Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 728
Filtrar
1.
J Biol Inorg Chem ; 29(3): 303-314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38727821

RESUMO

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Assuntos
Sobrevivência Celular , Indóis , Compostos de Organossilício , Neoplasias da Próstata , Bases de Schiff , Oxigênio Singlete , Humanos , Indóis/química , Indóis/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Masculino , Oxigênio Singlete/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células PC-3 , Fotoquimioterapia , Processos Fotoquímicos , Linhagem Celular Tumoral , Estrutura Molecular
2.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792086

RESUMO

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Assuntos
Resinas Acrílicas , Ouro , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ouro/química , Fotoquimioterapia/métodos , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Resinas Acrílicas/química , Linhagem Celular Tumoral , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Porfirinas/química , Porfirinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Polímeros/química , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713621

RESUMO

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Humanos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Porfirinas/farmacologia , Porfirinas/química , Ligação Proteica , Nanopartículas/química
4.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692166

RESUMO

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Assuntos
Indóis , Raios Infravermelhos , Isoindóis , Lisossomos , Mitocôndrias , Nanopartículas , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Compostos de Zinco/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Lisossomos/metabolismo , Humanos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Oxigênio Singlete/metabolismo , Feminino , Ácido Fólico/química
5.
Nanoscale ; 16(19): 9462-9475, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38639449

RESUMO

The dimerization of boron dipyrromethene (BODIPY) moieties is an appealing molecular design approach for developing heavy-atom-free triplet photosensitizers (PSs). However, BODIPY dimer-based PSs generally lack target specificity, which limits their clinical use for photodynamic therapy. This study reports the synthesis of two mitochondria-targeting triphenylphosphonium (TPP)-functionalized meso-ß directly linked BODIPY dimers (BTPP and BeTPP). Both BODIPY dimers exhibited solvent-polarity-dependent singlet oxygen (1O2) quantum yields, with maximum values of 0.84 and 0.55 for BTPP and BeTPP, respectively, in tetrahydrofuran. The compact orthogonal geometry of the BODIPY dimers facilitated the generation of triplet excited states via photoinduced charge separation (CS) and subsequent spin-orbit charge-transfer intersystem crossing (SOCT-ISC) processes and their rates were dependent on the energetic configuration between the frontier molecular orbitals of the two BODIPY subunits. The as-synthesized compounds were amphiphilic and hence formed stable nanoparticles (∼36 nm in diameter) in aqueous solutions, with a zeta potential of ∼33 mV beneficial for mitochondrial targeting. In vitro experiments with MCF-7 and HeLa cancer cells indicated the effective localization of BTPP and BeTPP within cancer-cell mitochondria. Under light irradiation, BTPP and BeTPP exhibited robust photo-induced therapeutic effects in both cell lines, with half-maximal inhibitory concentration (IC50) values of ∼30 and ∼55 nM, respectively.


Assuntos
Compostos de Boro , Mitocôndrias , Nanopartículas , Compostos Organofosforados , Fotoquimioterapia , Fármacos Fotossensibilizantes , Oxigênio Singlete , Humanos , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Células MCF-7 , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Dimerização
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124311, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663131

RESUMO

In this study, a set of potential quasi-intrinsic photosensitizers for two-photon photodynamic therapy (PDT) are proposed based on the unnatural 2-amino-8-(1'-ß-ᴅ-2'-deoxyribofuranosyl)-imidazo[1,2-ɑ]-1,3,5-triazin-4(8H)-one (P), which is paired with the 6-amino-5-nitro-3-(1'-ß-ᴅ-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) and can specifically recognize breast and liver cancer cells. Herein, the effects of sulfur substitution and electron-donating/electron-withdrawing groups on the photophysical properties in aqueous solution are systematically investigated. The one- and two-photon absorption spectra evidence that the modifications could result in red-shifted absorption wavelength and large two-photon absorption cross-section, which contributes to selective excitation and provides effective PDT for deep-seated tissues. To ensure the efficient triplet state population, the singlet-triplet energy gaps and spin-orbit coupling constants were examined, which is responsible for a rapid intersystem crossing rate. Furthermore, these thiobase derivatives are characterized by the long-lived T1 state and the large energy gap for radiationless transition to ensure the generation of cytotoxic singlet oxygen.


Assuntos
Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Humanos , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Linhagem Celular Tumoral
7.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560761

RESUMO

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Assuntos
Antineoplásicos , Fotoquimioterapia , Porfobilinogênio/análogos & derivados , Pró-Fármacos , Humanos , Boro/farmacologia , Luz Vermelha , Corantes , Pró-Fármacos/farmacologia , Cobalto/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Antineoplásicos/efeitos da radiação , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Oxigênio Singlete/metabolismo , Luz
8.
J Inorg Biochem ; 256: 112570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685138

RESUMO

This work reports on the synthesis of triphenylphosphine-labelled cationic phthalocyanines (Pc) complexed with bovine serum albumin (BSA) and gold nanoparticles (Au NPs). This nano-complex (Pc-BSA-Au) is studied for its photodynamic therapy (PDT) activity compared to the non-complexed Pc counterpart. The photochemical properties and in vitro PDT efficacies of the Pc and the nano-complex were determined and are compared herein. The singlet oxygen (1O2) yields of the Pcs were determined and are reported in DMF. A singlet oxygen quantum yield of 0.47 was obtained for the Pcs. The PDT efficacies of the complexes were thereafter determined using malignant melanoma A375 cancer cell line in vitro. An increase in the cell toxicity was observed for cells treated with Pc-BSA-Au compared to those treated with the Pc alone. The cell survival percentages were 23.1% for cells treated with Pc-BSA-Au and 48.7% for those treated with Pc alone under PDT treatments.


Assuntos
Ouro , Indóis , Isoindóis , Melanoma , Nanopartículas Metálicas , Compostos Organofosforados , Fotoquimioterapia , Fármacos Fotossensibilizantes , Soroalbumina Bovina , Ouro/química , Ouro/farmacologia , Soroalbumina Bovina/química , Humanos , Nanopartículas Metálicas/química , Fotoquimioterapia/métodos , Indóis/química , Indóis/farmacologia , Linhagem Celular Tumoral , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Bovinos , Oxigênio Singlete/metabolismo
9.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673875

RESUMO

Photodynamic therapy is expected to be a less invasive treatment, and strategies for targeting mitochondria, the main sources of singlet oxygen, are attracting attention to increase the efficacy of photodynamic therapy and reduce its side effects. To date, we have succeeded in encapsulating the photosensitizer rTPA into MITO-Porter (MP), a mitochondria-targeted Drug Delivery System (DDS), aimed at mitochondrial delivery of the photosensitizer while maintaining its activity. In this study, we report the results of our studies to alleviate rTPA aggregation in an effort to improve drug efficacy and assess the usefulness of modifying the rTPA side chain to improve the mitochondrial retention of MITO-Porter, which exhibits high therapeutic efficacy. Conventional rTPA with anionic side chains and two rTPA analogs with side chains that were converted to neutral or cationic side chains were encapsulated into MITO-Porter. Low-MP (MITO-Porter with Low Drug/Lipid) exhibited high drug efficacy for all three types of rTPA, and in Low-MP, charged rTPA-encapsulated MP exhibited high drug efficacy. The cellular uptake and mitochondrial translocation capacities were similar for all particles, suggesting that differences in aggregation rates during the incorporation of rTPA into MITO-Porter resulted in differences in drug efficacy.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Mitocôndrias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacologia , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química
10.
Int J Biol Macromol ; 266(Pt 2): 131359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580018

RESUMO

The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.


Assuntos
Quitosana , Glutationa , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Polietilenoglicóis , Quitosana/química , Fotoquimioterapia/métodos , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Glutationa/metabolismo , Polietilenoglicóis/química , Camundongos , Nanopartículas/química , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Verde de Indocianina/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxigênio Singlete/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Polímeros/química
11.
J Inorg Biochem ; 256: 112545, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581803

RESUMO

Trinuclear ruthenium(II) polypyridyl complexes anchored to benzimidazole-triazine / trisamine scaffolds were investigated as photosensitizers for photodynamic therapy. The trinuclear complexes were noted to produce a significant amount of singlet oxygen in both DMF and aqueous media, are photostable and show appreciable emission quantum yields (ɸem). In our experimental setting, despite the moderate phototoxic activity in the HeLa cervical cancer cell line, the phototoxic indices (PI) of the trinuclear complexes are superior relative to the PIs of a clinically approved photosensitizer, Photofrin®, and the pro-drug 5-aminolevulinic acid (PI: >7 relative to PI: >1 and PI: 4.4 for 5-aminolevulinic acid and Photofrin®, respectively). Furthermore, the ruthenium complexes were noted to show appreciable long-term cytotoxicity upon light irradiation in HeLa cells in a concentration-dependent manner. Consequently, this long-term activity of the ruthenium(II) polypyridyl complexes embodies their ability to reduce the probability of the recurrence of cervical cancer. Taken together, this presents a strong motivation for the development of polymetallic complexes as anticancer agents.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Neoplasias do Colo do Útero , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Rutênio/química , Feminino , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Fotoquimioterapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Piridinas/química , Piridinas/farmacologia , Oxigênio Singlete/metabolismo
12.
J Colloid Interface Sci ; 667: 91-100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621335

RESUMO

The development of efficient and multifunctional sonosensitizers is crucial for enhancing the efficacy of sonodynamic therapy (SDT). Herein, we have successfully constructed a CoOx-loaded amorphous metal-organic framework (MOF) UIO-66 (A-UIO-66-CoOx) sonosensitizer with excellent catalase (CAT)- and glutathione-oxidase (GSH-OXD)-like activities. The A-UIO-66-CoOx exhibits a 2.6-fold increase in singlet oxygen (1O2) generation under ultrasound (US) exposure compared to crystalline UIO-66 sonosensitizer, which is attributed to its superior charge transfer efficiency and consistent oxygen (O2) supply. Additionally, the A-UIO-66-CoOx composite reduces the expression of glutathione peroxidase (GPX4) by depleting glutathione (GSH) through Co3+ and Co2+ valence changes. The high levels of highly cytotoxic 1O2 and deactivation of GPX4 can lead to lethal lipid peroxidation, resulting in concurrent apoptosis and ferroptosis. Both in vitro and vivo tumor models comprehensively confirmed the enhanced SDT antitumor effect using A-UIO-66-CoOx sonosensitizer. Overall, this study emphasizes the possibility of utilizing amorphization engineering to improve the effectiveness of MOFs-based sonosensitizers for combined cancer therapies.


Assuntos
Apoptose , Ferroptose , Estruturas Metalorgânicas , Terapia por Ultrassom , Ferroptose/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Cobalto/química , Cobalto/farmacologia , Propriedades de Superfície , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Linhagem Celular Tumoral
13.
Adv Healthc Mater ; 13(13): e2304392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335277

RESUMO

Long afterglow luminescence-guided photodynamic therapy (PDT) performs advantages of noninvasiveness, spatiotemporal controllability, and higher signal to noise ratio. Photochemical afterglow (PCA) system emitting afterglow in an aqueous environment is highly suitable for biomedical applications, but still faces the challenges of poor tissue penetration depth and responsive sensitivity. In this work, two novel compounds, Iso-TPA and ABEI-TPA, are designed and synthesized to integrate the PCA system as a single component by coupling near-infrared (NIR) photosensitizers with singlet oxygen cache units, respectively. Both compounds emit NIR afterglow based on photochemical reaction. ABEI-TPA exhibits higher photoluminescence quantum efficiency with nonconjugated linkage, while Iso-TPA with conjugated linkage possesses better reactive oxygen species generation efficiency to achieve stronger PCA and effective PDT, which is ascribed to stronger intramolecular charge transfer effect of Iso-TPA. Iso-TPA nanoparticles can achieve effective long-lasting NIR afterglow in vivo bioimaging up to 120 s with higher imaging resolution and outstanding PDT efficacy of tumor, exhibiting promising potential on bioimaging and therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Nanopartículas/química , Humanos , Camundongos , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Raios Infravermelhos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Feminino , Camundongos Nus
14.
J Photochem Photobiol B ; 250: 112832, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142588

RESUMO

The increased energy demands inherent in cancer cells necessitate a dependence on mitochondrial assistance for their proliferation and metastatic activity. Herein, an innovative photo-medical approach has been attempted, specifically targeting mitochondria, the cellular powerhouses, to attain therapeutic benefit. This strategy facilitates the rapid and precise initiation of apoptosis, the programmed cell death process. In this goal, we have synthesized cyclometalated Iridium (III) molecular probes, denoted as Ir-CN and Ir-H, with a nitrile (CN) and a hydrogen-functionalized bipyridine as ancillary ligands, respectively. Ir-CN has shown superior photosensitizing properties and lower dark cytotoxicity compared to Ir-H in the breast cancer cell line MCF-7, positioning it as the preferred probe for photodynamic therapy (PDT). The synthesized Ir-CN induces alterations in mitochondrial membrane potential, disrupting the respiratory chain function, and generating reactive oxygen species that activate signaling pathways leading to cell death. The CN-conjugated bipyridine ligand in Ir-CN contributes to the intense red fluorescence and the positive charge on the central metal atom facilitates specific mitochondrial colocalization (colocalization coefficient of 0.90). Together with this, the Iridium metal, with strong spin-orbit coupling, efficiently generates singlet oxygen with a quantum yield of 0.79. Consequently, the cytotoxic singlet oxygen produced by Ir-CN upon laser exposure disrupts mitochondrial processes, arresting the electron transport chain and energy production, ultimately leading to programmed cell death. This mitochondrial imbalance and apoptotic induction were dually confirmed through various apoptotic assays including Annexin V staining and by mapping the molecular level changes through surface-enhanced Raman spectroscopy (SERS). Therefore, cyclometalated Ir-CN emerges as a promising molecular probe for cancer theranostics, inducing laser-assisted mitochondrial damage, as tracked through bimodal fluorescence and SERS.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Fotoquimioterapia , Humanos , Feminino , Irídio/química , Oxigênio Singlete/metabolismo , Medicina de Precisão , Neoplasias da Mama/tratamento farmacológico , Fluorescência , Antineoplásicos/química , Mitocôndrias/metabolismo , Complexos de Coordenação/química , Linhagem Celular Tumoral
15.
ACS Appl Bio Mater ; 6(12): 5776-5788, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38061031

RESUMO

Photodynamic therapy (PDT) has emerged as an efficient and noninvasive treatment approach utilizing laser-triggered photosensitizers for combating cancer. Within this rapidly advancing field, iridium-based photosensitizers with their dual functionality as both imaging probes and PDT agents exhibit a potential for precise and targeted therapeutic interventions. However, most reported classes of Ir(III)-based photosensitizers comprise mononuclear iridium(III), with very few examples of dinuclear systems. Exploring the full potential of iridium-based dinuclear systems for PDT applications remains a challenge. Herein, we report a dinuclear Ir(III) complex (IRDI) along with a structurally similar monomer complex (IRMO) having 2-(2,4-difluorophenyl)pyridine and 4'-methyl-2,2'-bipyridine ligands. The comparative investigation of the mononuclear and dinuclear Ir(III) complexes showed similar absorption profiles, but the dinuclear derivative IRDI exhibited a higher photoluminescence quantum yield (Φp) of 0.70 compared to that of IRMO (Φp = 0.47). Further, IRDI showed a higher singlet oxygen generation quantum yield (Φs) of 0.49 compared to IRMO (Φs = 0.28), signifying the enhanced potential of the dinuclear derivative for image-guided photodynamic therapy. In vitro assessments indicate that IRDI shows efficient cellular uptake and significant photocytotoxicity in the triple-negative breast cancer cell line MDA-MB-231. In addition, the presence of a dual positive charge on the dinuclear system facilitates the inherent mitochondria-targeting ability without the need for a specific targeting group. Subcellular singlet oxygen generation by IRDI was confirmed using Si-DMA, and light-activated cellular apoptosis via ROS-mediated PDT was verified through various live-dead assays performed in the presence and absence of the singlet oxygen scavenger NaN3. Further, the mechanism of cell death was elucidated by an annexin V-FITC/PI flow cytometric assay and by investigating the cytochrome c release from mitochondria using Western blot analysis. Thus, the dinuclear complex designed to enhance spin-orbit coupling with minimal excitonic coupling represents a promising strategy for efficient image-guided PDT using iridium complexes.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Fármacos Fotossensibilizantes/metabolismo , Irídio/farmacologia , Irídio/metabolismo , Oxigênio Singlete/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo
16.
Inorg Chem ; 62(45): 18510-18523, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37913550

RESUMO

Lack of selectivity is one of the main issues with currently used chemotherapies, causing damage not only to altered cells but also to healthy cells. Over the last decades, photodynamic therapy (PDT) has increased as a promising therapeutic tool due to its potential to treat diseases like cancer or bacterial infections with a high spatiotemporal control. Ruthenium(II) polypyridyl compounds are gaining attention for their application as photosensitizers (PSs) since they are generally nontoxic in dark conditions, while they show remarkable toxicity after light irradiation. In this work, four Ru(II) polypyridyl compounds with sterically expansive ligands were studied as PDT agents. The Ru(II) complexes were synthesized using an alternative route to those described in the literature, which resulted in an improvement of the synthesis yields. Solid-state structures of compounds [Ru(DIP)2phen]Cl2 and [Ru(dppz)2phen](PF6)2 have also been obtained. It is well-known that compound [Ru(dppz)(phen)2]Cl2 binds to DNA by intercalation. Therefore, we used [Ru(dppz)2phen]Cl2 as a model for DNA interaction studies, showing that it stabilized two different sequences of duplex DNA. Most of the synthesized Ru(II) derivatives showed very promising singlet oxygen quantum yields, together with noteworthy photocytotoxic properties against two different cancer cell lines, with IC50 in the micro- or even nanomolar range (0.06-7 µM). Confocal microscopy studies showed that [Ru(DIP)2phen]Cl2 and [Ru(DIP)2TAP]Cl2 accumulate preferentially in mitochondria, while no mitochondrial internalization was observed for the other compounds. Although [Ru(dppn)2phen](PF6)2 did not accumulate in mitochondria, it interestingly triggered an impairment in mitochondrial respiration after light irradiation. Among others, [Ru(dppn)2phen](PF6)2 stands out for its very good IC50 values, correlated with a very high singlet oxygen quantum yield and mitochondrial respiration disruption.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Complexos de Coordenação/química , Rutênio/farmacologia , Rutênio/química , Oxigênio Singlete/metabolismo , DNA , Ligantes
17.
Inorg Chem ; 62(49): 20080-20095, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994001

RESUMO

Organelle-targeted photosensitizers (PSs) for photodynamic therapy (PDT) are considered as an effective therapeutic strategy for the development of next generation PSs with the least side effects and high therapeutic efficacy. However, multiorganelle targeted PSs eliciting PDT via both type I and type II mechanisms are scarce. Herein, a series of cyclometalated iridium(III) complexes were formulated [Ir(C∧N)2(S∧S)] (C∧N = 2-phenylpyridine (ppy) and 2-(thiophen-2-yl)pyridine (thpy); S∧S = diethyldithiocarbamate (DEDTC), morpholine-N-dithiocarbamate (MORDTC) and methoxycarbonodithioate (MEDTC)) and the newly designed complexes Ir2@DEDTC and Ir1@MEDTC were characterized by single crystal X-ray crystallography. Complexes containing thpy as C∧N ligand exhibit excellent photophysical properties such as red-shifted emission, high singlet oxygen quantum yield (ϕΔ) and longer photoluminescence lifetime when compared with complexes containing ppy ligands. Ir2@DEDTC exhibits the highest Ï•Δ and photoluminescence lifetimes among the synthesized complexes. Therefore, Ir2@DEDTC was chosen to evaluate the photosensitizing ability to produce reactive oxygen species (ROS). Upon blue light irradiation (456 nm), it efficiently produces ROS, i.e., hydroxy radical (•OH) and singlet oxygen (1O2), which was confirmed by electron paramagnetic resonance (EPR) spectroscopy. In vitro photocytotoxicity toward HCT116, HeLa, and PC3 cell lines showed that out of all the synthesized complexes, Ir2@DEDTC has the highest photocytotoxic index (PI > 400) value. Ir2@DEDTC is efficiently taken up by the HCT116 cell line and accumulated mainly in the lysosome and mitochondria of the cells, and after PDT treatment, it elicits cell shrinkage, membrane blebbing, and DNA fragmentation. The phototherapeutic efficacy of Ir2@DEDTC has been investigated against 3D spheroids considering its ability to mimic some of the basic features of solid tumors. The morphology was drastically altered in the Ir2@DEDTC treated 3D spheroid after the light irradiation unleashed the potential of the Ir(III) dithiocarbamate complex as a superior PS for PDT. Hence, mitochondria and lysosome targeted photoactive cyclometalated Ir(III) dithiocarbamate complex exerting oxidative stress via both type I and type II PDT can be regarded as a dual-organelle targeted two-pronged approach for enhanced PDT.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Humanos , Complexos de Coordenação/química , Irídio/farmacologia , Irídio/química , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo , Ligantes , Fármacos Fotossensibilizantes/química
18.
Mater Horiz ; 10(12): 5734-5752, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37807765

RESUMO

Photodynamic therapy (PDT) has been extensively investigated for cancer treatment by virtue of singlet oxygen-induced oxidative damage to tumors. Nevertheless, the therapeutic efficiency of PDT is still limited by the low singlet oxygen yield attributed to the improper irradiation duration and the tumor hypoxic microenvironment. To tackle these challenges, we elaborately design a theranostic oxygen nano-economizer to self-report the optimal irradiation duration and alleviate tumor hypoxia simultaneously, which is engineered by fluorescent 9,10-anthracenyl bis (benzoic acid) (DPA)-MOF, tetrakis (4-carboxyphenyl) porphyrin (TCPP), triphenyl phosphine (TPP) and redox-responsive lipid-PEG (DSPE-SS-PEG2k). Upon laser irradiation, the fluorescence of DPA-MOF could be quenched, thereby self-reporting the optimal irradiation duration for sufficient PDT. The decoration of DSPE-SS-PEG2k and TPP endows the theranostic oxygen nano-economizer with a tumor-specific response and mitochondrial targeting capability, respectively. Notably, singlet oxygen generated from TCPP reduces oxygen consumption by disrupting the entire oxidative phosphorylation (OXPHOS) pathway in the mitochondria of tumor cells, further improving the level of singlet oxygen in a self-facilitated manner for hypoxia alleviation-potentiated PDT. As expected, such a self-reported and self-facilitated theranostic oxygen nano-economizer exhibits potent antitumor activity in the 4T1 tumor-bearing mouse model. This study offers a theranostic paradigm for precise and hypoxia alleviation-potentiated cancer therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Animais , Camundongos , Oxigênio/uso terapêutico , Oxigênio Singlete/metabolismo , Oxigênio Singlete/uso terapêutico , Autorrelato , Medicina de Precisão , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
19.
Eur J Med Chem ; 259: 115705, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544182

RESUMO

A series of BODIPY compounds with a methylphenol substituent at the meso-position and halogen atoms on the BODIPY core, or OCH3 or OAc substituents at the phenolic moiety was synthesized. Their spectral and photophysical properties and the photochemical reactivity upon irradiation in CH3OH were investigated. The molecules with the phenolic substituent at the meso-position undergo more efficient photo-methanolysis at the boron atom, while the introduction of the OCH3 group at the phenolic moiety changes the reaction selectivity towards the cleavage at the meso-position. The introduction of the halogen atoms into the BODIPY increases the photo-cleavage reaction efficiency, as well as the ability of the molecules to sensitize oxygen and form reactive oxygen species (ROS). The efficiency of the ROS formation was measured in comparison with that of tetraphenylporphyrin. The antiproliferative effect of BODIPY molecules was investigated against three human cancer cell lines MCF-7 (breast carcinoma), H460 (lung carcinoma), HCT116 (colon carcinoma), and two non-cancer cell lines, HEK293T (embryonic kindey) and HaCaT (keratinocytes), with the cells kept in the dark or irradiated with visible light. For most of the compounds a modest or no antiproliferative activity was observed for cells in the dark. However, when cells were irradiated, a dramatic increase in cytotoxicity was observed (more than 100-fold), with IC50 values in the submicromolar concentration range. The enhancement of the cytotoxic effect was explained by the formation of ROS, which was studied for cells in vitro. However, for some BODIPY compounds, the effects due to the formation of electrophilic species (carbocations and quinone methides, which react with biomolecules) cannot be disregarded. Confocal fluorescence microscopy images of H460 cells and HEK293T show that the compounds enter the cells and are retained in the cytoplasm and membranes of the various organelles. When the cells treated with the compounds are irradiated, photo-processes lead to cell death by apoptosis. The study performed is important because it provides bases for the development of novel photo-therapeutics capable of exerting photo-cytotoxic effects in both oxygenated and hypoxic cells.


Assuntos
Carcinoma , Oxigênio Singlete , Humanos , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Células HEK293 , Compostos de Boro/farmacologia , Compostos de Boro/química , Halogênios
20.
J Mater Chem B ; 11(22): 4899-4913, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191118

RESUMO

Photodynamic therapy (PDT) is facing challenges such as poor solubility, precise delivery, self-aggregation, and photobleaching of photosensitizers with cancer cells due to their less tendency to accumulate in tumor tissues. To address these challenges, we have explored a Rose Bengal (RB)-loaded metallocatanionic vesicles (MCVs) nanosystem for the phototoxicity of cancer cells. Different sets of MCVs were prepared by two different cationic single-chain metallosurfactants, i.e., hexadecylpyridinium trichlorocuprate (CuCPC I) and hexadecylpyridinium trichloroferrate (FeCPC I) in combination with anionic double-chain sodium bis(2-ethylhexyl)sulfosuccinate (AOT) surfactant in phosphate buffer saline of pH 7.4. The RB-loaded CuCPC I:AOT and FeCPC I:AOT vesicles enhanced the maximum singlet oxygen (1O2) generation by 1-fold and 3-fold, respectively, compared to pure RB. Upon irradiation with a 532 nm laser for 10 min, these RB-loaded CuCPC I:AOT and FeCPC I:AOT MCVs significantly decreased the metabolic activity of U-251 cells by 70% and 85% at MCVs concentration of 0.75 µM, respectively. Furthermore, RB-loaded MCVs showed the highest intracellular 1O2-mediated membrane damage and cell-killing effect as confirmed by singlet oxygen sensor green and differential nuclear staining assay, which is attributed to the cellular uptake profile of different RB-loaded MCVs fractions. Caspase 3/7 assay confirmed the apoptotic pathway of cell death by activating caspase. Therefore, the photoactivation of RB-loaded MCVs led to a significant reduction in the viability of U-251 cells (maximum 85%), which resulted in cell death. Our study demonstrated the advantage of using these dual-charge and biocompatible metallocatanionic vesicles as a promising delivery system of photodynamic therapy that can enhance 1O2 generation from PS and can be further utilized in photomedicine.


Assuntos
Neoplasias , Fotoquimioterapia , Rosa Bengala/farmacologia , Oxigênio Singlete/metabolismo , Cetilpiridínio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA