Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Mol Imaging Biol ; 23(3): 361-371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216285

RESUMO

PURPOSE: Mesenchymal stem cell-derived EVs (MSC-EVs) are demonstrated to have similar therapeutic effect as their cells of origin and represent an attractive cell-free stem cell therapy. With the potential to be the future medical regimen, the information of fate and behavior of MSC-EVs in the living subject should be urgently gathered. This study aimed to track MSC-EVs by 111In-labeling and µSPECT/CT imaging. PROCEDURES: Wharton's jelly-MSC-EVs (WJ-MSC-EVs) were isolated using Exo-Prep kit followed by characterization of expressing markers and size. After labeled by 111In-oxine, 111In-EVs were injected into C57BL/6 mice followed by µSPECT/CT imaging. Organs were then taken out for ex vivo biodistribution analysis. RESULTS: The radiochemical purity of 111In-EVs was > 90 % and remained stable up to 24 h. The image results showed that with injection of 111In-EVs, the signal mainly accumulated in the liver, spleen, and kidney, compared to that in lung and kidney after 111In-oxine injection. The ex vivo biodistribution showed the similar pattern to that of imaging. Chelation of free 111In with EDTA was found necessary to reduce the nonspecific accumulation of signal. CONCLUSION: This study demonstrated the feasibility of radiolabeling WJ-MSC-EVs with 111In-oxine for in vivo imaging and quantitative analysis in a mouse model. This simple and quick labeling method preserves the characteristics of WJ-MSC-EVs. The results in this study provide a thorough and objective basis for future clinical study.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Compostos Organometálicos/química , Oxiquinolina/análogos & derivados , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem da Célula , Proliferação de Células , Meios de Cultivo Condicionados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nanopartículas , Oxiquinolina/química , Distribuição Tecidual , Geleia de Wharton
2.
Metallomics ; 12(12): 1979-1994, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33169753

RESUMO

8-Hydroxyquinolines (8HQs) comprise a family of metal-binding compounds that have been used or tested for use in numerous medicinal applications, including as treatments for bacterial infection, Alzheimer's disease, and cancer. Two key 8HQs, CQ (5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (2-(dimethylamino)methyl-5,7-dichloro-8-hydroxyquinoline), have drawn considerable interest and have been the focus of many studies investigating their in vivo properties. These drugs have been described as copper and zinc ionophores because they do not cause metal depletion, as would be expected for a chelation mechanism, but rather cellular accumulation of these ions. In studies of their anti-cancer properties, CQ has been proposed to elicit toxic intracellular copper accumulation and to trigger apoptotic cancer cell death through several possible pathways. In this study we used synchrotron X-ray fluorescence imaging, in combination with biochemical assays and light microscopy, to investigate 8HQ-induced alterations to metal ion homeostasis, as well as cytotoxicity and cell death. We used the bromine fluorescence from a bromine labelled CQ congener (5,7-dibromo-8-hydroxyquinoline; B2Q) to trace the intracellular localization of B2Q following treatment and found that B2Q crosses the cell membrane. We also found that 8HQ co-treatment with Cu(ii) results in significantly increased intracellular copper and significant cytotoxicity compared with 8HQ treatments alone. PBT2 was found to be more cytotoxic, but a weaker Cu(ii) ionophore than other 8HQs. Moreover, treatment of cells with copper in the presence of CQ or B2Q resulted in copper accumulation in the nuclei, while PBT2-guided copper was distributed near to the cell membrane. These results suggest that PBT2 may be acting through a different mechanism than that of other 8HQs to cause the observed cytotoxicity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/metabolismo , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imagem Óptica , Ratos , Espectrometria por Raios X
3.
Nucl Med Biol ; 90-91: 31-40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32979725

RESUMO

BACKGROUND: Advances in immunology and cell-based therapies are creating a need to track individual cell types, such as immune cells (neutrophils, eosinophils, chimeric antigen receptor (CAR) T cells, etc.) and stem cells. As the fate of administered cells remains largely unknown, nuclear imaging could determine the migration and survival of cells in patients. [89Zr]Zr(oxinate)4, or [89Zr]Zr-oxine, is a radiotracer for positron emission tomography (PET) that has been evaluated in preclinical models of cell tracking and could improve on [111In]In-oxine, the current gold standard radiotracer for cell tracking by scintigraphy and single-photon emission computed tomography (SPECT), because of the better sensitivity, spatial resolution and quantification of PET. However, a clinically usable formulation of [89Zr]Zr-oxine is lacking. This study demonstrates a 1-step procedure for preparing [89Zr]Zr-oxine and evaluates it against [111In]In-oxine in white blood cell (WBC) labelling. METHODS: Commercial [89Zr]Zr-oxalate was added to a formulation containing oxine, a buffering agent, a base and a surfactant or organic solvent. WBC isolated from 10 human volunteers were radiolabelled with [89Zr]Zr-oxine following a clinical radiolabelling protocol. Labelling efficiency, cell viability, chemotaxis and DNA damage were evaluated in vitro, in an intra-individual comparison against [111In]In-oxine. RESULTS: An optimised formulation of [89Zr]Zr-oxine containing oxine, polysorbate 80 and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) was developed. This enabled 1-step radiolabelling of oxine with commercial [89Zr]Zr-oxalate (0.1-25 MBq) in 5 min and radiotracer stability for 1 week. WBC labelling efficiency was 48.7 ± 6.3%, compared to 89.1 ± 9.5% (P < 0.0001, n = 10) for [111In]In-oxine. Intracellular retention of 89Zr and cell viability after radiolabelling were comparable to 111In. There were no significant differences in leukocyte chemotaxis or DNA damage between [89Zr]Zr-oxine or [111In]In-oxine. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Our results demonstrate that [89Zr]Zr-oxine is a suitable PET alternative to [111In]In-oxine for WBC imaging. Our formulation allows rapid, stable, high-yield, single-step preparation of [89Zr]Zr-oxine from commercially available 89Zr. This will facilitate the clinical translation of cell tracking using [89Zr]Zr-oxine.


Assuntos
Rastreamento de Células/métodos , Compostos Organometálicos/química , Oxiquinolina/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Composição de Medicamentos , Humanos , Marcação por Isótopo , Leucócitos/citologia , Leucócitos/metabolismo , Oxiquinolina/química , Tomografia Computadorizada de Emissão de Fóton Único
4.
Drug Des Devel Ther ; 14: 1263-1277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280198

RESUMO

INTRODUCTION: CLBQ14, a derivative of 8-hydroxyquinoline, exerts its chemotherapeutic effect by inhibiting methionine aminopeptidase (MetAP), the enzyme responsible for the post-translational modification of several proteins and polypeptides. MetAP is a novel target for infectious diseases. CLBQ14 is selective and highly potent against replicating and latent Mycobacterium tuberculosis making it an appealing lead for further development. METHODS: The physicochemical properties (solubility, pH stability and lipophilicity), in vitro plasma stability and metabolism, pre-clinical pharmacokinetics, plasma protein binding and tissue distribution of CLBQ14 in adult male Sprague-Dawley rats were characterized. RESULTS: At room temperature, CLBQ14 is practically insoluble in water (<0.07 mg/mL) but freely soluble in dimethyl acetamide (>80 mg/mL); it has a log P value of 3.03 ± 0.04. CLBQ14 exhibits an inverse Z-shaped pH decomposition profile; it is stable at acidic pH but is degraded at a faster rate at basic pH. It is highly bound to plasma proteins (>91%), does not partition to red blood cells (B/P ratio: 0.83 ± 0.03), and is stable in mouse, rat, monkey and human plasma. CLBQ14 exhibited a bi-exponential pharmacokinetics after intravenous administration in rats, bioavailability of 39.4 and 90.0%, respectively from oral and subcutaneous route. We observed a good correlation between predicted and observed rat clearance, 1.90 ± 0.17 L/kg/h and 1.67 ± 0.08 L/kg/h, respectively. Human hepatic clearance predicted from microsomal stability data and from the single species scaling were 0.80 L/hr/kg and 0.69 L/h/kg, respectively. CLBQ14 is extensively distributed in rats; following a 5 mg/kg intravenous administration, lowest and highest concentrations of 15.6 ± 4.20 ng/g of heart and 405.9 ± 77.11 ng/g of kidneys, respectively, were observed. In vitro CYP reaction phenotyping demonstrates that CLBQ14 is metabolized primarily by CYP 1A2. CONCLUSION: CLBQ14 possess appealing qualities of a drug candidate. The studies reported herein are imperative to the development of CLBQ14 as a new chemical entity for infectious diseases.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Inibidores Enzimáticos/farmacocinética , Metionil Aminopeptidases/antagonistas & inibidores , Oxiquinolina/análogos & derivados , Animais , Físico-Química , Doenças Transmissíveis/metabolismo , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/química , Coração , Humanos , Rim , Macaca fascicularis , Masculino , Metionil Aminopeptidases/metabolismo , Camundongos , Estrutura Molecular , Oxiquinolina/sangue , Oxiquinolina/química , Oxiquinolina/farmacocinética , Ratos , Ratos Sprague-Dawley , Termodinâmica , Distribuição Tecidual
5.
Cancer Res ; 80(4): 663-674, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31888888

RESUMO

Clinical evidence shows that following initial response to treatment, drug-resistant cancer cells frequently evolve and, eventually, most tumors become resistant to all available therapies. We compiled a focused library consisting of >500 commercially available or newly synthetized 8-hydroxyquinoline (8OHQ) derivatives whose toxicity is paradoxically increased rather than decreased by the activity of P-glycoprotein (Pgp), a transporter conferring multidrug resistance (MDR). Here, we deciphered the mechanism of action of NSC297366 that shows exceptionally strong Pgp-potentiated toxicity. Treatment of cells with NSC297366 resulted in changes associated with the activity of potent anticancer iron chelators. Strikingly, iron depletion was more pronounced in MDR cells due to the Pgp-mediated efflux of NSC297366-iron complexes. Our results indicate that iron homeostasis can be targeted by MDR-selective compounds for the selective elimination of multidrug resistant cancer cells, setting the stage for a therapeutic approach to fight transporter-mediated drug resistance. SIGNIFICANCE: Modulation of the MDR phenotype has the potential to increase the efficacy of anticancer therapies. These findings show that the MDR transporter is a "double-edged sword" that can be turned against resistant cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Neoplasias/tratamento farmacológico , Oxiquinolina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Quelantes de Ferro/uso terapêutico , Neoplasias/patologia , Oxiquinolina/análogos & derivados , Oxiquinolina/uso terapêutico
6.
J Inorg Biochem ; 203: 110864, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698326

RESUMO

Synthetic siderophores derivated from 8-HydroxyQuinoline (HQ) present various biological and pharmacological activities, such as anti-neurodegenerative or anti-oxydative. However, their affinity towards iron(III) seems to depend on the position (i.e., 7 or 2) of the HQ substitution by an electron withdrawing group. Two ester-derivatives of HQ at 2- and 7-position are synthesized and their respective iron-complexation is characterized by a joined experimental and theoretical work. By investigating the stability of all the possible accessible spin states of the iron(III) complexes at density-functional theory (DFT) level, we demonstrate that the high-spin (HS) state is the most stable one, and leads to a UV/vis absorption spectrum in perfect match with experiments. From this DFT protocol, and in agreement with the experimental results, we show that the ester functionalization of HQ in 2-position weakens the formation of the iron(III) complex while its substitution in 7-position allows a salicylate coordination of the metal very close to the ideal octahedral environment.


Assuntos
Complexos de Coordenação/química , Quelantes de Ferro/química , Oxiquinolina/análogos & derivados , Teoria da Densidade Funcional , Estabilidade de Medicamentos , Ferro/química , Ligantes , Modelos Químicos , Estrutura Molecular , Espectrofotometria Ultravioleta
7.
Molecules ; 24(23)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771153

RESUMO

Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer's disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these diseases by activators of cytoprotective protein induction. We have selected a candidate molecule from our cytoprotective hydroxyquinoline library and developed a novel enantioselective synthesis for the production of its enantiomers. The use of quinidine or quinine as a catalyst enabled the preparation of enantiomer-pure products. We have utilized in vitro assays to evaluate cytoprotective activity, a fluorescence-activated cell sorting (FACS) based assay measuring mitochondrial membrane potential changes, and gene and protein expression analysis. Our data showed that the enantiomers of Q134 showed potent and similar activity in all tested assays. We have concluded that the enantiomers exert their cytoprotective activity via the HIF1 system through HIF1A protein stabilization.


Assuntos
Hidroxiquinolinas/síntese química , Hidroxiquinolinas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Oxiquinolina/análogos & derivados , Linhagem Celular Tumoral , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiquinolinas/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Quinidina/química , Quinina/química , Estereoisomerismo
8.
Molecules ; 24(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752188

RESUMO

Small molecule nitrogen heterocycles are very important structures, widely used in the design of potential pharmaceuticals. Particularly, derivatives of 8-hydroxyquinoline (8-HQ) are successfully used to design promising anti-cancer agents. Conjugating 8-HQ derivatives with sugar derivatives, molecules with better bioavailability, selectivity, and solubility are obtained. In this study, 8-HQ derivatives were functionalized at the 8-OH position and connected with sugar derivatives (D-glucose or D-galactose) substituted with different groups at the anomeric position, using copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC). Glycoconjugates were tested for inhibition of the proliferation of cancer cell lines (HCT 116 and MCF-7) and inhibition of ß-1,4-galactosyltransferase activity, which overexpression is associated with cancer progression. All glycoconjugates in protected form have a cytotoxic effect on cancer cells in the tested concentration range. The presence of additional amide groups in the linker structure improves the activity of glycoconjugates, probably due to the ability to chelate metal ions present in many types of cancers. The study of metal complexing properties confirmed that the obtained glycoconjugates are capable of chelating copper ions, which increases their anti-cancer potential.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Glicoconjugados/farmacologia , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Galactosiltransferases/antagonistas & inibidores , Glicoconjugados/química , Células HCT116 , Humanos , Células MCF-7 , Metais/química , Metais/farmacologia , Modelos Moleculares , Oxiquinolina/química , Relação Estrutura-Atividade
9.
Eur J Med Chem ; 181: 111563, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415980

RESUMO

Matrix metalloproteinases (MMPs) play important roles in many diseases including cancer. With moderate metal-binding affinity, 8-hydroxyquinoline has gained much interest in current drug design and development. Specially, it has been reported that 8-hydroxyquinoline derivatives serve as MMP-2 inhibitors with micromolar IC50 values. In the current study, a series of 8-hydroxyquinoline derivatives were designed and synthesized as new MMP-2 and MMP-9 inhibitors. The most active compounds 5e and 5h not only displayed good inhibitory activities against MMP-2/9 with IC50 at submicromolar level, but also possessed potent anti-proliferative, anti-invasive and anti-angiogenesis activity in A549 cell line. Western blot also revealed that 5e and 5h down-regulate the expression of MMP-2 and MMP-9 in A549 cell line. Moreover, flow cytometry analysis indicated that compound 5e could promote apoptosis of A549 cells in vitro. Molecular docking analysis also revealed favorable binding modes of 5e in the active sites of MMP-2 and MMP-9.


Assuntos
Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxiquinolina/síntese química
10.
Drug Dev Res ; 80(5): 566-572, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30893501

RESUMO

There is an urgent need for new treatments effective against Mycobacterium tuberculosis, the causative agent of tuberculosis. The 8-hydroxyquinoline series is a privileged scaffold with anticancer, antifungal, and antibacterial activities. We conducted a structure-activity relationship study of the series regarding its antitubercular activity using 26 analogs. The 8-hydroxyquinolines showed good activity against M. tuberculosis, with minimum inhibitory concentrations (MIC90) of <5 µM for some analogs. Small substitutions at C5 resulted in the most potent activity. Substitutions at C2 generally decreased potency, although a sub-family of 2-styryl-substituted analogs retained activity. Representative compounds demonstrated bactericidal activity against replicating M. tuberculosis with >4 log kill at 10× MIC over 14 days. The majority of the compounds demonstrated cytotoxicity (IC50 of <100 µM). Further development of this series as antitubercular agents should address the cytotoxicity liability. However, the 8-hydroxyquinoline series represents a useful tool for chemical genomics to identify novel targets in M. tuberculosis.


Assuntos
Antituberculosos/síntese química , Hidroxiquinolinas/síntese química , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxiquinolina/análogos & derivados , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Chlorocebus aethiops , Células Hep G2 , Humanos , Hidroxiquinolinas/química , Hidroxiquinolinas/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Células Vero
11.
Proc Natl Acad Sci U S A ; 116(9): 3774-3783, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808763

RESUMO

Establishing causal links between bacterial metabolites and human intestinal disease is a significant challenge. This study reveals the molecular basis of antibiotic-associated hemorrhagic colitis (AAHC) caused by intestinal resident Klebsiella oxytoca Colitogenic strains produce the nonribosomal peptides tilivalline and tilimycin. Here, we verify that these enterotoxins are present in the human intestine during active colitis and determine their concentrations in a murine disease model. Although both toxins share a pyrrolobenzodiazepine structure, they have distinct molecular targets. Tilimycin acts as a genotoxin. Its interaction with DNA activates damage repair mechanisms in cultured cells and causes DNA strand breakage and an increased lesion burden in cecal enterocytes of colonized mice. In contrast, tilivalline binds tubulin and stabilizes microtubules leading to mitotic arrest. To our knowledge, this activity is unique for microbiota-derived metabolites of the human intestine. The capacity of both toxins to induce apoptosis in intestinal epithelial cells-a hallmark feature of AAHC-by independent modes of action, strengthens our proposal that these metabolites act collectively in the pathogenicity of colitis.


Assuntos
Enterocolite Pseudomembranosa/genética , Enterotoxinas/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Klebsiella oxytoca/genética , Animais , Benzodiazepinonas/metabolismo , Benzodiazepinonas/toxicidade , Dano ao DNA/efeitos dos fármacos , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Enterotoxinas/biossíntese , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Intestinos/microbiologia , Intestinos/patologia , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/metabolismo , Klebsiella oxytoca/patogenicidade , Camundongos , Microtúbulos/efeitos dos fármacos , Oxiquinolina/análogos & derivados , Oxiquinolina/metabolismo , Oxiquinolina/toxicidade , Peptídeos/metabolismo , Peptídeos/toxicidade
12.
Crit Rev Biochem Mol Biol ; 53(2): 157-174, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29424242

RESUMO

Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.


Assuntos
Endopeptidases , Retículo Endoplasmático , Proteínas de Neoplasias , Neoplasias , Oxiquinolina , Proteólise , Animais , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Oxiquinolina/análogos & derivados , Oxiquinolina/química , Oxiquinolina/uso terapêutico , Inibidores de Proteases , Relação Estrutura-Atividade , Especificidade por Substrato , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
13.
Curr Drug Deliv ; 15(1): 134-142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28000552

RESUMO

BACKGROUND: Lipiodol (iodized poppy seed oil) accumulates predominately in the tumor rather than in the liver tissue [1, 2]. Therefore, mixing anticancer drugs with Lipiodol may enhance the antitumor effect by increasing the local drug concentration. OBJECTIVE: In this pilot study, we made use of Lipiodol as a potential carrier of three promising antitumor metal complexes (tris(8-quinolato)gallium(III) (KP46), tetrachlorobis(indazole)ruthenate(III) (KP1019) and the hydrolysis product of KP1019, mer,trans-[RuCl3(H2O)(Hind)2]. METHODS: The stability of the drugs in Lipiodol and the release profile into the aqueous phase were examined independently by three different analytical techniques (high pressure liquid chromatography, HPLC; atom absorption spectroscopy, AAS; and electron spray ionization mass spectrometry, ESI-MS). RESULTS: The complexes were stable and remained in the Lipiodol emulsion over 3 days. In contrast to KP1019 and KP46, evaluation of Lipiodol emulsions of mer,trans-[RuCl3 (H2O) (Hind) 2] was not possible due to the insolubility of the compound in Lipiodol. KP1019 released rapidly into the aqueous phase in the first week and after 1 month it was not possible to detect the complex in the emulsion. KP46 showed a gradual release with the time resulting in the release of about 6.4 % of KP46 into the aqueous phase after 1 month of incubation. CONCLUSION: The initial results show that Lipiodol can be successfully employed as a carrier of anticancer Ru- or Ga-complexes. Furthermore, advantages can overcome the poor water solubility of the metal complexes, opening new perspectives for the use of Lipiodol emulsions in molecular imaging and cancer therapy as theragnostic agents.


Assuntos
Antineoplásicos/química , Óleo Etiodado/química , Indazóis/química , Compostos Organometálicos/química , Oxiquinolina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Emulsões/química , Hidrólise , Imagem Molecular , Estrutura Molecular , Oxiquinolina/química , Projetos Piloto , Compostos de Rutênio , Solubilidade , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Atômica
14.
Biomacromolecules ; 18(12): 3971-3977, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29068673

RESUMO

Biological-material-functionalized porous monoliths were prepared with lactoferrin and ß-cyclodextrin via a click reaction. With the monolith as an extraction medium, a method combined with ICP-MS was developed for the determination of total gallium originating from metabolic residues of orally bioavailable gallium complexes with tris(8-quinolinolato)gallium (GaQ3) as a representative. The method exhibited favorable adsorption behaviors for gallium with high selectivity, low detection limit (2 ng L-1), and an enrichment factor of 29-fold with the sample throughput of 30 min-1. The developed approach was validated by the analysis of gallium from GaQ3 metabolic residues in a human cell line. Additionally, the practical applicability of this method was evaluated by the determination of gallium in human blood and urine samples from cancer patients. Results illustrated that the prepared monolith had potential in Ga-based anticancer drug analysis in complex biological samples.


Assuntos
Antineoplásicos/química , Gálio/química , Lactoferrina/química , Polímeros/química , beta-Ciclodextrinas/química , Humanos , Limite de Detecção , Neoplasias/tratamento farmacológico , Compostos Organometálicos/química , Oxiquinolina/análogos & derivados , Oxiquinolina/química , Porosidade , beta-Ciclodextrinas/farmacologia
15.
J Exp Clin Cancer Res ; 36(1): 52, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403890

RESUMO

BACKGROUND: Osteosarcoma is the most frequent primary malignant bone tumor. Although survival has distinctly increased due to neoadjuvant chemotherapy in the past, patients with metastatic disease and poor response to chemotherapy still have an adverse prognosis. Hence, development of new therapeutic strategies is still of utmost importance. METHODS: Anticancer activity of KP46 against osteosarcoma cell models was evaluated as single agent and in combination approaches with chemotherapeutics and Bcl-2 inhibitors using MTT assay. Underlying mechanisms were tested by cell cycle, apoptosis and autophagy assays. RESULTS: KP46 exerted exceptional anticancer activity at the nanomolar to low micromolar range, depending on the assay format, against all osteosarcoma cell models with minor but significant differences in IC50 values. KP46 treatment of osteosarcoma cells caused rapid loss of cell adhesion, weak cell cycle accumulation in S-phase and later signs of apoptotic cell death. Furthermore, already at sub-cytotoxic concentrations KP46 reduced the migratory potential of osteosarcoma cells and exerted synergistic effects with cisplatin, a standard osteosarcoma chemotherapeutic. Moreover, the gallium compound induced signs of autophagy in osteosarcoma cells. Accordingly, blockade of autophagy by chloroquine but also by the Bcl-2 inhibitor obatoclax increased the cytotoxic activity of KP46 treatment significantly, suggesting autophagy induction as a protective mechanism against KP46. CONCLUSION: Together, our results identify KP46 as a new promising agent to supplement standard chemotherapy and possible future targeted therapy in osteosarcoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Compostos Organometálicos/farmacologia , Osteossarcoma/tratamento farmacológico , Oxiquinolina/análogos & derivados , Autofagia/efeitos dos fármacos , Neoplasias Ósseas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Indóis , Terapia de Alvo Molecular , Compostos Organometálicos/administração & dosagem , Osteossarcoma/patologia , Oxiquinolina/administração & dosagem , Oxiquinolina/farmacologia , Pirróis/administração & dosagem
16.
Arch Pharm (Weinheim) ; 349(12): 925-933, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27862215

RESUMO

Janus kinases (JAKs) and their gain-of-function mutants have been implicated in a range of oncological, inflammatory, and autoimmune conditions, which has sparked great research interest in the discovery and development of small-molecule JAK inhibitors. Two molecules are currently marketed as JAK inhibitors, but due to the displayed side effects (owing to their suboptimal selectivities among the various JAK subtypes) new JAK inhibitors are still sought after. We present the results of an extensive virtual screening campaign based on a multi-step screening protocol involving ligand docking. The screening yielded five new, experimentally validated inhibitors of JAK1 with 8-hydroxyquinoline as a novel hinge-binding scaffold. The compounds did not only display favorable potencies in a JAK1V658F -driven cell-based assay but were also shown to be non-cytotoxic on rat liver cells.


Assuntos
Janus Quinase 1/antagonistas & inibidores , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Simulação de Acoplamento Molecular , Mutação , Oxiquinolina/síntese química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Ratos , Relação Estrutura-Atividade
17.
PLoS One ; 11(4): e0154125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27124407

RESUMO

p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways.


Assuntos
Antineoplásicos/química , Regulação Neoplásica da Expressão Gênica , Oxiquinolina/análogos & derivados , Proteínas Ligases SKP Culina F-Box/genética , Proteína Supressora de Tumor p53/agonistas , Compostos de Vinila/química , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Oxiquinolina/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Compostos de Vinila/farmacologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
18.
Oncotarget ; 7(2): 1242-61, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26517689

RESUMO

This study identifies BNIP3L as the key regulator of p53-dependent cell death mechanism in colon cancer cells targeted by the novel gallium based anticancer drug, KP46. KP46 specifically accumulated into mitochondria where it caused p53-dependent morphological and functional damage impairing mitochondrial dynamics and bioenergetics. Furthermore, competing with iron for cellular uptake, KP46 lowered the intracellular labile iron pools and intracellular heme. Accordingly, p53 accumulated in the nucleus where it activated its transcriptional target BNIP3L, a BH3 only domain protein with functions in apoptosis and mitophagy. Upregulated BNIP3L sensitized the mitochondrial permeability transition and strongly induced PARKIN-mediated mitochondrial clearance and cellular vacuolization. Downregulation of BNIP3L entirely rescued cell viability caused by exposure of KP46 for 24 hours, confirming that early induced cell death was regulated by BNIP3L. Altogether, targeting BNIP3L in wild-type p53 colon cancer cells is a novel anticancer strategy activating iron depletion signaling and the mitophagy-related cell death pathway.


Assuntos
Antineoplásicos/farmacologia , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Gálio/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Proteínas de Membrana/genética , Microscopia Confocal , Mitofagia/genética , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Oxiquinolina/análogos & derivados , Oxiquinolina/química , Oxiquinolina/farmacologia , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Invest New Drugs ; 33(4): 835-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26091914

RESUMO

BACKGROUND: Hypoxic and necrotic regions that accrue within solid tumors in vivo are known to be associated with metastasis formation, radio- and chemotherapy resistance, and drug metabolism. Therefore, integration of these tumor characteristics into in vitro drug screening models is advantageous for any reliable investigation of the anticancer activity of novel drug candidates. In general, usage of cell culture models with in vivo like characteristics has become essential in preclinical drug studies and allows evaluation of complex problems such as tumor selectivity and anti-invasive properties of the drug candidates. MATERIALS AND METHODS: In this study, we investigated the anticancer activity of clinically approved, investigational and experimental drugs based on platinum (cisplatin, oxaliplatin and KP1537), gallium (KP46), ruthenium (KP1339) and lanthanum (KP772) in different cell culture models such as monolayers, multicellular spheroids, as well as invasion and metastasis models. Results Application of the Alamar Blue assay to multicellular spheroids and a spheroid-based invasion assay resulted in an altered rating of compounds with regard to their cytotoxicity and ability to inhibit invasion when compared with monolayer-based cytotoxicity and transwell assays. For example, the gallium-based drug candidate KP46 showed in spheroid cultures significantly enhanced properties to inhibit protrusion formation and fibroblast mediated invasiveness, and improved cancer cell selectivity. CONCLUSION: Taken together, our results demonstrate the advantages of spheroid-based assays and underline the necessity of using different experimental models for reliable preclinical investigations assessing and better predicting the anticancer potential of new compounds.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Técnicas de Cocultura , Humanos , Hipóxia , Compostos Organometálicos/farmacologia , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacologia , Fenantrolinas/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/fisiologia , Células Tumorais Cultivadas
20.
Eur J Nucl Med Mol Imaging ; 42(2): 278-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25359636

RESUMO

PURPOSE: (111)In (typically as [(111)In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an (89)Zr PET tracer for cell labelling and compare it with [(111)In]oxinate3 single photon emission computed tomography (SPECT). METHODS: [(89)Zr]Oxinate4 was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [(89)Zr]oxinate4 or [(111)In]oxinate3 was monitored for up to 14 days. (89)Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. RESULTS: Zr labelling was effective in all cell types with yields comparable with (111)In labelling. Retention of (89)Zr in cells in vitro after 24 h was significantly better (range 71 to >90%) than (111)In (43-52%). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with (111)In or (89)Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for (111)In. In liver, spleen and bone marrow at least 92% of (89)Zr remained associated with eGFP-positive cells after 7 days in vivo. CONCLUSION: [(89)Zr]Oxinate4 offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types.


Assuntos
Compostos Organometálicos/farmacocinética , Oxiquinolina/análogos & derivados , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único , Zircônio/farmacocinética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organometálicos/efeitos adversos , Oxiquinolina/efeitos adversos , Oxiquinolina/farmacocinética , Compostos Radiofarmacêuticos/efeitos adversos , Distribuição Tecidual , Zircônio/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA