Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
PLoS Biol ; 22(5): e3002550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768083

RESUMO

Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.


Assuntos
Proteínas de Ciclo Celular , Oxindóis , Proteólise , Ubiquitina-Proteína Ligases , Humanos , Animais , Proteólise/efeitos dos fármacos , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Oxindóis/farmacologia , Oxindóis/metabolismo , Oxindóis/química , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Células HEK293 , Relação Estrutura-Atividade , Complexo de Endopeptidases do Proteassoma/metabolismo , Azepinas/farmacologia , Azepinas/química , Azepinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Proteínas que Contêm Bromodomínio , Receptores de Interleucina-17
2.
Bioorg Chem ; 147: 107363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657527

RESUMO

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Assuntos
Antioxidantes , Dipeptidil Peptidase 4 , Hipoglicemiantes , Pirazóis , Triazóis , alfa-Amilases , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Relação Estrutura-Atividade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Dipeptidil Peptidase 4/metabolismo , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/síntese química , Simulação de Acoplamento Molecular , Picratos/antagonistas & inibidores , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Benzopiranos , Nitrilas
3.
Bioorg Chem ; 146: 107294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507997

RESUMO

Oxindoles are potent anti-cancer agents and are also used against microbial and fungal infections and for treating neurodegenerative diseases. These oxindoles are earlier established as estrogen receptor (ER)-targeted agents for killing ER (+) cancer cells. Our previously developed bis-arylidene oxindole, Oxifen (OXF) exhibits effective targeting towards ER (+) cancer cells which has a structural resemblance with tamoxifen. Herein, we have designed and synthesized few structural analogues of OXF such as BPYOX, ACPOX and ACPOXF to examine its cytotoxicity in different cancer as well as non-cancer cell lines and its potential to form self- aggregates in aqueous solution. Among these series of molecules, ACPOXF showed maximum toxicity in colorectal cancer cell line which are ER (-) but it also kills non-cancer cell line HEK-293, thereby reducing its cancer cell selectivity. Incidentally, ACPOXF exhibits self-aggregation, without the help of a co-lipid with nanometric size in aqueous solution. ACPOXF self-aggregate was co-formulated with glucocorticoid receptor (GR) synthetic ligand, dexamethasone (Dex) (called, ACPOXF-Dex aggregate) which could selectively kill ER (-) colorectal cancer cells and also could increase survivability of colon-tumour bearing mice. ACPOXF-Dex induced ROS up-regulation followed by apoptosis through expression of caspase-3. Further, we observed upregulation of antiproliferative factor, p53 and epithelial-to-mesenchymal (EMT) reversal marker E-cadherin in tumour mass. In conclusion, a typical structural modification in ER-targeting Oxifen moiety resulted in its self-aggregation that enabled it to carry a GR-ligand, thus broadening its selective antitumor property especially as colon cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Camundongos , Humanos , Animais , Ligantes , Células HEK293 , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Receptores de Estrogênio/metabolismo , Oxindóis/química , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
4.
Bioorg Chem ; 143: 107091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183683

RESUMO

This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.


Assuntos
Benzopiranos , Nitrilas , Compostos de Espiro , Espiro-Oxindóis , Simulação de Acoplamento Molecular , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Oxindóis/farmacologia , Oxindóis/química
5.
Med Chem ; 20(1): 63-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37723960

RESUMO

BACKGROUND: Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development. METHODS: In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride. RESULTS: The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 µM) and MDA-MB-231 (IC50 = 3.23-7.98 µM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 µM against MCF-7 and 5.71 µM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 µM) compared to palbociclib (IC50 = 0.071 µM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation. CONCLUSION: According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Triazóis , Células MCF-7 , Neoplasias da Mama/patologia , Apoptose , Oxindóis/farmacologia , Oxindóis/química , Antineoplásicos/química , Proliferação de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/farmacologia
6.
Arch Pharm (Weinheim) ; 356(8): e2300185, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253118

RESUMO

A series of 16 novel spirooxindole analogs 8a-p were designed and constructed via cost-effective single-step multicomponent [3+2] cycloaddition reaction of azomethine ylide (AY) generated in situ from substituted isatin (6a-d) with suitable amino acids (7a-c) and ethylene-engrafted pyrazole derivatives (5a,b). The potency of all compounds was assayed against a human breast cancer cell line (MCF-7) and a human liver cell line (HepG2). Spiro compound 8c was the most active member among the synthesized candidates, with exceptional cytotoxicity against the MCF-7 and HepG2 cell lines, with IC50 values of 0.189 ± 0.01 and 1.04 ± 0.21 µM, respectively. The candidate 8c exhibited more potent activity (10.10- and 2.27-fold) than the standard drug roscovitine (IC50 = 1.91 ± 0.17 µM (MCF-7) and 2.36 ± 0.21 µM (HepG2)). Compound 8c was investigated for epidermal growth factor receptor (EGFR) inhibition; it exhibited promising IC50 values of 96.6 nM compared with 67.3 nM for erlotinib. The IC50 value of 8c (34.98 nM) exhibited cyclin-dependent kinase 2 (CDK-2) inhibition, being more active than roscovitine the (IC50 = 140 nM) in targeting the CDK-2 kinase enzyme. Additionally, for apoptosis induction of compound 8c in MCF-7, it upregulated the expression levels of proapoptotic genes for P53, Bax, caspases-3, 8, and 9 at up to 6.18, 4.8, 9.8, 4.6, 11.3 fold-change, respectively, and downregualted the level of the antiapoptotic gene for Bcl-2 by 0.14-fold. Finally, a molecular docking study of the most active compound 8c highlighted a good binding affinity with Lys89 as the key amino acid for CDK-2 inhibition.


Assuntos
Antineoplásicos , Humanos , Oxindóis/farmacologia , Oxindóis/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Roscovitina/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Apoptose
7.
Bioorg Chem ; 133: 106395, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36753964

RESUMO

Breast cancer is a heterogeneous malignancy with wide-ranging variations in therapeutic responses, overall survival etc. Major challenges for available chemotherapeutic agents in achieving clinical success are in maintaining systemic bio-distribution and avoiding non-specific adverse effects. Bis-arylidene oxindoles are estrogen receptor (ER)-selective bioactive molecules with moderate potency. In here, we have designed, synthesized and evaluated a series of twin aliphatic chain cationic lipid-conjugated bis-arylidene oxindole molecules with variations in nature of linker, lengths of carbon spacer and hydrophobic twin chains. We observed that among the various structural analogues, C8 twin-chain containing molecules, PGC8, S2C8 and S3C8 showed effective cancer cell-selective cytotoxicity in different cancer cell lines with an IC50 ranging from 4 to 7 µM. These molecules selectively induced apoptosis, ROS production and cell cycle inhibition at G1/S phase in ER + breast cancer cells but not in non-cancer cells. Additionally, these molecules formed homogenous self-assemblies exhibiting effective hydrodynamic diameter with positive surface charge. The self-assemblies also showed prominent cancer cell-selective uptake and DNA-binding abilities. Hence, we have shown successful incorporation of dexamethasone to the self-assemblies, and its enhanced cytotoxicity even in ER-negative breast cancer cells. All these results indicate that PGC8, S2C8 and S3C8 molecules, albeit their potent and selective ER-positive anti-breast cancer activity, can be repurposed as targeted delivery systems and hold promise as unique, broader spectrum breast cancer cell-selective therapeutic payloads.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Oxindóis/farmacologia , Oxindóis/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular , Pontos de Checagem do Ciclo Celular , Lipídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral
8.
Future Microbiol ; 18: 93-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661071

RESUMO

Aims: Considering the need to identify new compounds with antifungal action, the activity of five 3-phenacylideneoxindoles compounds was evaluated. Materials & methods: The compounds were synthesized, and their antifungal activity was elucidated through minimum inhibitory concentration tests and interaction assay with other antifungals. Potential targets of compounds were predicted in silico. Results: 3-phenacylideneoxindoles compounds inhibited fungal growth with minimum inhibitory concentration and minimum fungicidal concentration ranging from 3.05 to 12.26 µM. The compounds demonstrated high selectivity index and presented a synergistic effect with itraconazole. In silico prediction revealed the pentafunctional AROM polypeptide, enolase, superoxide dismutase, catalase and kinases as proteins targets of the compound 4a. Conclusion: The results demonstrate that 3-phenacylideneoxindoles is a potential new class of antifungal compounds for paracoccidioidomycosis treatment.


Patients affected by paracoccidioidomycosis (PCM) require long-term treatment, which commonly influences their adherence. In addition, only three drugs are in clinical use, which indicates the relevance of research in identifying new drugs for treating PCM. Thus, five drugs were tested in the laboratory to verify whether they could prevent the growth of the fungus without being toxic to humans. In addition, whether these compounds in combination with drugs used to treat PCM could be even more potent was evaluated. All compounds tested efficiently inhibited the growth of Paracoccidioides, the fungus that causes PCM. One drug was identified that, combined with itraconazole, decreased the required dose of both the discovered compound and itraconazole needed to inhibit fungal growth. Using computational tools, this work suggests how the new drug could act against the fungus. The results demonstrate a potential new treatment option, but more studies are needed to confirm the safety of these drugs.


Assuntos
Antifúngicos , Oxindóis , Paracoccidioides , Paracoccidioidomicose , Antifúngicos/farmacologia , Antifúngicos/química , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Oxindóis/química , Oxindóis/farmacologia , Paracoccidioides/metabolismo , Paracoccidioidomicose/tratamento farmacológico
9.
Curr Pharm Des ; 28(3): 198-207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34176458

RESUMO

BACKGROUND: Spirooxindoles are privileged scaffolds in medicinal chemistry, which were identified through Wang's pioneering work as inhibitors of MDM2-p53 interactions. OBJECTIVE: To design and synthesize 2,6-diarylidenecyclohexanones and dispiro[oxindole-cyclohexanone]- pyrrolidines having potential antitumor effect. METHODS: Dispiro[oxindole-cyclohexanone]-pyrrolidines 6a-h were synthesized in a regioselective manner via 1,3-dipolar cycloaddition reaction of 2,6-diarylidenecyclohexanones 3a-h, isatin, and sarcocine. Compounds 6a-h were alkylated to give (7-10)a,b. All compounds were evaluated in vitro for their antitumor activity and cytotoxic selectivity against breast cancer cell lines (MCF-7 and MDA-MB-231), breast fibrosis cell line (MCF10a), and placental cancer cell line (JEG-3). Molecular modeling inside the MDM2 binding site was performed using AutoDock4.2. RESULTS: Synthesized compounds showed antitumor activity comparable to tamoxifen and compounds 3a,b,f,g and 9a,b showed selective cytotoxicity against tumor cells but reduced toxicity toward MCF-10a cells. Molecular modelling shows that both classes of synthesized compounds are predicted to fit the deep hydrophobic cleft on the surface of MDM2 and mimic the interactions between p53 and MDM2. CONCLUSION: The synthesized compounds have antitumor activity against MCF-7, MDA-MB-231, and JEG-3. Few compounds showed a selective cytotoxic effect and may have the potential to inhibit MDM2 and stimulate p53. In the future, studies regarding the optimization of medicinal chemistry as well as mechanistic studies will be conducted to enhance the inhibition effect of identified compounds and elucidate their mechanism of action.


Assuntos
Antineoplásicos , Compostos de Espiro , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Cicloexanonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Oxindóis/química , Oxindóis/farmacologia , Placenta/metabolismo , Gravidez , Pirrolidinas/química , Pirrolidinas/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade
10.
Bioorg Chem ; 117: 105427, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34794098

RESUMO

Despite the achieved progress in developing efficient MDM2-p53 protein-protein interaction inhibitors (MDM2 inhibitors), the acquired resistance of tumor cells to such p53 activators posed an argument about the druggability of the pathway. Combination studies disclosed that concomitant inhibition of MDM2 and BCL2 functions can sensitize the tumor cells and synergistically induce apoptosis. Herein, we employed a rapid combinatorial approach to generate a novel series of hybrid spirooxindole-based MDM2 inhibitors (5a-s) endowed with BCL2 signaling attenuation. The adducts were designed to mimic the thematic features of the chemically stable potent spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-ones MDM2 inhibitors while installing a pyrrole ring on the core via a carbonyl spacer inspired by the natural product marinopyrrole A that efficiently inhibits BCL2 family functions by various mechanisms. NCI 60 cell-line panel screening revealed their promising broad-spectrum antiproliferative activities. The NCI-selected derivatives were screened for cytotoxic activities against normal fibroblasts, MDA-MB 231, HepG-2, and Caco-2 cells via MTT assay, subjected to mechanistic apoptosis studies for assessment of p53, BCL2, p21, and caspase 3/7 status, then evaluated for potential MDM2 inhibition utilizing MST assay. The most balanced potent and safe derivatives; 5i and 5q were more active than 5-fluorouracil, exhibited low µmrange MDM2 binding (KD=1.32and 1.72 µm, respectively), induced apoptosis-dependent anticancer activities up to 50%, activated p53 by 47-63%, downregulated the BCL2 gene to 59.8%, and reduced its protein level (13.75%) in the treated cancer cells. Further downstream p53 signaling studies revealed > 2 folds p21 upregulation and > 3 folds caspase 3/7 activation. Docking simulations displayed that the active MDM2 inhibitors resided well into the p53 binding sites of MDM2, and shared key interactions with the co-crystalized inhibitor posed by the indolinone scaffold (5i, 5p, and 5q), the halogen substituents (5r), or the installed spiro ring (5s). Finally, in silico ADMET profiling predicted acceptable drug-like properties with full accordance to Lipinski's, Veber's, and Muegge's bioavailability parameters for 5i and a single violation for 5q.


Assuntos
Antineoplásicos/farmacologia , Oxindóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Compostos de Espiro/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
11.
Eur J Med Chem ; 226: 113895, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624821

RESUMO

We report the synthesis of novel first-in-class 2-oxindole-based derivatives as dual PDK1-AurA kinase inhibitors as a novel strategy to treat Ewing sarcoma. The most potent compound 12 is suitable for progression to in vivo studies. The specific attributes of 12 included nanomolar inhibitory potency against both phosphoinositide-dependent kinase-1 (PDK1) and Aurora A (AurA) kinase, with acceptable in vitro ADME-Tox properties (cytotoxicity in 2 healthy and 14 hematological and solid cancer cell-lines; inhibition of PDE4C1, SIRT7, HDAC4, HDAC6, HDAC8, HDAC9, AurB, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and hERG). X-ray crystallography and docking studies led to the identification of the key AurA and PDK1/12 interactions. Finally, in vitro drug-intake kinetics and in vivo PK appear to indicate that these compounds are attractive lead-structures for the design and synthesis of PDK1/AurA dual-target molecules to further investigate the in vivo efficacy against Ewing Sarcoma.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Desenvolvimento de Medicamentos , Oxindóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Aurora Quinase A/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Relação Estrutura-Atividade
12.
Bioorg Chem ; 117: 105421, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666258

RESUMO

Series of novel sulfonamide-based 3-indolinones 3a-m and 4a-f were designed, synthesized and then their cytotoxic activity was evaluated against a panel of sixty cancer cell lines. This screening indicated that 4-(2-(5-fluoro-2-oxoindolin-3-ylidene)acetyl)phenyl benzenesulfonate (4f) possessed promising cytotoxicity against CCRF-CEM and SR leukemia cell lines with IC50 values 6.84 and 2.97 µM, respectively. Further investigation of the leukemic cytotoxicity of compound 4f was carried out by performing PDGFRα, VEGFR2, Aurora A/B and FLT3 enzyme assays and CCRF-CEM and SR cell cycle analysis. These investigations showed that compound 4f exhibited pronounced dual inhibition of both kinases PDGFRα and Aurora A with potency of 24.15 and 11.83 nM, respectively. The in vitro results were supported by molecular docking studies in order to explore its binding affinity and its key amino acids interactions. This work represents compound 4f as a promising anticancer agent against leukemia.


Assuntos
Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Oxindóis/farmacologia , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Fosfotransferases/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
13.
Molecules ; 26(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684885

RESUMO

A new series of di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were synthesized. Initially, azomethine ylides were generated via reaction of the substituted isatins 3a-f (isatin, 3a, 6-chloroisatin, 3b, 5-fluoroisatin, 3c, 5-nitroisatin, 3d, 5-methoxyisatin, 3e, and 5-methylisatin, 3f, and (2S)-octahydro-1H-indole-2-carboxylic acid 2, in situ azomethine ylides reacted with the cyclohexanone based-chalcone 1a-f to afford the target di-spirooxindole compounds 4a-n. This one-pot method provided diverse structurally complex molecules, with biologically relevant spirocycles in a good yields. All synthesized di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were evaluated for their anticancer activity against four cancer cell lines, including prostate PC3, cervical HeLa, and breast (MCF-7, and MDA-MB231) cancer cell lines. The cytotoxicity of these di-spirooxindole analogs was also examined against human fibroblast BJ cell lines, and they appeared to be non-cytotoxic. Compound 4b was identified as the most active member of this series against prostate cancer cell line PC3 (IC50 = 3.7 ± 1.0 µM). The cyclohexanone engrafted di-spirooxindole analogs 4a and 4l (IC50 = 7.1 ± 0.2, and 7.2 ± 0.5 µM, respectively) were active against HeLa cancer cells, whereas NO2 substituted isatin ring and meta-fluoro-substituted (2E,6E)-2,6-dibenzylidenecyclohexanone containing 4i (IC50 = 7.63 ± 0.08 µM) appeared to be a promising agent against the triple negative breast cancer MDA-MB231 cell line. To explore the plausible mechanism of anticancer activity of di-spirooxindole analogs, molecular docking studies were investigated which suggested that spirooxindole analogs potentially inhibit the activity of MDM2.


Assuntos
Antineoplásicos/química , Antineoplásicos/síntese química , Cicloexanonas/química , Oxindóis/química , Compostos de Espiro/química , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Células PC-3 , Relação Estrutura-Atividade
14.
Bioorg Chem ; 116: 105358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34544029

RESUMO

Dual TK inhibitors have shown significant clinical effects against many tumors, but with unmanageable side effects. Design approach and selectivity of these inhibitors plays substantial role in their potency and side-effects. Understanding the homology of binding sites in targeted receptors, and involvement of signaling proteins after the inhibition might help in producing less toxic but effective inhibitors. Herein, we designed benzylideneindolon-2-one derivatives based on homology modeling in binding sites of VEGFR-2 and EGFR receptors as dual- inhibitor potent anticancer compounds with high selectivity. The benzylideneindolon-2-one derivatives were found to possess conformational switch in form of oxindole, substituted at 2-benzimidazole. Within synthesized compounds, 5b was found most active in in-vitro enzyme inhibition assay against VEGFR-2 and EGFR with highest IC50 value of 6.81 ± 2.55 and 13.04 ± 4.07 nM, respectively. Interestingly, cytotoxicity studies revealed selective toxicity of compound 5b against proliferation of A-431 cell lines (over expressed VEGFR-2 and EGFR) with GI50 value of 0.9 ± 0.66 µM. However, the compounds showed mild to moderate activity in all other cancer cell line in the range of 0.2-100 µM. Further mode of action studies by flow cytometry and western blot on A-431 indicated that they work via apoptosis at S- phase following Bcl/Bax pathway, and cell migration via MMP9. 5b not only suppressed tumor growth but also improved vandetanib associated with weight loss toxicity. Moreover, 5b was found safer than sunitinib and erlotinib with LD50 of 500 mg/kg body weight. These results propose 5b as potential anti-tumor drug with safer profile of conventional inhibitors of VEGFR-2 and EGFR for solid tumors.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Oxindóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361029

RESUMO

Novel heterocyclic compounds containing 3-spiro[3-azabicyclo[3.1.0]hexane]oxindole framework (4a, 4b and 4c) have been studied as potential antitumor agents. The in silico ADMET (adsorption, distribution, metabolism, excretion and toxicity) analysis was performed on 4a-c compounds with promising antiproliferative activity, previously synthetized and screened against human erythroleukemic cell line K562 tumor cell line. Cytotoxicity of 4a-c against murine fibroblast 3T3 and SV-40 transformed murine fibroblast 3T3-SV40 cell lines were evaluated. The 4a and 4c compounds were cytotoxic against 3T3-SV40 cells in comparison with those of 3T3. In agreement with the DNA cytometry studies, the tested compounds have achieved significant cell-cycle perturbation with higher accumulation of cells in G0/G1 phase. Using confocal microscopy, we found that with 4a and 4c treatment of 3T3 cells, actin filaments disappeared, and granular actin was distributed diffusely in the cytoplasm in 82-97% of cells. The number of 3T3-SV40 cells with stress fibers increased to 7-30% against 2% in control. We discovered that transformed 3T3-SV40 cells after treatment with compounds 4a and 4c significantly reduced the number of cells with filopodium-like membrane protrusions (from 86 % in control cells to 6-18% after treatment), which indirectly suggests a decrease in cell motility. We can conclude that the studied compounds 4a and 4c have a cytostatic effect, which can lead to a decrease in the number of filopodium-like membrane protrusions.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Oxindóis/farmacologia , Células 3T3 , Animais , Humanos , Células K562 , Camundongos , Oxindóis/química , Pirrolidinas/química
16.
Bioorg Chem ; 114: 105128, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34225163

RESUMO

A library of Sox-pyrrolizidines was rapidly prepared by microwave-assisted, one-pot, three-component, 1,3-dipolar cycloaddition of azomethine ylides from l-proline and isatin, with various ß-nitrostyrenes. Nitro-Sox compounds, 4b, 4d and 4e inhibit HEWL amyloid fibril formation by ThT studies with percentages of fluorescence intensity of 55.4, 42.9 and 40.3%, respectively. Further studies with MTT assay, Raman spectroscopy, TEM and molecular docking supported these promising candidates for activity against amyloid misfolding, a phenomenon leading to Alzheimer's disease pathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amiloide/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Oxindóis/farmacologia , Pirrolidinas/farmacologia , Compostos de Espiro/farmacologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Relação Dose-Resposta a Droga , Humanos , Micro-Ondas , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Oxindóis/síntese química , Oxindóis/química , Pirrolidinas/síntese química , Pirrolidinas/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
17.
J Am Chem Soc ; 143(30): 11741-11750, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34308646

RESUMO

The Pd-catalyzed asymmetric α-arylation of carbonyl compounds is a valuable strategy to form benzylic stereocenters. However, the origin of the stereoselectivity of these reactions is poorly understood, and little is known about the reactivity of the putative diastereomeric arylpalladium enolate intermediates. To this end, we report the synthesis and characterization of a series of diphosphine-ligated arylpalladium fluoroenolate complexes, including complexes bearing a metal-bound, stereogenic carbon and an enantioenriched chiral diphosphine ligand. These complexes reductively eliminate to form chiral α-aryl-α-fluorooxindoles with enantioselectivities and rates that are relevant to those of the catalytic process with SEGPHOS as the ancillary ligand. Kinetic studies showed that the rate of reductive elimination is slightly slower than the rate of epimerization of the intermediate, causing the reductive elimination step to impart the greatest influence on the enantioselectivity. DFT calculations of these processes are consistent with these experimental rates and suggest that the minor diastereomer forms the major enantiomer of the product. The rates of reductive elimination from complexes containing a variety of electronically varied aryl ligands revealed the unusual trend that complexes bearing more electron-rich aryl ligands react faster than those bearing more electron-poor aryl ligands. Noncovalent Interaction (NCI) and Natural Bond Orbital (NBO) analyses of the transition-state structures for reductive elimination from the SEGPHOS-ligated complexes revealed key donor-acceptor interactions between the Pd center and the fluoroenolate fragment. These interactions stabilize the pathway to the major product enantiomer more strongly than they stabilize that to the minor enantiomer.


Assuntos
Complexos de Coordenação/química , Oxindóis/química , Paládio/química , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
18.
Biomed Pharmacother ; 141: 111842, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174506

RESUMO

Oxindole has been shown to be a pharmacologically advantageous scaffold having many biological properties that are relevant to medicinal chemistry. The simplicity and widespread occurrence of this scaffold in plant-based alkaloids have further reinforced oxindole's merit in the domain of novel drug discovery. First extracted from Uncaria tomentosa, commonly the known as cat claw's plant which was found abundantly in the Amazon rainforest, molecules with the oxindole moiety have been shown to be common in a wide variety of compounds extracted from plant sources. The role of oxindole as a chemical scaffold for fabricating and designing biological drugs agents can be ascribed to its ability to be modified by a number of chemical groups to generate novel biological functions. This review is aimed at providing a description of the general chemistry based on existing corresponding structure-activity relationships (SARs) and compile all recent developmentary studies on oxindole-derived compounds as a successful pharmaceutical agent. A substantial group of oxindole derivatives are chiefly being tested as anticancer agents, however, a several oxindole derivatives have been shown to possesses antimicrobial, α-glucosidase inhibitory, antiviral, antileishmanial, antitubercular, antioxidative, tyrosinase inhibitory, PAK4 inhibitory, antirheumatoid arthritis and intraocular pressure reducing activities, to name a few. In this review we show the potential value of developing newer oxindole derivatives with an improved range of pharmacological implications as well as identifying drugs possessing oxindole core, that are showing and serving increased efficacy in clinical practice.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Hipoglicemiantes/farmacologia , Oxindóis/farmacologia , Animais , Humanos , Oxindóis/química , Extratos Vegetais
19.
Bioorg Chem ; 112: 104985, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34020239

RESUMO

A series of novel 3-indolinone-thiazolidinones and oxazolidinones 4a-k was synthesized via molecular hybridization approach and sequentially evaluated to explore its cytotoxic activity. The cytotoxicity screening pointed toward the N-cyclohexyl thiazolidinone derivative 4f that revealed promising renal cytotoxicity against CAKI-1 and UO-31 renal cancer cell lines with IC50 values 4.74 and 3.99 µM, respectively, which were comparable to those of sunitinib along with good safety threshold against normal renal cells. Further emphasis on compound 4f renal cytotoxicity was achieved via different enzyme assays and CAKI-1 and UO-31 cell cycle analysis. The results were supported by in silico studies to explore its physicochemical, pharmacokinetic and drug-likeness properties. Finally, compound 4f was subjected to an in vivo pharmacokinetic study through two different routes of administration showing excellent oral bioavailability. This research represents compound 4f as a promising candidate against renal cell carcinoma.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Oxindóis/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis/administração & dosagem , Oxindóis/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 217: 113359, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33725632

RESUMO

A series of highly active CF3-containing 3'-(nitroisoxazole)spiro[pyrrolidin-3,2'-oxindoles] were synthesized and found to be novel glutathione peroxidase 4 (GPX4)/mouse double minute 2 (MDM2) dual inhibitors. Bioactive spirooxindole and isoxazole skeletons were combined, and the resulting compounds exhibited strong activities against both targets. In particular, compound 3d displayed excellent activity in the suppression of MDM2-mediated degradation of p53, as well as levels of GPX4, in MCF-7 breast cancer cells. Moreover, 3d also exhibited inhibitory effects on MDM2 and GPX4 in MCF-7 xenograft model to trigger ferroptotic and apoptotic cell death in in vivo experiments, which was consistent with the results of in vitro experiments.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Isoxazóis/farmacologia , Nitrocompostos/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Estrutura Molecular , Nitrocompostos/síntese química , Nitrocompostos/química , Oxindóis/química , Oxindóis/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/química , Pirrolidinas/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA