Thz blocks forming the 24-membered ring. Based on CD spectra and X-ray diffraction analyses, the structures of all four analogues were classified as square ASC forms. But the structures of 2 and 5 differed from the original square form of 1, and they showed no cytotoxicity. The structure of 3 was very similar to that of 1, and 3 showed 10 times greater cytotoxicity than 1. Although no definite structure of 4 was obtained, it showed three times greater cytotoxicity than 1. It appears that the position and number of Oxz residues are essential determinants in the structure-cytotoxicity relationship of ASC analogues.


Assuntos
Antineoplásicos/síntese química , Peptídeos Cíclicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Conformação Molecular , Oxazolona/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Relação Estrutura-Atividade , Tiazóis/química
9.
Bioorg Med Chem ; 26(14): 3882-3889, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29907470

RESUMO

Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the ß-phenyl-α, ß-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a-1m, which all possessed the (Z)-ß-phenyl-α, ß-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the "(E)"-ß-phenyl-α, ß-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50 = 32.08 ±â€¯2.25 µM for 1c; IC50 = 14.62 ±â€¯1.38 µM for 1m; and IC50 = 37.86 ±â€¯2.21 µM for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme's active site. In silico docking simulation supported binding of 1m (-7.6 kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (-5.7 kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the ß-phenyl-α, ß-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Oxazolona/farmacologia , Agaricales/enzimologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Oxazolona/síntese química , Oxazolona/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Eur J Mass Spectrom (Chichester) ; 24(3): 261-268, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29392979

RESUMO

The detection of post-translational modifications of proteins is an important comprehensive research area. Over the years, proteomic studies involving protein acetylation have attracted a great deal of attention. In the present study, we have focussed on the acetylation of histidine and the intrinsic stability of b1-ion of oxazolone ring and/or with side chain imidazole bicyclic product. The formation of oxazolone structure may occur when an amino moiety undergoes acetylation reaction and when it is present in the vicinity of the side chain imidazole moiety. Tryptic peptides generated from the proteins of Acenitobacter radioresistens MMC5-containing N-terminal histidine were explored in a standard proteomic workflow. Formation of [Formula: see text] ion with an oxazolone ring in these peptides has been supported by a tandem mass spectrometric study of a synthetic peptide and density functional theory calculations. The results obtained from this study have implications in understanding the fragmentation of the peptides generated in the proteomic workflows.


Assuntos
Proteínas de Bactérias/química , Histidina/química , Imidazóis/química , Moraxellaceae/química , Oxazolona/química , Acetilação , Íons/química , Estrutura Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem
11.
Eur J Med Chem ; 145: 273-290, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29329002

RESUMO

AT1 antagonists is the most recent drug class of molecules against hypertension and they mediate their actions through blocking detrimental effects of angiotensin II (A-II) when acts on type I (AT1) A-II receptor. The effects of AT1 antagonists are not limited to cardiovascular diseases. AT1 receptor blockers may be used as potential anti-cancer agents - due to the inhibition of cell proliferation stimulated by A-II. Therefore, AT1 receptors and the A-II biosynthesis mechanisms are targets for the development of new synthetic drugs and therapeutic treatment of various cardiovascular and other diseases. In this work, multi-scale molecular modeling approaches were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. In silico-guided designed hit molecules were then synthesized and tested for their binding affinities to human AT1 receptor in radioligand binding studies, using [125I-Sar1-Ile8] AngII. Among the compounds tested, 19d and 9j molecules bound to receptor in a dose response manner and with relatively high affinities. Next, cytotoxicity and wound healing assays were performed for these hit molecules. Since hit molecule 19d led to deceleration of cell motility in all three cell lines (NIH3T3, A549, and H358) tested in this study, this molecule is investigated in further tests. In two cell lines (HUVEC and MCF-7) tested, 19d induced G2/M cell cycle arrest in a concentration dependent manner. Adherent cells detached from the plates and underwent cell death possibly due to apoptosis at 19d concentrations that induced cell cycle arrest.


Assuntos
Anti-Hipertensivos/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Imidazóis/farmacologia , Oxazolona/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Células NIH 3T3 , Oxazolona/síntese química , Oxazolona/química , Relação Estrutura-Atividade
12.
Org Biomol Chem ; 15(42): 8952-8966, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29043360

RESUMO

In this study, a new oxazolone derivative 4-{N,N-bis[2-phenyl-4-benzylidene-1,3-oxazol-5(4H)-one]amino}benzaldehyde (PB3) was synthesized and investigated as a fluorescent dye. The spectroscopic properties in different solvents were thoroughly studied. The experimental data were supported by quantum-chemical calculations using density functional theory. Measurements and theoretical calculations showed that the PB3 dye is characterized by non-monotonic solvatochromism, a strongly polar charge transfer excited state, a large Stokes' shift, a high fluorescence quantum yield and a high fluorescence lifetime. Bioconjugate complexes (PB3-concanavalin A) were studied by circular dichroism (CD) spectroscopy. The results showed that the secondary structure of concanavalin A was not significantly influenced by the PB3-fluorophore. Conventional fluorescence microscopy imaging of Candida albicans cells, incubated with the PB3-concanavalin A, was demonstrated. The results from cytochemistry experiments demonstrate that the PB3 dye has valuable advantages compared to the other long-wavelength dyes in typical fluorescence-based cell labeling applications. In vitro tolerance was evaluated by the MTT method in the human colon adenocarcinoma cell line HT29. The PB3 and bioconjugate complexes (PB3-concanavalin A), in the range of concentrations tested, were not considerably toxic. The AutoDock simulations showed LYS46 as the most likely active site for covalent bond formation during PB3-concanavalin A conjugation. In addition, theoretical studies have shown that PB3 is characterized by good bioavailability and absorption/transmission across the cell membrane. This molecule will not bioaccumulate in living organisms and should be excreted in urine without interacting with other drugs. This work provided promising results for the red fluorescent probe (PB3) as a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research.


Assuntos
Candida albicans/citologia , Corantes Fluorescentes/química , Imagem Óptica , Oxazolona/química , Teoria Quântica , Corantes Fluorescentes/síntese química , Microscopia de Fluorescência , Estrutura Molecular , Oxazolona/síntese química , Processos Fotoquímicos
13.
Bioorg Chem ; 72: 308-314, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28500957

RESUMO

A new series of oxazolones and triazinones were designed and synthesized and evaluated against both COX-1 and COX-2 enzymes. Full structure elucidation of the new derivatives was performed using microanalyses, IR, 1H NMR, 13C NMR and mass spectra. Most of the derivatives showed good inhibitory activity against COX-2 enzyme specifically compounds IIIc, IIIe, IVd and IVg with IC50 values 0.024, 0.019, 0.011 and 0.014µM compared to celecoxib as reference drug with IC50 value of 0.05µM. Altogether, these results indicate that these derivatives can be effective anti-inflammatory agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Oxazolona/farmacologia , Triazinas/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Oxazolona/química , Relação Estrutura-Atividade , Triazinas/química
14.
Appl Environ Microbiol ; 83(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795312

RESUMO

Gene expression in methanotrophs has been shown to be affected by the availability of a variety of metals, most notably copper-regulating expression of alternative forms of methane monooxygenase. A copper-binding compound, or chalkophore, called methanobactin plays a key role in copper uptake in methanotrophs. Methanobactin is a ribosomally synthesized and posttranslationally modified peptide (RiPP) with two heterocyclic rings with an associated thioamide for each ring, formed from X-Cys dipeptide sequences that bind copper. The gene coding for the precursor polypeptide of methanobactin, mbnA, is part of a gene cluster, but the role of other genes in methanobactin biosynthesis is unclear. To begin to elucidate the function of these genes, we constructed an unmarked deletion of mbnABCMN in Methylosinus trichosporium OB3b and then homologously expressed mbnABCM using a broad-host-range cloning vector to determine the function of mbnN, annotated as coding for an aminotransferase. Methanobactin produced by this strain was found to be substantially different from wild-type methanobactin in that the C-terminal methionine was missing and only one of the two oxazolone rings was formed. Rather, in place of the N-terminal 3-methylbutanoyl-oxazolone-thioamide group, a leucine and a thioamide-containing glycine (Gly-Ψ) were found, indicating that MbnN is used for deamination of the N-terminal leucine of methanobactin and that this posttranslational modification is critical for closure of the N-terminal oxazolone ring in M. trichosporium OB3b. These studies provide new insights into methanobactin biosynthesis and also provide a platform for understanding the function of other genes in the methanobactin gene cluster. IMPORTANCE: Methanotrophs, microbes that play a critical role in the carbon cycle, are influenced by copper, with gene expression and enzyme activity changing as copper levels change. Methanotrophs produce a copper-binding compound, or chalkophore, called methanobactin for copper uptake, and methanobactin plays a key role in controlling methanotrophic activity. Methanobactin has also been shown to be effective in the treatment of Wilson disease, an autosomal recessive disorder where the human body cannot correctly assimilate copper. It is important to characterize the methanobactin biosynthesis pathway to understand how methanotrophs respond to their environment as well as to optimize the use of methanobactin for the treatment of copper-related diseases such as Wilson disease. Here we show that mbnN, encoding an aminotransferase, is involved in the deamination of the N-terminal leucine and necessary for the formation of one but not both of the heterocyclic rings in methanobactin that are responsible for copper binding.


Assuntos
Imidazóis/química , Leucina/química , Methylosinus trichosporium/enzimologia , Oligopeptídeos/química , Oligopeptídeos/genética , Oxazolona/química , Transaminases/metabolismo , Cobre/metabolismo , Desaminação , Deleção de Genes , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Glicina/química , Glicina/metabolismo , Imidazóis/metabolismo , Leucina/metabolismo , Metionina/deficiência , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/metabolismo , Oxazolona/metabolismo , Processamento de Proteína Pós-Traducional , Tioamidas/química , Tioamidas/metabolismo , Transaminases/genética
15.
Biomacromolecules ; 17(11): 3580-3590, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723983

RESUMO

Random copolymers of n-propyl-2-oxazoline and ethylenimine (PPrOx-PEI) were prepared by partial acidic hydrolysis of poly(n-propyl-2-oxazoline) (PPrOx). Dynamic and electrophoretic light scattering and diffusion-ordered NMR spectroscopy were utilized to investigate aqueous solution properties of the copolymers. Above a specific cloud point temperature, well-defined nanoparticles were formed. The latter consisted of a core composed predominantly of PPrOx and a thin positively charged shell from PEI moieties that mediated formation of polyplexes with DNA. The polyplexes were prepared at 65 °C at varying N/P (amine-to-phosphate groups) ratios. They underwent structural changes upon temperature variations 65-25-37 °C depending on N/P. At N/P < 2, the polyplex particles underwent minor changes because of formation of a surface layer of DNA that acted as a barrier and prevented swelling and disintegration of the initial particles. Dramatic rearrangements at N/P ≥ 2 resulting in large swollen microgel particles were overcome by coating of the polyplex particles with a cross-linked polymeric shell. The shell retained the colloidal stability and preserved the physicochemical parameters of the initial polyplex particles while it reduced the high surface potential values. Progressive loss of cytotoxicity upon complexation with DNA and coating of polyplex particles was displayed.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Vetores Genéticos/química , Oxazolona/análogos & derivados , DNA/genética , Vetores Genéticos/genética , Humanos , Hidrólise , Micelas , Nanopartículas/química , Oxazolona/síntese química , Oxazolona/química , Polietilenoglicóis/química , Polietilenoimina/síntese química , Polietilenoimina/química , Soluções/química , Água/química
16.
Chemistry ; 22(42): 14940-14949, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27534830

RESUMO

5(4H)-Oxazolones can be formed through the activation of acylated α-amino acids or of peptide C termini. They constitute potentially activated intermediates in the abiotic chemistry of peptides that preceded the origin of life or early stages of biology and are capable of yielding mixed carboxylic-phosphoric anhydrides upon reaction with phosphate esters and nucleotides. Here, we present the results of a study aimed at investigating the chemistry that can be built through this interaction. As a matter of fact, the formation of mixed anhydrides with mononucleotides and nucleic acid models is shown to take place at positions involving a mono-substituted phosphate group at the 3'- or 5'-terminus but not at the internal phosphodiester linkages. In addition to the formation of mixed anhydrides, the subsequent intramolecular acyl or phosphoryl transfers taking place at the 3'-terminus are considered to be particularly relevant to the common prebiotic chemistry of α-amino acids and nucleotides.


Assuntos
Ácidos Nucleicos/química , Nucleotídeos/química , Oxazolona/química , Peptídeos/química , Fosfatos/química , Anidridos/química , Ésteres
17.
J Enzyme Inhib Med Chem ; 31(1): 137-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25669350

RESUMO

This study reports on a preliminary structure-activity relationship exploration of 4-aryliden-2-methyloxazol-5(4H)-one-based compounds as MAGL/FAAH inhibitors. Our results highlight that this scaffold may serve for the development of selective MAGL inhibitors. A 69-fold selectivity against MAGL over FAAH was achieved for compound 16b (MAGL and FAAH IC(50) = 1.6 and 111 µM, respectively). Furthermore, the best compound behaved as a reversible ligand and showed promising antiproliferative activity in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Oxazolona/farmacologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Oxazolona/síntese química , Oxazolona/química , Relação Estrutura-Atividade
18.
J Am Soc Mass Spectrom ; 27(3): 487-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26602904

RESUMO

A detailed energy-resolved study of the fragmentation reactions of protonated histidine-containing peptides and their b2 ions has been undertaken. Density functional theory calculations were utilized to predict how the fragmentation reactions occur so that we might discern why the mass spectra demonstrated particular energy dependencies. We compare our results to the current literature and to synthetic b2 ion standards. We show that the position of the His residue does affect the identity of the subsequent b2 ion (diketopiperazine versus oxazolone versus lactam) and that energy-resolved CID can distinguish these isomeric products based on their fragmentation energetics. The histidine side chain facilitates every major transformation except trans-cis isomerization of the first amide bond, a necessary prerequisite to diketopiperazine b2 ion formation. Despite this lack of catalyzation, trans-cis isomerization is predicted to be facile. Concomitantly, the subsequent amide bond cleavage reaction is rate-limiting.


Assuntos
Dicetopiperazinas/química , Histidina/análogos & derivados , Lactamas/química , Oxazolona/química , Peptídeos/química , Dipeptídeos/química , Isomerismo , Modelos Moleculares , Prótons , Espectrometria de Massas por Ionização por Electrospray
19.
Bioorg Med Chem ; 23(21): 7089-94, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26462055

RESUMO

In this study, six new compounds containing morpholine and 5(4H)-oxazolone rings were synthesized. Structures of the new compounds using IR, (1)H NMR, mass spectroscopy and elemental analysis were characterized. All new compounds (4a-4f) have a strong inhibitory effect against mushroom tyrosinase. And the inhibitory effects of these compounds were compared with Kojic acid as standard.


Assuntos
Inibidores Enzimáticos/síntese química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Morfolinas/química , Oxazolona/química , Agaricales/enzimologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxazolona/metabolismo , Oxazolona/farmacologia , Ligação Proteica , Pironas/química , Pironas/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Anal Chem ; 87(19): 9916-22, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26356223

RESUMO

Selective capture of protein C-termini is still challenging in view of the lower reactivity of the carboxyl group relative to amino groups and difficulties in site-specifically labeling the carboxyl group on the C-terminus rather than that on the side chains of acidic amino acids. For highly efficient purification of C-terminus peptides, a novel positive enrichment approach based on the oxazolone chemistry has been developed in this study. A bifunctional group reagent containing biotin and arginine was incorporated into the C-terminus of protein. Together with a streptavidin affinity strategy, the C-terminal peptides could be readily purified and analyzed by mass spectrometry (MS). Unlike the negative enrichment approach, C-terminal peptides, other than non-C-terminal peptides, were captured directly from the peptide mixture in this new method. The labeling efficiency (higher than 90%), enrichment selectivity (purifying C-terminal peptides from mixtures of non-C-terminal peptides at a 1:50 molar ratio), and ionization efficiencies in MS were dramatically improved. Moreover, the highly efficient identification of C-terminal peptides was further achieved by defining biotin as the 21st amino acid and optimizing the database search strategy. We have successfully identified 183 C-terminal peptides from Thermoanaerobacter tengcongensis using this creative method, which affords a highly selective and efficient purification approach for C-terminomics study.


Assuntos
Oxazolona/química , Peptídeos/isolamento & purificação , Proteínas/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Biotinilação , Cromatografia Líquida de Alta Pressão , Cavalos , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Thermoanaerobacter/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA