RESUMO
Obesity is an abnormal fat accumulation disorder in the metabolic syndrome constellation, and a risk factor for diabetes, cardiovascular disorders, non-alcoholic fatty liver disease (NAFLD), and cancer. Nuclear receptors (Peroxisome proliferator-activated receptor, PPAR) are implicated in metabolic syndrome and NAFLD, and have potential for therapeutic targeting. Nuclear receptors are ligand-dependent transcription factors that have diverse roles in metabolism, including regulating genes involved in lipid and glucose metabolism, modulating inflammatory genes, and are crucial for maintaining metabolic flexibility. PPAR activates adipose triglyceride lipase, which then releases fatty acids as ligands for PPAR, indicating the interdependency of nuclear receptors and lipases. Here, molecular docking was performed with selected phytochemical ligands that can bind with PPAR-α/γ (PDB ID: 2ZNN and 2ATH, respectively) using Glide module of Schrodinger software followed by molecular dynamics simulation study using Desmond module, and ADMET analysis. Interestingly, orlistat which is a well-known lipase and fatty acid synthase inhibitor also demonstrated favorable binding affinity with both PPAR-α/γ (-10.96 kcal/mol against PPARα and -10.26 kcal/mol against PPARγ). The highest docking scores were however shown by the flavonoids - rutin (-14.88 kcal/mol against PPARα and -13.64 kcal/mol against PPARγ), and its aglycone, quercetin (-10.08 kcal/mol in PPARα and -9.89 kcal/mol in PPARγ). The other phytochemicals (genistein, esculin, daidzin, naringenin, daidzein, dihydroxy coumarin, hydroquinone) showed lower binding affinity as dual agonists. The anti-obesity effects were experimentally validated in cultured adipocytes, which revealed better lipid inhibition by rutin and quercetin than orlistat (quercetin > rutin > orlistat) pointing to their strong potential in anti-obesity treatment.
Assuntos
Fármacos Antiobesidade , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Humanos , Ligantes , Lipídeos , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Orlistate/farmacologia , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Compostos Fitoquímicos/farmacologia , Quercetina , Rutina/farmacologiaRESUMO
New types of antidiabetic agents are continually needed with diabetes becoming the epidemic in the world. Indole alkaloids play an important role in natural products owing to their variable structures and versatile biological activities like anticonvulsant, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, which are a promising source of novel antidiabetic drugs discovery. The synthesized indole derivatives possess similar properties to natural indole alkaloids. In the last two decades, more and more indole derivatives have been designed and synthesized for searching their bioactivities. This present review describes comprehensive structures of indole compounds with the potential antidiabetic activity including natural indole alkaloids and the synthetic indole derivatives based on the structure classification, summarizes their approaches isolated from natural sources or by synthetic methods, and discusses the antidiabetic effects and the mechanisms of action. Furthermore, this review also provides briefly synthetic procedures of some important indole derivatives.
Assuntos
Hipoglicemiantes/química , Indóis/química , Carbolinas/química , Carbolinas/metabolismo , Carbolinas/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Indóis/metabolismo , Indóis/uso terapêutico , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Terpenos/química , Terpenos/metabolismo , Terpenos/uso terapêuticoRESUMO
OBJECTIVE: Cardiovascular disease is a leading cause of death worldwide. Obesity-related metabolic disorders including dyslipidemia cause impaired collateralization under ischemic conditions, thereby resulting in exacerbated cardiovascular dysfunction. Pemafibrate is a novel selective PPARα modulator, which has been reported to improve atherogenic dyslipidemia, in particular, hypertriglyceridemia and low HDL-cholesterol. Here, we investigated whether pemafibrate modulates the revascularization process in a mouse model of hindlimb ischemia. METHODS AND RESULTS: Male wild-type (WT) mice were randomly assigned to two groups, normal diet or pemafibrate admixture diet from the ages of 6 weeks. After 4 weeks, mice were subjected to unilateral hindlimb surgery to remove the left femoral artery and vein. Pemafibrate treatment enhanced blood flow recovery and capillary formation in ischemic limbs of mice, which was accompanied by enhanced phosphorylation of endothelial nitric oxide synthase (eNOS). Treatment of cultured endothelial cells with pemafibrate resulted in increased network formation and migratory activity, which were blocked by pretreatment with the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Pemafibrate treatment also increased plasma levels of the PPARα-regulated gene, fibroblast growth factor (FGF) 21 in WT mice. Systemic administration of adenoviral vectors expressing FGF21 (Ad-FGF21) to WT mice enhanced blood flow recovery, capillary density and eNOS phosphorylation in ischemic limbs. Treatment of cultured endothelial cells with FGF21 protein led to increases in endothelial cell network formation and migration, which were canceled by pretreatment with L-NAME. Furthermore, administration of pemafibrate or Ad-FGF21 had no effects on blood flow in ischemic limbs in eNOS-deficient mice. CONCLUSION: These data suggest that pemafibrate can promote revascularization in response to ischemia, at least in part, through direct and FGF21-mediated modulation of endothelial cell function. Thus, pemafibrate could be a potentially beneficial drug for ischemic vascular disease.
Assuntos
Benzoxazóis/farmacologia , Butiratos/farmacologia , Isquemia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , PPAR alfa/química , PPAR alfa/metabolismo , Fosforilação/efeitos dos fármacosRESUMO
Automated computational analogue design and scoring can speed up hit-to-lead optimization and appears particularly promising in selective optimization of side-activities (SOSA) where possible analogue diversity is confined. Probing this concept, we employed the cysteinyl leukotriene receptorâ 1 (CysLT1 R) antagonist cinalukast as lead for which we discovered peroxisome proliferator-activated receptorâ α (PPARα) modulatory activity. We automatically generated a virtual library of close analogues and classified these roughly 8000 compounds for PPARα agonism and CysLT1 R antagonism using automated affinity scoring and machine learning. A computationally preferred analogue for SOSA was synthesized, and inâ vitro characterization indeed revealed a marked activity shift toward enhanced PPARα activation and diminished CysLT1 R antagonism. Thereby, this prospective application study highlights the potential of automating SOSA.
Assuntos
PPAR alfa/agonistas , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Humanos , Antagonistas de Leucotrienos/química , Ligantes , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR alfa/metabolismo , Estudo de Prova de Conceito , Receptores de Leucotrienos/química , Bibliotecas de Moléculas Pequenas/metabolismo , Tiazóis/químicaRESUMO
BACKGROUND: The nuclear Peroxisome Proliferator Activated Receptors (PPARs) are ligand-activated transcription factors playing a fundamental role in energy homeostasis and metabolism. Consequently, functional impairment or dysregulation of these receptors lead to a variety of metabolic diseases. While some phytocannabinoids (pCBs) are known to activate PPARγ, no data have been reported so far on their possible activity at PPARα. METHODS: The putative binding modes of pCBs into PPARα/γ Ligand Binding Domains were found and assessed by molecular docking and molecular dynamics. Luciferase assays validated in silico predictions whereas the biological effects of such PPARα/γ ligands were assessed in HepG2 and 3T3L1 cell cultures. RESULTS: The in silico study identified cannabigerolic acid (CBGA), cannabidiolic acid (CBDA) and cannabigerol (CBG) from C. sativa as PPARα/γ dual agonists, suggesting their binding modes toward PPARα/γ isoforms and predicting their activity as full or partial agonists. These predictions were confirmed by luciferase functional assays. The resulting effects on downstream gene transcription in adipocytes and hepatocytes were also observed, establishing their actions as functional dual agonists. CONCLUSIONS: Our work broadens the activity spectrum of CBDA, CBGA and CBG by providing evidence that these pCBs act as dual PPARα/γ agonists with the ability to modulate the lipid metabolism. GENERAL SIGNIFICANCE: Dual PPARα/γ agonists have emerged as an attractive alternative to selective PPAR agonists to treat metabolic disorders. We identified some pCBs as dual PPARα/γ agonists, potentially useful for the treatment of dyslipidemia and type 2 diabetes mellitus.
Assuntos
Canabinoides/análise , Canabinoides/isolamento & purificação , PPAR alfa/agonistas , PPAR gama/agonistas , Compostos Fitoquímicos , Células 3T3-L1 , Animais , Células COS , Canabinoides/química , Canabinoides/farmacologia , Chlorocebus aethiops , Biologia Computacional , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Ligação Proteica , Elementos de Resposta/efeitos dos fármacosRESUMO
AIMS: Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. RESULTS: Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3ß (GSK3ß), which upregulated inactive phospho-GSK3ß (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. INNOVATION: Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. CONCLUSION: PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.
Assuntos
Cardiomegalia/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/patologia , Miocárdio/metabolismo , Nanopartículas/metabolismo , PPAR alfa/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Nanopartículas/química , Estresse Oxidativo , PPAR alfa/química , PPAR alfa/genéticaRESUMO
Adiponectin is an adipocytokine with insulin-sensitizing, anti-inflammatory, anti-atherosclerotic, and anti-aging properties. Compounds with the ability to promote adiponectin secretion are of interest for the development of anti-aging drugs to improve skin-aging phenotypes. In the phenotypic assay to measure adiponectin secretion during adipogenesis in human adipose tissue-derived mesenchymal stem cells (hAT-MSCs), kojyl cinnamate ester derivatives increased adiponectin secretion. A target identification study showed that the kojyl cinnamate ester derivatives competitively bound to peroxisome proliferator-activated receptor α/γ (PPARα/γ). The upregulation of adiponectin production induced by kojyl cinnamate ester derivatives was significantly correlated with PPARα and PPARγ binding activities. Kojyl cinnamate ester derivatives significantly increased the transcription of genes encoding cholesterol and fatty acid synthesizing enzymes in hAT-MSCs. Notably, the kojyl cinnamate esters upregulated the gene transcription of lipid metabolic enzymes in human epidermal keratinocytes, which are important in the integrity of skin permeability barrier. In addition, the kojyl cinnamate esters that function as PPARα/γ dual modulators inhibited ultraviolet B irradiation-induced inflammation in human epidermal keratinocytes. Therefore, kojyl cinnamate ester derivatives are a novel class of PPARα/γ dual agonists with the potential to improve skin-aging phenotypes.
Assuntos
Cinamatos/farmacologia , PPAR alfa/agonistas , PPAR gama/agonistas , Pironas/farmacologia , Adipogenia/efeitos dos fármacos , Adiponectina/genética , Cinamatos/síntese química , Cinamatos/química , Dinoprostona/metabolismo , Humanos , Inflamação/prevenção & controle , Queratinócitos/efeitos dos fármacos , Metaloproteinase 1 da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , PPAR alfa/química , PPAR gama/química , Pironas/síntese química , Pironas/química , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Multi-action cisplatin-based mono- (1) and di-clofibric acid (2) Pt(iv) "combo" derivatives were synthesized via both traditional and microwave assisted procedures. The two complexes offered very good performances (IC50 values in a nanomolar range) on a panel of human tumor cell lines, including the highly chemoresistant malignant pleural mesothelioma ones. Moreover, both 1 and 2 bypass the cisplatin resistance. Indeed, cisplatin and clofibric acid, the metabolites of the Pt(iv) â Pt(ii) intracellular reduction, proved to act synergistically. The adjuvant action of clofibric acid relies on the activation of peroxisome proliferator-activated receptor α (PPARα) that, in turn, decreases the level of Hypoxia-Inducible Factor-1α. Both compounds induced extensive apoptosis in tumor cells, also via oxidative stress. Finally, 2 exhibited excellent performances also under the hypoxic conditions typical of solid tumors, where cisplatin is less effective.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/análogos & derivados , Cisplatino/farmacologia , Ácido Clofíbrico/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Concentração Inibidora 50 , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/químicaRESUMO
Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor involved in the regulation of lipid homeostasis and improves hypertriglyceridemia. Pemafibrate is a novel selective PPARα modulator (SPPARMα) that activates PPARα transcriptional activity. Here, we computationally constructed the structure of the human PPARα in a complex with pemafibrate, along with that of hPPARα complexed with the classical fenofibrate, and studied their interactions quantitatively by using the first-principles calculations-based fragment molecular orbital (FMO) method. Comprehensive structural and protein-ligand binding elucidation along with the in vitro luciferase analysis let us to identify pemafibrate as a novel SPPARMα. Unlike known fibrate ligands, which bind only with the arm I of the Y-shaped ligand binding pocket, the Y-shaped pemafibrate binds to the entire cavity region. This lock and key nature causes enhanced induced fit in pemafibrate-ligated PPARα. Importantly, this selective modulator allosterically changes PPARα conformation to form a brand-new interface, which in turn binds to PPARα co-activator, PGC-1α, resulting in the full activation of PPARα. The structural basis for the potent effects of pemafibrate on PPARα transcriptional activity predicted by the in silico FMO methods was confirmed by in vitro luciferase assay for mutants. The unique binding mode of pemafibrate reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering cues for improving the binding affinity and selectivity of ligand for better clinical consequences. The findings explain the high affinity and efficacy of pemafibrate, which is expected to be in the clinical use soon.
Assuntos
Benzoxazóis/química , Benzoxazóis/metabolismo , Butiratos/química , Butiratos/metabolismo , Modelos Moleculares , PPAR alfa/química , PPAR alfa/metabolismo , Fenofibrato/química , Fenofibrato/metabolismo , Células Hep G2 , Humanos , Ligantes , Luciferases/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismoRESUMO
BACKGROUND: To overcome the concerns associated with the use of fibrates, pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor modulator, was developed. In a previous phase 2 trial, we showed excellent efficacy and safety of pemafibrate in patients with dyslipidemia. OBJECTIVE: The objective of the study was to evaluate the efficacy and safety of pemafibrate over 24 weeks in adults with dyslipidemia in comparison with fenofibrate. METHODS: In this multicenter, 24-week, double-blind, clinical study, 225 patients with high triglyceride (TG; ≥150 mg/dL [1.7 mmol/L] and <500 mg/dL [5.7 mmol/L]) and relatively low high-density lipoprotein cholesterol (<50 mg/dL [1.3 mmol/L] in men or 55 mg/dL [1.4 mmol/L] in women) levels were randomized to receive either pemafibrate at 0.2 or 0.4 mg/d or fenofibrate 106.6 mg/d. RESULTS: Pemafibrate 0.2, 0.4 mg/d and fenofibrate significantly reduced TG levels from baseline by -46.2%, -45.9%, and -39.7%, respectively. As compared with fenofibrate, the least squares mean differences (95% confidence intervals) in TG were -6.5% (-12.0, -1.1) and -6.2% (-11.6, -0.8) in pemafibrate 0.2 and 0.4 mg/d respectively, which showed the superiority of these doses of pemafibrate to 106.6 mg/d of fenofibrate. The incidence rates of adverse drug reactions in pemafibrate groups (2.7% and 6.8%) were significantly lower than that in the fenofibrate group (23.7%). Pemafibrate significantly decreased alanine aminotransferase and gamma-glutamyltransferase levels, whereas fenofibrate increased both of them. The increments of serum creatinine and cystatin C were smaller in pemafibrate than those in fenofibrate. CONCLUSIONS: Pemafibrate was superior to fenofibrate in terms of serum TG-lowering effect and hepatic and renal safety.
Assuntos
Dislipidemias/tratamento farmacológico , Fenofibrato/uso terapêutico , Hipolipemiantes/uso terapêutico , PPAR alfa/química , Adulto , Idoso , Alanina Transaminase/sangue , HDL-Colesterol/sangue , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Fenofibrato/efeitos adversos , Fenofibrato/farmacologia , Humanos , Hipolipemiantes/efeitos adversos , Hipolipemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , PPAR alfa/metabolismo , Resultado do Tratamento , Triglicerídeos/sangue , gama-Glutamiltransferase/sangueRESUMO
Hepatic steatosis is frequently observed in obese and aged individuals. Because hepatic steatosis is closely associated with metabolic syndromes, including insulin resistance, dyslipidemia, and inflammation, numerous efforts have been made to develop compounds that ameliorate it. Here, a novel peroxisome proliferator-activated receptor (PPAR) α agonist, 4-(benzo[d]thiazol-2-yl)benzene-1,3-diol (MHY553) was developed, and investigated its beneficial effects on hepatic steatosis using young and old Sprague-Dawley rats and HepG2 cells.Docking simulation and Western blotting confirmed that the activity of PPARα, but not that of the other PPAR subtypes, was increased by MHY553 treatment. When administered orally, MHY553 markedly ameliorated aging-induced hepatic steatosis without changes in body weight and serum levels of liver injury markers. Consistent with in vivo results, MHY553 inhibited triglyceride accumulation induced by a liver X receptor agonist in HepG2 cells. Regarding underlying mechanisms, MHY553 stimulated PPARα translocation into the nucleus and increased mRNA levels of its downstream genes related to fatty acid oxidation, including CPT-1A and ACOX1, without apparent change in lipogenesis signaling. Furthermore, MHY553 significantly suppresses inflammatory mRNA expression in old rats. In conclusion, MHY553 is a novel PPARα agonist that improved aged-induced hepatic steatosis, in part by increasing ß-oxidation signaling and decreasing inflammation in the liver. MHY553 is a potential pharmaceutical agent for treating hepatic steatosis in aging.
Assuntos
Envelhecimento/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Oxirredução , PPAR alfa/agonistas , Envelhecimento/patologia , Animais , Biomarcadores , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Modelos Moleculares , Conformação Molecular , PPAR alfa/química , PPAR alfa/genética , Transporte Proteico , Ratos , Transcrição GênicaRESUMO
We screened a short series of new chiral diphenylmethane derivatives and identified potent dual PPARα/γ partial agonists. As both enantiomers of the most active compound 1 displayed an unexpected similar transactivation activity, we performed docking experiments to provide a molecular understanding of their similar partial agonism. We also evaluated the ability of both enantiomers of 1 and racemic 2 to inhibit colorectal cancer cells proliferation: (S)-1 displayed a more robust activity due, at least in part, to a partial inhibition of the Wnt/ß-catenin signalling pathway that is upregulated in the majority of colorectal cancers. Finally, we investigated the effects of (R)-1, (S)-1 and (R,S)-2 on mitochondrial function and demonstrated that they activate the carnitine shuttle system through upregulation of carnitine/acylcarnitine carrier (CAC) and carnitine-palmitoyl-transferase 1 (CPT1) genes. Consistent with the notion that these are PPARα target genes, we tested and found that PPARα itself is regulated by a positive loop. Moreover, these compounds induced a significant mitochondrial biogenesis. In conclusion, we identified a new series of dual PPARα/γ agonists endowed with novel anti-proliferative properties associated with a strong activation of mitochondrial functions and biogenesis, a potential therapeutic target of the treatment of insulin resistance.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Mitocôndrias/efeitos dos fármacos , PPAR alfa/agonistas , PPAR gama/agonistas , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Compostos Benzidrílicos/síntese química , Compostos Benzidrílicos/metabolismo , Carnitina/metabolismo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HT29 , Células Hep G2 , Humanos , Resistência à Insulina , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Conformação Proteica , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismoRESUMO
The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARγ, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARγ provides a rationale for the different activation of the ligand towards PPARα and PPARγ, suggesting a novel basis for ligand design.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Naftalenos/química , Naftalenos/farmacologia , PPAR alfa/química , PPAR alfa/metabolismo , Sítios de Ligação , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Células Hep G2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , PPAR alfa/agonistas , PPAR gama/agonistas , PPAR gama/metabolismo , Conformação Proteica , Pirimidinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Long-term moderate consumption of red wine is associated with a reduced risk of developing lifestyle-related diseases such as cardiovascular disease and cancer. Therefore, resveratrol, a constituent of grapes and various other plants, has attracted substantial interest. This study focused on one molecular target of resveratrol, the peroxisome proliferator activated receptor α (PPARα). Our previous study in mice showed that resveratrol-mediated protection of the brain against stroke requires activation of PPARα; however, the molecular mechanisms involved in this process remain unknown. Here, we evaluated the chemical basis of the resveratrol-mediated activation of PPARα by performing a docking mode simulation and examining the structure-activity relationships of various polyphenols. The results of experiments using the crystal structure of the PPARα ligand-binding domain and an analysis of the activation of PPARα by a resveratrol analog 4-phenylazophenol (4-PAP) in vivo indicate that the 4'-hydroxyl group of resveratrol is critical for the direct activation of PPARα. Activation of PPARα by 5 µM resveratrol was enhanced by rolipram, an inhibitor of phosphodiesterase (PDE) and forskolin, an activator of adenylate cyclase. We also found that resveratrol has a higher PDE inhibitory activity (IC50 = 19 µM) than resveratrol analogs trans-4-hydroxystilbene and 4-PAP (IC50 = 27-28 µM), both of which has only 4'-hydroxyl group, indicating that this 4'-hydroxyl group of resveratrol is not sufficient for the inhibition of PDE. This result is consistent with that 10 µM resveratrol has a higher agonistic activity of PPARα than these analogs, suggesting that there is a feedforward activation loop of PPARα by resveratrol, which may be involved in the long-term effects of resveratrol in vivo.
Assuntos
Hidróxidos/química , PPAR alfa/metabolismo , Estilbenos/química , Estilbenos/farmacologia , Animais , Técnicas de Inativação de Genes , Masculino , Camundongos , Simulação de Acoplamento Molecular , PPAR alfa/química , Inibidores de Fosfodiesterase/farmacologia , Conformação Proteica , Resveratrol , Sirtuína 1/metabolismo , Estilbenos/metabolismo , Relação Estrutura-AtividadeRESUMO
Peroxisome proliferator-activated receptor α (PPARα) and liver X receptor α (LXRα) are members of the nuclear receptor superfamily that function to regulate lipid metabolism. Complex interactions between the LXRα and PPARα pathways exist, including competition for the same heterodimeric partner, retinoid X receptor α (RXRα). Although data have suggested that PPARα and LXRα may interact directly, the role of endogenous ligands in such interactions has not been investigated. Using in vitro protein-protein binding assays, circular dichroism, and co-immunoprecipitation of endogenous proteins, we established that full-length human PPARα and LXRα interact with high affinity, resulting in altered protein conformations. We demonstrated for the first time that the affinity of this interaction and the resulting conformational changes could be altered by endogenous PPARα ligands, namely long chain fatty acids (LCFA) or their coenzyme A thioesters. This heterodimer pair was capable of binding to PPARα and LXRα response elements (PPRE and LXRE, respectively), albeit with an affinity lower than that of the respective heterodimers formed with RXRα. LCFA had little effect on binding to the PPRE but suppressed binding to the LXRE. Ectopic expression of PPARα and LXRα in mammalian cells yielded an increased level of PPRE transactivation compared to overexpression of PPARα alone and was largely unaffected by LCFA. Overexpression of both receptors also resulted in transactivation from an LXRE, with decreased levels compared to that of LXRα overexpression alone, and LCFA suppressed transactivation from the LXRE. These data are consistent with the hypothesis that ligand binding regulates heterodimer choice and downstream gene regulation by these nuclear receptors.
Assuntos
Receptores Nucleares Órfãos/química , Receptores Nucleares Órfãos/metabolismo , PPAR alfa/química , PPAR alfa/metabolismo , Dicroísmo Circular , Coenzima A/química , Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Células Hep G2 , Humanos , Imunoprecipitação , Ligantes , Receptores X do Fígado , Receptores Nucleares Órfãos/genética , PPAR alfa/genética , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Conformação Proteica , Multimerização Proteica , Elementos de RespostaRESUMO
To further understand the pharmacological properties of N-oleoylethanolamine (OEA), a naturally occurring lipid that activates peroxisome proliferator-activated receptor alpha (PPARα), we designed sulfamoyl analogs based on its structure. Among the compounds tested, N-octadecyl-N'-propylsulfamide (CC7) was selected for functional comparison with OEA. The performed studies include the following computational and biological approaches: 1) molecular docking analyses; 2) molecular biology studies with PPARα; 3) pharmacological studies on feeding behavior and visceral analgesia. For the docking studies, we compared OEA and CC7 data with crystallization data obtained with the reference PPARα agonist GW409544. OEA and CC7 interacted with the ligand-binding domain of PPARα in a similar manner to GW409544. Both compounds produced similar transcriptional activation by in vitro assays, including the GST pull-down assay and reporter gene analysis. In addition, CC7 and OEA induced the mRNA expression of CPT1a in HpeG2 cells through PPARα and the induction was avoided with PPARα-specific siRNA. In vivo studies in rats showed that OEA and CC7 had anorectic and antiobesity activity and induced both lipopenia and decreases in hepatic fat content. However, different effects were observed when measuring visceral pain; OEA produced visceral analgesia whereas CC7 showed no effects. These results suggest that OEA activity on the PPARα receptor (e.g., lipid metabolism and feeding behavior) may be dissociated from other actions at alternative targets (e.g., pain) because other non cannabimimetic ligands that interact with PPARα, such as CC7, do not reproduce the full spectrum of the pharmacological activity of OEA. These results provide new opportunities for the development of specific PPARα-activating drugs focused on sulfamide derivatives with a long alkyl chain for the treatment of metabolic dysfunction.
Assuntos
Biologia Computacional/métodos , Etanolaminas/química , Etanolaminas/farmacologia , PPAR alfa/agonistas , Sulfonamidas/química , Sulfonamidas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Constrição Patológica , DNA/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Ligantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Luciferases/metabolismo , Células MCF-7 , Masculino , Simulação de Acoplamento Molecular , PPAR alfa/química , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptor X Retinoide alfa/metabolismo , SoluçõesRESUMO
Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPARα ligands effectively treat dyslipidemia and have significant antiinflammatory and anti-atherosclerotic activities. These effects and their ligand-dependent activity make nuclear receptors obvious targets for drug design. Here, we present the structure of the human PPARα in complex with WY14643, a member of fibrate class of drug, and a widely used PPAR activator. The crystal structure of this complex suggests that WY14643 induces activation of PPARα in an unusual bipartite mechanism involving conventional direct helix 12 stabilization and an alternative mode that involves a second ligand in the pocket. We present structural observations, molecular dynamics and activity assays that support the importance of the second site in WY14643 action. The unique binding mode of WY14643 reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering clues for improving the binding affinity and selectivity of ligand. We show that binding of WY14643 to PPARα was associated with antiinflammatory disease in a human corneal cell model, suggesting possible applications for PPARα ligands.
Assuntos
PPAR alfa/agonistas , PPAR alfa/química , Pirimidinas/química , Pirimidinas/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação ProteicaRESUMO
A series of previously synthesized chiral derivatives of clofibric and phenylacetic acids, acting as dual agonists towards the peroxisome proliferator-activated receptors (PPARs) α and γ, was taken into account, and the efficacy of these compounds was analyzed by means of 2D-, 3D-QSAR and docking studies with the goal to gain deeper insights into the three-dimensional determinants governing ligands selectivity for PPARs. By multiregressional analysis a correlation between the lipophilicity and PPARα activity was found, whereas for PPARγ the correlation was achieved once efficacy was related to the presence of polar groups on agonists scaffold. Docking of these compounds further corroborated this hypothesis, and then provided a valid support for subsequent chemometric analysis and pharmacophore models development for both receptors subtypes. Computational results suggested site directed mutagenesis experiments which confirmed the importance of amino acid residues in PPAR activity, allowing the identification of critical hotspots most likely taking over PPARs selectivity.
Assuntos
Modelos Moleculares , PPAR alfa/química , PPAR gama/química , Estrutura Terciária de Proteína , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Ácido Clofíbrico/química , Ácido Clofíbrico/farmacologia , Simulação por Computador , Cristalografia por Raios X , Células Hep G2 , Humanos , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Ligantes , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , PPAR alfa/agonistas , PPAR alfa/genética , PPAR gama/agonistas , PPAR gama/genética , Fenilacetatos/química , Fenilacetatos/farmacologia , Relação Quantitativa Estrutura-Atividade , TermodinâmicaRESUMO
We demonstrated that ombuin-3-O-ß-D-glucopyranoside (ombuine), a flavonoid from Gynostemma pentaphyllum, is a dual agonist for peroxisome proliferator-activated receptors (PPARs) α and δ/ß. Using surface plasmon resonance (SPR), time-resolved fluorescence resonance energy transfer (FRET) analyses, and reporter gene assays, we showed that ombuine bound directly to PPARα and δ/ß but not to PPARγ or liver X receptors (LXRs). Cultured HepG2 hepatocytes stimulated with ombuine significantly reduced intracellular concentrations of triglyceride and cholesterol and downregulated the expression of lipogenic genes, including sterol regulatory element binding protein-1c (SREBP1c) and stearoyl-CoA desaturase-1 (SCD-1), with activation of PPARα and δ/ß. Activation of LXRs by ombuine was confirmed by reporter gene assays, however, SPR and cell-based FRET assays showed no direct binding of ombuine to either of the LXRs suggesting LXR activation by ombuine may be operated via PPARα stimulation. Ombuine-stimulated macrophages showed significantly induced transcription of ATP binding cassette cholesterol transporter A1 (ABCA1) and G1 (ABCG1), the key genes in reverse cholesterol transport, which led to reduced cellular cholesterol concentrations. These results suggest that ombuine is a dual PPAR ligand for PPARα and δ/ß with the ability to decrease lipid concentrations by reducing lipogenic gene expression in hepatocytes and inducing genes involved in cholesterol efflux in macrophages.
Assuntos
Flavonas/farmacologia , Flavonoides/farmacologia , Glucosídeos/farmacologia , Gynostemma/química , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR beta/agonistas , Animais , Linhagem Celular , Ácidos Graxos/metabolismo , Flavonas/química , Flavonas/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Glucosídeos/química , Glucosídeos/isolamento & purificação , Células Hep G2 , Humanos , Ligantes , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , PPAR alfa/química , PPAR delta/química , PPAR beta/químicaRESUMO
As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARß and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARß/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARß and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARß and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes.