Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Crit Care ; 28(1): 66, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429791

RESUMO

Molecular oxygen is typically delivered to patients via oxygen inhalation or extracorporeal membrane oxygenation (ECMO), potentially resulting in systemic hyperoxia from liberal oxygen inhalation or localized hyperoxia in the lower body from peripheral venoarterial (VA) ECMO. Consequently, this exposes the gastrointestinal tract to excessive oxygen levels. Hyperoxia can trigger organ damage due to the overproduction of reactive oxygen species and is associated with increased mortality. The gut and gut microbiome play pivotal roles in critical illnesses and even small variations in oxygen levels can have a dramatic influence on the physiology and ecology of gut microbes. Here, we reviewed the emerging preclinical evidence which highlights how excessive inhaled oxygen can provoke diffuse villous damage, barrier dysfunction in the gut, and gut dysbiosis. The hallmark of this dysbiosis includes the expansion of oxygen-tolerant pathogens (e.g., Enterobacteriaceae) and the depletion of beneficial oxygen-intolerant microbes (e.g., Muribaculaceae). Furthermore, we discussed potential impact of oxygen on the gut in various underlying critical illnesses involving inspiratory oxygen and peripheral VA-ECMO. Currently, the available findings in this area are somewhat controversial, and a consensus has not yet to be reached. It appears that targeting near-physiological oxygenation levels may offer a means to avoid hyperoxia-induced gut injury and hypoxia-induced mesenteric ischemia. However, the optimal oxygenation target may vary depending on special clinical conditions, including acute hypoxia in adults and neonates, as well as particular patients undergoing gastrointestinal surgery or VA-ECMO support. Last, we outlined the current challenges and the need for future studies in this area. Insights into this vital ongoing research can assist clinicians in optimizing oxygenation for critically ill patients.


Assuntos
Hiperóxia , Adulto , Recém-Nascido , Humanos , Hiperóxia/complicações , Estado Terminal/terapia , Disbiose , Oxigênio/efeitos adversos , Hipóxia
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958664

RESUMO

Retinal inflammation is a central feature of ocular neovascular diseases such as diabetic retinopathy and retinopathy of prematurity, but the contribution of neutrophils to this process is not fully understood. We studied oxygen-induced retinopathy (OIR) which develops in two phases, featuring hyperoxia-induced retinal vaso-obliteration in phase I, followed by retinal neovascularization in phase II. As neutrophils are acute responders to tissue damage, we evaluated whether neutrophil depletion with an anti-Ly6G mAb administered in phase I OIR influenced retinal inflammation and vascular injury. Neutrophils were measured in blood and spleen via flow cytometry, and myeloperoxidase, an indicator of neutrophil activity, was evaluated in the retina using Western blotting. Retinal vasculopathy was assessed by quantitating vaso-obliteration, neovascularization, vascular leakage, and VEGF levels. The inflammatory factors, TNF, MCP-1, and ICAM-1 were measured in retina. In the OIR controls, neutrophils were increased in the blood and spleen in phase I but not phase II OIR. In OIR, the anti-Ly6G mAb reduced neutrophils in the blood and spleen, and myeloperoxidase, inflammation, and vasculopathy in the retina. Our findings revealed that the early rise in neutrophils in OIR primes the retina for an inflammatory and angiogenic response that promotes severe damage to the retinal vasculature.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Camundongos , Oxigênio/efeitos adversos , Neutrófilos , Peroxidase , Retinopatia da Prematuridade/induzido quimicamente , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais Recém-Nascidos , Retina , Neovascularização Patológica , Inflamação , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Cochrane Database Syst Rev ; 9: CD012631, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700687

RESUMO

BACKGROUND: This is an updated review concerning 'Higher versus lower fractions of inspired oxygen or targets of arterial oxygenation for adults admitted to the intensive care unit'. Supplementary oxygen is provided to most patients in intensive care units (ICUs) to prevent global and organ hypoxia (inadequate oxygen levels). Oxygen has been administered liberally, resulting in high proportions of patients with hyperoxemia (exposure of tissues to abnormally high concentrations of oxygen). This has been associated with increased mortality and morbidity in some settings, but not in others. Thus far, only limited data have been available to inform clinical practice guidelines, and the optimum oxygenation target for ICU patients is uncertain. Because of the publication of new trial evidence, we have updated this review. OBJECTIVES: To update the assessment of benefits and harms of higher versus lower fractions of inspired oxygen (FiO2) or targets of arterial oxygenation for adults admitted to the ICU. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, BIOSIS Previews, and LILACS. We searched for ongoing or unpublished trials in clinical trial registers and scanned the reference lists and citations of included trials. Literature searches for this updated review were conducted in November 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared higher versus lower FiO2 or targets of arterial oxygenation (partial pressure of oxygen (PaO2), peripheral or arterial oxygen saturation (SpO2 or SaO2)) for adults admitted to the ICU. We included trials irrespective of publication type, publication status, and language. We excluded trials randomising participants to hypoxaemia (FiO2 below 0.21, SaO2/SpO2 below 80%, or PaO2 below 6 kPa) or to hyperbaric oxygen, and cross-over trials and quasi-randomised trials. DATA COLLECTION AND ANALYSIS: Four review authors independently, and in pairs, screened the references identified in the literature searches and extracted the data. Our primary outcomes were all-cause mortality, the proportion of participants with one or more serious adverse events (SAEs), and quality of life. We analysed all outcomes at maximum follow-up. Only three trials reported the proportion of participants with one or more SAEs as a composite outcome. However, most trials reported on events categorised as SAEs according to the International Conference on Harmonisation Good Clinical Practice (ICH-GCP) criteria. We, therefore, conducted two analyses of the effect of higher versus lower oxygenation strategies using 1) the single SAE with the highest reported proportion in each trial, and 2) the cumulated proportion of participants with an SAE in each trial. Two trials reported on quality of life. Secondary outcomes were lung injury, myocardial infarction, stroke, and sepsis. No trial reported on lung injury as a composite outcome, but four trials reported on the occurrence of acute respiratory distress syndrome (ARDS) and five on pneumonia. We, therefore, conducted two analyses of the effect of higher versus lower oxygenation strategies using 1) the single lung injury event with the highest reported proportion in each trial, and 2) the cumulated proportion of participants with ARDS or pneumonia in each trial. We assessed the risk of systematic errors by evaluating the risk of bias in the included trials using the Risk of Bias 2 tool. We used the GRADEpro tool to assess the overall certainty of the evidence. We also evaluated the risk of publication bias for outcomes reported by 10b or more trials. MAIN RESULTS: We included 19 RCTs (10,385 participants), of which 17 reported relevant outcomes for this review (10,248 participants). For all-cause mortality, 10 trials were judged to be at overall low risk of bias, and six at overall high risk of bias. For the reported SAEs, 10 trials were judged to be at overall low risk of bias, and seven at overall high risk of bias. Two trials reported on quality of life, of which one was judged to be at overall low risk of bias and one at high risk of bias for this outcome. Meta-analysis of all trials, regardless of risk of bias, indicated no significant difference from higher or lower oxygenation strategies at maximum follow-up with regard to mortality (risk ratio (RR) 1.01, 95% confidence interval (C)I 0.96 to 1.06; I2 = 14%; 16 trials; 9408 participants; very low-certainty evidence); occurrence of SAEs: the highest proportion of any specific SAE in each trial RR 1.01 (95% CI 0.96 to 1.06; I2 = 36%; 9466 participants; 17 trials; very low-certainty evidence), or quality of life (mean difference (MD) 0.5 points in participants assigned to higher oxygenation strategies (95% CI -2.75 to 1.75; I2 = 34%, 1649 participants; 2 trials; very low-certainty evidence)). Meta-analysis of the cumulated number of SAEs suggested benefit of a lower oxygenation strategy (RR 1.04 (95% CI 1.02 to 1.07; I2 = 74%; 9489 participants; 17 trials; very low certainty evidence)). However, trial sequential analyses, with correction for sparse data and repetitive testing, could reject a relative risk increase or reduction of 10% for mortality and the highest proportion of SAEs, and 20% for both the cumulated number of SAEs and quality of life. Given the very low-certainty of evidence, it is necessary to interpret these findings with caution. Meta-analysis of all trials indicated no statistically significant evidence of a difference between higher or lower oxygenation strategies on the occurrence of lung injuries at maximum follow-up (the highest reported proportion of lung injury RR 1.08, 95% CI 0.85 to 1.38; I2 = 0%; 2048 participants; 8 trials; very low-certainty evidence). Meta-analysis of all trials indicated harm from higher oxygenation strategies as compared with lower on the occurrence of sepsis at maximum follow-up (RR 1.85, 95% CI 1.17 to 2.93; I2 = 0%; 752 participants; 3 trials; very low-certainty evidence). Meta-analysis indicated no differences regarding the occurrences of myocardial infarction or stroke. AUTHORS' CONCLUSIONS: In adult ICU patients, it is still not possible to draw clear conclusions about the effects of higher versus lower oxygenation strategies on all-cause mortality, SAEs, quality of life, lung injuries, myocardial infarction, stroke, and sepsis at maximum follow-up. This is due to low or very low-certainty evidence.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Adulto , Humanos , Oxigênio/efeitos adversos , Artérias , Unidades de Terapia Intensiva
4.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511525

RESUMO

MicroRNA (miRNA) is a non-coding RNA that can regulate the expression of many target genes, and it is widely involved in various important physiological activities. MiR-124-3p was found to associate with the normal development of retinal vessels in our previous study, but the mechanism of its anti-angiogenic effect on pathological retinal neovascularization still needed to be explored. Therefore, this study aimed to investigate the effect and mechanism of miR-124-3p on retinal neovascularization in mice with oxygen-induced retinopathy (OIR). Here, we found that intravitreal injection of miR-124-3p agomir attenuated pathological retinal neovascularization in OIR mice. Moreover, miR-124-3p preserved the astrocytic template, inhibited reactive gliosis, and reduced the inflammatory response as well as necroptosis. Furthermore, miR-124-3p inhibited the signal transducer and activator of transcription 3 (STAT3) pathway and decreased the expression of hypoxia-inducible factor-1α and vascular endothelial growth factor. Taken together, our results revealed that miR-124-3p inhibited retinal neovascularization and neuroglial dysfunction by targeting STAT3 in OIR mice.


Assuntos
MicroRNAs , Neovascularização Retiniana , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Neuroglia/metabolismo , Oxigênio/efeitos adversos , Oxigênio/metabolismo , Neovascularização Retiniana/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Ned Tijdschr Geneeskd ; 1672023 05 09.
Artigo em Holandês | MEDLINE | ID: mdl-37163385

RESUMO

For more than hundred years oxygen has been administered to patients for a variety of indications: first and foremost to treat, and later to prevent, hypoxemia. Some years after the first exhilarating reports, it became apparent that hyperoxemia may have harmful sequelae. The pathophysiological mechanism has been determined: vasoconstiction of coronary, cerebral and systemic arteries. And additionally the formation of reactive oxygen species, resulting in cellular damage and ultimately cell death. In a variety of medical emergencies the detrimental clinical effects of hyperoxemia have been demonstrated: increased mortality and more organ dysfunction. And recently it was found the latter also applies to patients undergoing (elective) surgery. It might therefore be concluded that hyperoxemia is justifiable for short periods of time to prevent hypoxemia (i.e. endotracheal intubation), but in all other situations normoxemia should be the target.


Assuntos
Hipóxia , Oxigênio , Humanos , Oxigênio/efeitos adversos , Hipóxia/etiologia , Tempo
6.
Biomed Pharmacother ; 162: 114714, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080089

RESUMO

Proliferative retinopathies are the leading cause of irreversible blindness in all ages, and there is a critical need to identify novel therapies. We investigated the impact of triciribine (TCBN), a tricyclic nucleoside analog and a weak Akt inhibitor, on retinal neurovascular injury, vascular permeability, and inflammation in oxygen-induced retinopathy (OIR). Post-natal day 7 (P7) mouse pups were subjected to OIR, and treated (i.p.) with TCBN or vehicle from P14-P16 and compared with age-matched, normoxic, vehicle or TCBN-treated controls. P17 retinas were processed for flat mounts, immunostaining, Western blotting, and qRT-PCR studies. Fluorescein angiography, electroretinography, and spectral domain optical coherence tomography were performed on days P21, P26, and P30, respectively. TCBN treatment significantly reduced pathological neovascularization, vaso-obliteration, and inflammation marked by reduced TNFα, IL6, MCP-1, Iba1, and F4/80 (macrophage/microglia markers) expression compared to the vehicle-treated OIR mouse retinas. Pathological expression of VEGF (vascular endothelial growth factor), and claudin-5 compromised the blood-retinal barrier integrity in the OIR retinas correlating with increased vascular permeability and neovascular tuft formation, which were blunted by TCBN treatment. Of note, there were no changes in the retinal architecture or retinal cell function in response to TCBN in the normoxia or OIR mice. We conclude that TCBN protects against pathological neovascularization, restores blood-retinal barrier homeostasis, and reduces retinal inflammation without adversely affecting the retinal structure and neuronal function in a mouse model of OIR. Our data suggest that TCBN may provide a novel therapeutic option for proliferative retinopathy.


Assuntos
Doenças Retinianas , Neovascularização Retiniana , Vitreorretinopatia Proliferativa , Animais , Camundongos , Neovascularização Retiniana/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Permeabilidade Capilar , Animais Recém-Nascidos , Neovascularização Patológica , Oxigênio/efeitos adversos , Inflamação/complicações , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
Artigo em Inglês | MEDLINE | ID: mdl-36462795

RESUMO

Redox modulated pathways play important roles in out-of-field effects of ionizing radiation. We investigated how the redox environment impacts the magnitude of propagation of stressful effects from irradiated to bystander cells. Normal human fibroblasts that have incorporated [3H]-thymidine were intimately co-cultured with bystander cells in a strategy that allowed isolation of bystander cells with high purity. The antioxidant glutathione peroxidase (GPX) was maintained either at wild-type conditions or overexpressed in the bystanders. Following 24 h of coculture, levels of stress-responsive p21Waf1, p-Hdm2, and connexin43 proteins were increased in bystander cells expressing wild-type GPX relative to respective controls. These levels were significantly attenuated when GPX was ectopically overexpressed, demonstrating by direct approach the involvement of a regulator of intracellular redox homeostasis. Evidence of participation of pro-oxidant compounds was generated by exposing confluent cell cultures to low fluences of 3.7 MeV α particles in presence or absence of t-butyl hydroperoxide. By 3 h post-exposure to fluences wherein only ∼2% of cells are traversed through the nucleus by a particle track, increases in chromosomal damage were greater than expected in absence of the drug (p < 0.001) and further enhanced in its presence (p < 0.05). While maintenance and irradiation of cell cultures at low oxygen pressure (pO2 3.8 mm Hg) to mimic in vivo still supported the participation of bystander cells in responses assessed by chromosomal damage and stress-responsive protein levels (p < 0.001), the effects were attenuated compared to ambient pO2 (155 mm Hg) (p < 0.05). Together, the results show that bystander effects are attenuated at below ambient pO2 and when metabolic oxidative stress is reduced but increased when the basal redox environment tilts towards oxidizing conditions. They are consistent with bystander effects being independent of radiation dose rate.


Assuntos
Efeito Espectador , Fibroblastos , Oxirredução , Estresse Oxidativo , Oxigênio , Exposição à Radiação , Humanos , Efeito Espectador/efeitos da radiação , Glutationa Peroxidase/metabolismo , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Pressão Parcial , Exposição à Radiação/efeitos adversos , Oxigênio/efeitos adversos , Oxigênio/análise , Técnicas de Cocultura , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação
8.
Monaldi Arch Chest Dis ; 93(3)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36412131

RESUMO

Oxygen is probably the most commonly prescribed drug in the emergency setting and is a life-saving modality as well. However, like any other drug, oxygen therapy may also lead to various adverse effects. Patients with chronic obstructive pulmonary disease (COPD) may develop hypercapnia during supplemental oxygen therapy, particularly if uncontrolled. The risk of hypercapnia is not restricted to COPD only; it has also been reported in patients with morbid obesity, asthma, cystic fibrosis, chest wall skeletal deformities, bronchiectasis, chest wall deformities, or neuromuscular disorders. However, the risk of hypercapnia should not be a deterrent to oxygen therapy in hypoxemic patients with chronic lung diseases, as hypoxemia may lead to life-threatening cardiovascular complications. Various mechanisms leading to the development of oxygen-induced hypercapnia are the abolition of 'hypoxic drive', loss of hypoxic vasoconstriction and absorption atelectasis leading to an increase in dead-space ventilation and Haldane effect. The international guideline recommends a target oxygen saturation of 88% to 92% in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD) and other chronic lung diseases at risk of hypercapnia.  Oxygen should be administered only when oxygen saturation is below 88%. We searched PubMed, EMBASE, and the CINAHL from inception to June 2022. We used the following search terms: "Hypercapnia", "Oxygen therapy in COPD", "Oxygen-associated hypercapnia", "oxygen therapy", and "Hypoxic drive". All types of study are selected. This review will focus on the physiological mechanisms of oxygen-induced hypercapnia and its clinical implications.


Assuntos
Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Humanos , Oxigênio/efeitos adversos , Hipercapnia/terapia , Hipercapnia/etiologia , Oxigenoterapia/efeitos adversos , Pneumopatias/etiologia , Hipóxia/etiologia
9.
Inflammopharmacology ; 30(5): 1729-1743, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35939220

RESUMO

OBJECTIVE: The present study was designed to explore the potential anti-inflammatory and anti-arthritic effects of ellagic acid (EA) in collagen-induced arthritis (CIA). METHODS: CIA rats were treated with MTX (0.25 mg/kg body wt.) and EA (50 mg/kg b.wt.) for a period of 20 days. The effects of treatment in the rats were assessed biochemically by analyzing inflammatory mediators (NF-kB, iNOS, TNF-α, IL-1ß, IL-6 and IL-10) and oxidative stress related parameters (MPO, NO, LPO, catalase, SOD, GSH). In addition, we also assessed the expression of some inflammatory mediators TNF-α, CD8 + though immunohistochemistry in the joint tissue. RESULTS: In the present study, we found expression and synthesis of transcription factor NF-kB was prominent in CIA rats. In addition, main pro-inflammatory cytokines such as TNF-α, IL-1ß, IL-6, and the anti-inflammatory IL-10, was also stand out. Further, reactive oxygen/nitrogen species was also elevated in CIA rats. Treatment with EA ameliorates all the above mentioned inflammatory and oxidative stress related parameters to near normal. Further, we also confirmed the expression of TNF-α, CD8+ T cells through immunohistochemistry was mitigates in joint tissue of EA treated rats. We find EA significantly inhibited the developmental phase of arthritis. CONCLUSION: These results suggest that EA act as potent anti-arthritic and anti-inflammatory agent that could be used as a tool for the development of new drug for the treatment of arthritis.


Assuntos
Artrite Experimental , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Ácido Elágico/efeitos adversos , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Nitrogênio/efeitos adversos , Oxigênio/efeitos adversos , Fosforilação , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Undersea Hyperb Med ; 49(3): 275-287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001560

RESUMO

Introduction: The International Multicenter Registry for Hyperbaric Oxygen Therapy (International Report Registered Identifier DERR1-10.2196/18857) was established in 2011 to capture outcomes and complications data for both Undersea and Hyperbaric Medical Society (UHMS) approved and selected unapproved hyperbaric oxygen (HBO2) therapy indications. Methods: A Research Electronic Data Capture (REDCap) template was designed and distributed to all participating centers for prospective data collection. Centers contributed de-identified demographic, treatment, complications, and outcome data. This report provides summary data on sites and enrollment, as well as pre- and post-treatment data on quality of life (EQ-5D-5L questionnaire), head and neck radiationoutcomes, non-healing wounds (Strauss score), and idiopathic sudden sensorineural hearing loss. Data were analyzed mainly using the Wilcoxon signed-rank test. Results: Twenty-two centers contributed data for 2,880 patients. The most common UHMS-approved indication was delayed radiation injury, followed by enhancement of wound healing, and carbon monoxide poisoning. One hundred and twenty-five patients were treated for non-UHMS approved indications. Quality of life, head and neck radiation symptoms, Strauss wound scores, and hearing were significantly improved after HBO2. Complication rates were low and comparable to previous reports. The registry also offered the ability to analyze factors that affect outcomes, such as smoking and severity of hearing loss. Discussion: The registry accrues prospective data on defined outcomes from multiple centers and allows for analysis of factors affecting outcomes. This registry does not have a control group, which is a limitation. Nevertheless, the registry provides a unique, comprehensive dataset on HBO2 outcomes from multiple centers internationally.


Assuntos
Intoxicação por Monóxido de Carbono , Perda Auditiva Súbita , Oxigenoterapia Hiperbárica , Intoxicação por Monóxido de Carbono/terapia , Perda Auditiva Súbita/terapia , Humanos , Oxigenoterapia Hiperbárica/métodos , Oxigênio/efeitos adversos , Qualidade de Vida , Sistema de Registros
11.
Cell Mol Life Sci ; 79(1): 63, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006382

RESUMO

Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.


Assuntos
Inibidores da Angiogênese/farmacologia , Cromograninas/imunologia , Cromograninas/metabolismo , Neovascularização Patológica/genética , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/patologia , Animais , Capilares/metabolismo , Cromograninas/antagonistas & inibidores , Cromograninas/genética , Modelos Animais de Doenças , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Neovascularização Retiniana/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
12.
Cancer Lett ; 524: 172-181, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688844

RESUMO

The influence of high-linear energy transfer (LET) particle radiation on the functionalities of mesenchymal stromal cells (MSCs) is largely unknown. Here, we analyzed the effects of proton (1H), helium (4He), carbon (12C) and oxygen (16O) ions on human bone marrow-MSCs. Cell cycle distribution and apoptosis induction were examined by flow cytometry, and DNA damage was quantified using γH2AX immunofluorescence and Western blots. Relative biological effectiveness values of MSCs amounted to 1.0-1.1 for 1H, 1.7-2.3 for 4He, 2.9-3.4 for 12C and 2.6-3.3 for 16O. Particle radiation did not alter the MSCs' characteristic surface marker pattern, and MSCs maintained their multi-lineage differentiation capabilities. Apoptosis rates ranged low for all radiation modalities. At 24 h after irradiation, particle radiation-induced ATM and CHK2 phosphorylation as well as γH2AX foci numbers returned to baseline levels. The resistance of human MSCs to high-LET irradiation suggests that MSCs remain functional after exposure to moderate doses of particle radiation as seen in normal tissues after particle radiotherapy or during manned space flights. In the future, in vivo models focusing on long-term consequences of particle irradiation on the bone marrow niche and MSCs are needed.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase do Ponto de Checagem 2/genética , Histonas/genética , Células-Tronco Mesenquimais/efeitos da radiação , Células-Tronco/efeitos da radiação , Medicina Aeroespacial , Apoptose/genética , Apoptose/efeitos da radiação , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células da Medula Óssea/efeitos da radiação , Carbono/efeitos adversos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem da Célula/genética , Linhagem da Célula/efeitos da radiação , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos da radiação , Hélio/efeitos adversos , Humanos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/efeitos adversos , Prótons/efeitos adversos , Voo Espacial , Células-Tronco/metabolismo
13.
J Thorac Cardiovasc Surg ; 163(1): e47-e58, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33485668

RESUMO

OBJECTIVE: We aimed to determine the effects of selective antegrade cerebral perfusion compared with other perfusion strategies on indices of cerebral blood flow, oxygenation, cellular stress, and mitochondrial function. METHODS: One-week-old piglets (n = 41) were assigned to 5 treatment groups. Thirty-eight were placed on cardiopulmonary bypass. Of these, 30 were cooled to 18°C and underwent deep hypothermic circulatory arrest (n = 10), underwent selective antegrade cerebral perfusion at 10 mL/kg/min (n = 10), or remained on continuous cardiopulmonary bypass (deep hypothermic cardiopulmonary bypass, n = 10) for 40 minutes. Other subjects remained on normothermic cardiopulmonary bypass (n = 8) or underwent sham surgery (n = 3). Novel, noninvasive optical measurements recorded cerebral blood flow, cerebral tissue oxyhemoglobin concentration, oxygen extraction fraction, total hemoglobin concentration, and cerebral metabolic rate of oxygen. Invasive measurements of cerebral microdialysis and cerebral blood flow were recorded. Cerebral mitochondrial respiration and reactive oxygen species generation were assessed after the piglets were killed. RESULTS: During hypothermia, deep hypothermic circulatory arrest piglets experienced increases in oxygen extraction fraction (P < .001), indicating inadequate matching of oxygen supply and demand. Deep hypothermic cardiopulmonary bypass had higher cerebral blood flow (P = .046), oxyhemoglobin concentration (P = .019), and total hemoglobin concentration (P = .070) than selective antegrade cerebral perfusion, indicating greater oxygen delivery. Deep hypothermic circulatory arrest demonstrated worse mitochondrial function (P < .05), increased reactive oxygen species generation (P < .01), and increased markers of cellular stress (P < .01). Reactive oxygen species generation was increased in deep hypothermic cardiopulmonary bypass compared with selective antegrade cerebral perfusion (P < .05), but without significant microdialysis evidence of cerebral cellular stress. CONCLUSIONS: Selective antegrade cerebral perfusion meets cerebral metabolic demand and mitigates cerebral mitochondrial reactive oxygen species generation. Excess oxygen delivery during deep hypothermia may have deleterious effects on cerebral mitochondria that may contribute to adverse neurologic outcomes. We describe noninvasive measurements that may help guide perfusion strategies.


Assuntos
Encéfalo , Ponte Cardiopulmonar , Circulação Cerebrovascular/fisiologia , Parada Circulatória Induzida por Hipotermia Profunda , Oxigênio , Reperfusão/métodos , Animais , Animais Recém-Nascidos , Análise da Demanda Biológica de Oxigênio , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Parada Circulatória Induzida por Hipotermia Profunda/métodos , Mitocôndrias/fisiologia , Imagem Óptica/métodos , Oxigênio/efeitos adversos , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral/métodos , Suínos
14.
PLoS One ; 16(12): e0260945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34860854

RESUMO

OBJECTIVES: The occurrence of postoperative neurocognitive deficits(POND)after major cardiac surgery is associated with an increase in perioperative mortality and morbidity. Oxidative stress caused by oxygen can affect neuronal damage, which can lead to POND. Whether the intraoperative rSO2 value reflects oxidative stress and the associated incidence of POND is unknown. METHODS: Among 3482 patients undergoing cardiac surgery, 976 patients were allocated for this retrospective study. Of these, 230 patients (32.5%) were observed to have postoperative neurologic symptoms. After propensity score 1:2 ratio matching, a total of 690 patients were included in the analysis. Recorded data on the occurrence of POND from the postoperative period to predischarge were collected from the electronic records. RESULTS: The mean baseline rSO2 value was higher in the POND (-) group than in the POND (+) group. The mean overall minimum rSO2 value was lower in the POND (+) group (52.2 ± 8.3 vs 48.3 ± 10.5, P < 0.001). The mean overall maximum rSO2 values were not significantly different between the two groups (72.7 ± 8.3 vs 73.2 ± 9.2, P = 0.526). However, there was a greater increase in the overall maximum rSO2 values as compared with baseline in the POND (+) group (10.9 ± 8.2 vs 17.9 ± 10.2, P < 0.001). The degree of increase in the maximum rSO2 value was a risk factor affecting the occurrence of POND (adjusted odds ratio, 1.08; 95% confidence interval [CI], 1.04-1.11; P < 0.001). The areas under the receiver-operating characteristic curve for delta values of minimal and maximal compared with baseline values were 0.60 and 0.71, respectively. CONCLUSIONS: Increased cerebral oximeter levels during cardiac surgery may also be a risk factor for POND. This is considered to reflect the possibility of oxidative neuronal damage, and further studies are needed in the future.


Assuntos
Encéfalo/patologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cardiopatias/cirurgia , Monitorização Intraoperatória/métodos , Transtornos Neurocognitivos/patologia , Oxigênio/efeitos adversos , Complicações Pós-Operatórias/patologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Circulação Cerebrovascular , Feminino , Seguimentos , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Oximetria/métodos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/metabolismo , Prognóstico , Pontuação de Propensão , Estudos Retrospectivos
15.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639034

RESUMO

Oxygen toxicity continues to be one of the inevitable injuries to the immature lung. Reactive oxygen species (ROS) production is the initial step leading to lung injury and, subsequently, the development of bronchopulmonary dysplasia (BPD). Today, BPD remains the most important disease burden following preterm delivery and results in life-long restrictions in lung function and further important health sequelae. Despite the tremendous progress in the pathomechanistic understanding derived from preclinical models, the clinical needs for preventive or curative therapies remain unmet. This review summarizes the clinical progress on guiding oxygen delivery to the preterm infant and elaborates future directions of research that need to take into account both hyperoxia and hypoxia as ROS sources and BPD drivers. Many strategies have been tested within clinical trials based on the mechanistic understanding of ROS actions, but most have failed to prove efficacy. The majority of these studies were tested in an era before the latest modes of non-invasive respiratory support and surfactant application were introduced or were not appropriately powered. A comprehensive re-evaluation of enzymatic, antioxidant, and anti-inflammatory therapies to prevent ROS injury is therefore indispensable. Strategies will only succeed if they are applied in a timely and vigorous manner and with the appropriate outcome measures.


Assuntos
Hiperóxia/complicações , Recém-Nascido Prematuro , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Oxigênio/efeitos adversos , Antioxidantes/metabolismo , Displasia Broncopulmonar/epidemiologia , Displasia Broncopulmonar/etiologia , Efeitos Psicossociais da Doença , Suscetibilidade a Doenças , Saúde Global , Humanos , Recém-Nascido , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/terapia , Consumo de Oxigênio , Espécies Reativas de Oxigênio
16.
Int Immunopharmacol ; 99: 108033, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34343938

RESUMO

BACKGROUND: Oxidative stress and inflammation play a critical role in the etiopathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study was to evaluate the preventive effect of Chrysin (CH), an antioxidant, antiinflammatory, antiapoptotic and antifibrotic drug, on hyperoxia-induced lung injury in a neonatal rat model. METHODS: Forty infant rats were divided into four groups labeled the Control, CH, BPD, and BPD + CH. The control and CH groups were kept in a normal room environment, while the BPD and BPD + CH groups were kept in a hyperoxic (90-95%) environment. At the end of the study, lung tissue was evaluated with respect to apoptosis, histopathological damage and alveolar macrophage score as well as oxidant capacity, antioxidant capacity, and inflammation. RESULTS: Compared to the BPD + CH and control groups, the lung tissues of the BPD group displayed substantially higher levels of MDA, TOS, TNF-α, and IL-1ß (p < 0.05). While the BPD + CH group showed similar levels of TNF-α and IL-1ß as the control group, MDA and TOS levels were higher than the control group, and significantly lower than the BPD group (p < 0.05). The BPD group exhibited considerably lower levels of TAS, SOD, GSH, and GSH-Px in comparison to the control group (p < 0.05). The BPD and BPD + CH groups exhibited higher mean scores of histopathological damage and alveolar macrophage when compared to the control and CH groups (p ≤ 0.0001). Both scores were found to be lower in the BPD + CH group in comparison to the BPD group (p ≤ 0.0001). The BPD + CH group demonstrated a significantly lower average of TUNEL and caspase-3 positive cells than the BPD group. CONCLUSION: We found that prophylaxis with CH results in lower histopathological damage score and reduces apoptotic cell count, inflammation and oxidative stress while increasing anti-oxidant capacity.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Hiperóxia , Lesão Pulmonar/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/prevenção & controle , Caspase 3/metabolismo , Modelos Animais de Doenças , Flavonoides/uso terapêutico , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Hiperóxia/induzido quimicamente , Interleucina-1beta/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macrófagos Alveolares/metabolismo , Malondialdeído/metabolismo , Oxidantes/metabolismo , Oxigênio/efeitos adversos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
FASEB J ; 35(9): e21842, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418159

RESUMO

Retinopathy of prematurity (ROP) remains one of the major causes of blindness in children worldwide. While current ROP treatments are mostly disruptive to reduce proliferative neovascularization by targeting the hypoxic phase, protection against early hyperoxia-induced retinal vascular loss represents an effective therapeutic window, but no such therapeutic strategy is available. Built upon our recent demonstration that the protection against oxygen-induced retinopathy by adenosine A2A receptor (A2A R) antagonists is most effective when administered at the hyperoxia (not hypoxic) phase, we here uncovered the cellular mechanism underlying the A2A R-mediated protection against early hyperoxia-induced retinal vascular loss by reversing the inhibition of cellular proliferation via possibly multiple signaling pathways. Specifically, we revealed two distinct stages of the hyperoxia phase with greater cellular proliferation and apoptosis activities and upregulation of adenosine signaling at postnatal 9 day (P9) but reduced cellular activities and adenosine-A2A R signaling at P12. Importantly, the A2A R-mediated protection at P9 was associated with the reversal of hyperoxia-induced inhibition of progenitor cells at the peripheral retina at P9 and of retinal endothelial proliferation at P9 and P12. The critical role of cellular proliferation in the hyperoxia-induced retinal vascular loss was validated by the increased avascular areas by siRNA knockdown of the multiple signaling molecules involved in modulation of cellular proliferation, including activin receptor-like kinase 1, DNA-binding protein inhibitor 1, and vascular endothelial growth factor-A.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Hiperóxia/metabolismo , Substâncias Protetoras/farmacologia , Receptor A2A de Adenosina/metabolismo , Neovascularização Retiniana , Vasos Retinianos/efeitos dos fármacos , Receptores de Activinas Tipo II/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína 1 Inibidora de Diferenciação/metabolismo , Camundongos , Neovascularização Patológica , Oxigênio/efeitos adversos , Retina/citologia , Retina/efeitos dos fármacos , Retina/patologia , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Pediatr ; 234: 33-37.e3, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33737029

RESUMO

OBJECTIVE: To study the impact of an oxygen management strategy incorporating oxygen saturation (SpO2) targeting and fraction of inspired oxygen monitoring on the incidence of retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), and mortality. STUDY DESIGN: This retrospective cohort study analyzed the incidence of any ROP, severe ROP, ROP requiring treatment (surgery and/or bevacizumab), BPD, and mortality among 23-28 weeks of gestational age infants admitted to the neonatal intensive care unit in 3 epochs: Epoch 1 (2007-2010) before implementation of SpO2 histograms; Epoch 2 (2012-2014), with development of a software tool capable of generating automatic bedside SpO2 histograms; and Epoch 3 (2016-2019), with further software enhancements, incorporating simultaneous SpO2 and fraction of inspired oxygen measurements. RESULTS: During Epochs 1, 2, and 3, there were 601, 381, and 550 eligible infants, respectively, for a total of 1532 eligible infants. Mortality, any ROP, severe ROP, ROP needing treatment, and BPD all showed significant downward trends across the 3 epochs. The aOR of mortality was significantly lower in Epoch 3 compared with Epoch 1 (aOR 0.48). The aORs of any ROP and of BPD were significantly lower in Epochs 2 and 3 compared with Epoch 1 (respectively, ROP aORs 0.53 and 0.38; BPD aOR 0.43 and 0.43). The aOR of ROP needing treatment was significantly lower in Epoch 3 compared with Epoch 1 (aOR 0.43). CONCLUSIONS: We have demonstrated improvement in rates of mortality, any ROP, ROP requiring treatment, and BPD after implementation of a novel oxygen management strategy.


Assuntos
Displasia Broncopulmonar/prevenção & controle , Oxigênio/sangue , Retinopatia da Prematuridade/prevenção & controle , Displasia Broncopulmonar/etiologia , Humanos , Lactente , Mortalidade Infantil , Lactente Extremamente Prematuro , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Oxigênio/efeitos adversos , Retinopatia da Prematuridade/etiologia , Estudos Retrospectivos
19.
J Cell Physiol ; 236(9): 6657-6665, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554327

RESUMO

Oxygen is often administered to patients and occasionally to healthy individuals as well; however, the cellular toxicity of oxygen, especially following prolonged exposure, is widely known. To evaluate the potential effect of oxygen exposure on circulating stem/progenitor cells and cardiac ischemia/reperfusion (I/R) injury, we exposed healthy adult mice to 100% oxygen for 20 or 60 min. We then examined the c-kit-positive stem/progenitor cells and colony-forming cells and measured the cytokine/chemokine levels in peripheral blood. We also induced cardiac I/R injury in mice at 3 h after 60 min of oxygen exposure and examined the recruitment of inflammatory cells and the fibrotic area in the heart. The proportion of c-kit-positive stem/progenitor cells significantly increased in peripheral blood at 3 and 24 h after oxygen exposure for either 20 or 60 min (p < .01 vs. control). However, the abundance of colony-forming cells in peripheral blood conversely decreased at 3 and 24 h after oxygen exposure for only 60 min (p < .05 vs. control). Oxygen exposure for either 20 or 60 min resulted in significantly decreased plasma vascular endothelial growth factor levels at 3 h, whereas oxygen exposure for only 60 min reduced plasma insulin-like growth factor 1 levels at 24 h (p < .05 vs. control). Protein array indicated the increase in the levels of some cytokines/chemokines, such as CXCL6 (GCP-2) at 24 h after 60 min of oxygen exposure. Moreover, oxygen exposure for 60 min enhanced the recruitment of Ly6g- and CD11c-positive inflammatory cells at 3 days (p < .05 vs. control) and increased the fibrotic area at 14 days in the heart after I/R injury (p < .05 vs. control). Prolonged oxygen exposure induced the mobilization and functional impairment of stem/progenitor cells and likely enhanced inflammatory responses to exacerbate cardiac I/R injury in healthy mice.


Assuntos
Traumatismo por Reperfusão Miocárdica/patologia , Oxigênio/efeitos adversos , Células-Tronco/patologia , Animais , Quimiocina CXCL12/sangue , Ensaio de Unidades Formadoras de Colônias , Mediadores da Inflamação/sangue , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/sangue , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue
20.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33497360

RESUMO

Dysmorphic pulmonary vascular growth and abnormal endothelial cell (EC) proliferation are paradoxically observed in premature infants with bronchopulmonary dysplasia (BPD), despite vascular pruning. The pentose phosphate pathway (PPP), a metabolic pathway parallel to glycolysis, generates NADPH as a reducing equivalent and ribose 5-phosphate for nucleotide synthesis. It is unknown whether hyperoxia, a known mediator of BPD in rodent models, alters glycolysis and the PPP in lung ECs. We hypothesized that hyperoxia increases glycolysis and the PPP, resulting in abnormal EC proliferation and dysmorphic angiogenesis in neonatal mice. To test this hypothesis, lung ECs and newborn mice were exposed to hyperoxia and allowed to recover in air. Hyperoxia increased glycolysis and the PPP. Increased PPP, but not glycolysis, caused hyperoxia-induced abnormal EC proliferation. Blocking the PPP reduced hyperoxia-induced glucose-derived deoxynucleotide synthesis in cultured ECs. In neonatal mice, hyperoxia-induced abnormal EC proliferation, dysmorphic angiogenesis, and alveolar simplification were augmented by nanoparticle-mediated endothelial overexpression of phosphogluconate dehydrogenase, the second enzyme in the PPP. These effects were attenuated by inhibitors of the PPP. Neonatal hyperoxia augments the PPP, causing abnormal lung EC proliferation, dysmorphic vascular development, and alveolar simplification. These observations provide mechanisms and potential metabolic targets to prevent BPD-associated vascular dysgenesis.


Assuntos
Displasia Broncopulmonar/metabolismo , Células Endoteliais/patologia , Pulmão , Neovascularização Patológica/metabolismo , Oxigênio/efeitos adversos , Via de Pentose Fosfato , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/patologia , Proliferação de Células , Glicólise , Humanos , Hiperóxia , Recém-Nascido , Pulmão/irrigação sanguínea , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Neovascularização Patológica/etiologia , Oxigênio/administração & dosagem , Fosfogluconato Desidrogenase/metabolismo , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA