Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Mol Genet Genomic Med ; 12(6): e2476, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888203

RESUMO

BACKGROUND: The Triggering Receptor Expressed on Myeloid Cells 2 protein (TREM2) plays a crucial role in various biological processes, including osteoclast differentiation, and disease-associated microglia (DAM) activation to regulate neuroinflammation, and phagocytosis in the brain. Genetic variations in TREM2 are implicated in neurodegenerative disorders, such as Nasu-hakola disease (NHD), characterized by bone lesions, neuropsychiatric disorders, and early-onset dementia. METHODS: We studied 3 siblings with suspected NHD. Whole-exome sequencing was conducted on the proband to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants in the two other affected siblings, a healthy sister, and the parents. RESULTS: We identified a novel homozygous deletion (c.549del; p.(Leu184Serfs*5)) in TREM2. Our literature review reveals 16 TREM2 mutations causing early-onset dementia and bone lesions. CONCLUSION: These findings, alongside previous research, elucidate the clinical spectrum of TREM2-related diseases, aiding accurate diagnosis and patient care. This knowledge is vital for understanding TREM2-dependent DAM and its involvement in the pathogenesis of neurodevelopmental disorders which can help to develop targeted therapies and improve outcomes for TREM2-affected individuals.


Assuntos
Homozigoto , Lipodistrofia , Glicoproteínas de Membrana , Osteocondrodisplasias , Receptores Imunológicos , Irmãos , Panencefalite Esclerosante Subaguda , Feminino , Humanos , Consanguinidade , Lipodistrofia/genética , Lipodistrofia/patologia , Glicoproteínas de Membrana/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Linhagem , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia
2.
Neurol Sci ; 45(7): 3069-3091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38512528

RESUMO

Measles inclusion-body encephalitis (MIBE) is rare, with insights largely from case studies. We systematically analyzed subacute Sclerosing Panencephalitis (SSPE) cases in immunocompromised patients, identifying distinctive clinical and neuroimaging features. These findings could facilitate MIBE diagnosis without the need for brain biopsies. Our systematic review on MIBE and HIV-related SSPE adhered to PRISMA guidelines and was registered with PROSPERO. We searched multiple databases and followed a detailed inclusion process with independent reviews and quality assessment. Data on patient demographics, clinical features, and outcomes were compiled. A review of 39 studies on 49 MIBE patients and 8 reports on HIV-positive SSPE patients was conducted. Acute lymphoblastic leukemia, HIV, organ transplants, and malignancies were common precursors to MIBE. Perinatal HIV was prevalent among SSPE cases. Seizures were the primary symptom in MIBE, often drug-resistant and progressing to status epilepticus or epilepsia partialis continua, whereas periodic myoclonus was universal in SSPE. Neuroimaging showed distinct patterns for each group, and histopathology confirmed measles virus presence in 39% of MIBE cases. MIBE patients typically progressed to coma and death. In conclusion, MIBE and SSPE in HIV-infected patients present with distinct clinical pictures but identical brain pathological abnormalities.


Assuntos
Sarampo , Neuroimagem , Panencefalite Esclerosante Subaguda , Humanos , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/patologia , Panencefalite Esclerosante Subaguda/complicações , Neuroimagem/métodos , Sarampo/complicações , Sarampo/patologia , Sarampo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494386

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/genética , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Proteínas do Complexo da Replicase Viral/metabolismo , Infecção Persistente , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Sarampo/genética , Sarampo/metabolismo
4.
Am J Trop Med Hyg ; 108(5): 1025-1027, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913931

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a relentlessly progressive brain disorder with invariable mortality. Subacute sclerosing panencephalitis is common in measles-endemic areas. We report an unusual SSPE patient with distinctive clinical and neuroimaging features. A 9-year-old boy came with a 5-month history of spontaneously dropping objects from both hands. Subsequently, he developed mental decline, a loss of interest in his surroundings, decreased verbal output, and inappropriate crying and laughing along with generalized periodic myoclonus. On examination, the child was akinetic mute. The child demonstrated intermittent generalized axial dystonic storm with flexion of upper limbs, an extension of lower limbs, and opisthotonos. Dystonic posturing was more dominant on the right side. Electroencephalography revealed periodic discharges. Cerebrospinal fluid antimeasles IgG antibody titer was markedly elevated. Magnetic resonance imaging revealed marked diffuse cerebral atrophy, and periventricular T2/fluid-attenuated inversion recovery hyperintensity. T2/fluid-attenuated inversion recovery images also revealed multiple cystic lesions present in the region of periventricular white matter. The patient was given a monthly injection of intrathecal interferon-α. The patient is currently continuing in the akinetic-mute stage. In conclusion, in this report, we described an unusual case of acute fulminant SSPE in which neuroimaging demonstrated unusual multiple small discrete cystic lesions in the cortical white matter. The pathological nature of these cystic lesions currently is not clear and needs to be explored.


Assuntos
Sarampo , Panencefalite Esclerosante Subaguda , Masculino , Criança , Humanos , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/patologia , Encéfalo/patologia , Neuroimagem , Imageamento por Ressonância Magnética
5.
Neuroscience ; 497: 324-339, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760218

RESUMO

Microglia are unique cells in the central nervous system (CNS), being considered a sub-type of CNS macrophage. These cells monitor nearby micro-regions, having roles that far exceed immunological and scavengering functions, being fundamental for developing, protecting and maintaining the integrity of grey and white matter. Microglia might become dysfunctional, causing abnormal CNS functioning early or late in the life of patients, leading to neurologic or psychiatric disorders and premature death in some patients. Observations that the impairment of normal microglia function per se could lead to neurological or psychiatric diseases have been mainly obtained from genetic and molecular studies of Nasu-Hakola disease, caused by TYROBP or TREM2 mutations, and from studies of adult-onset leukoencephalopathy with axonal spheroids (ALSP), caused by CSF1R mutations. These classical microgliopathies are being named here Microgliopathy Type I. Recently, mutations in TREM2 have also been associated with Alzheimer Disease. However, in Alzheimer Disease TREM2 allele variants lead to an impaired, but functional TREM2 protein, so that patients do not develop Nasu-Hakola disease but are at increased risk to develop other neurodegenerative diseases. Alzheimer Disease is the prototype of the neurodegenerative disorders associated with these TREM2 variants, named here the Microgliopathies Type II. Here, we review clinical, pathological and some molecular aspects of human diseases associated with primary microglia dysfunctions and briefly comment some possible therapeutic approaches to theses microgliopathies. We hope that our review might update the interesting discussion about the impact of intrinsic microglia dysfunctions in the genesis of some pathologic processes of the CNS.


Assuntos
Doença de Alzheimer , Panencefalite Esclerosante Subaguda , Substância Branca , Adulto , Doença de Alzheimer/metabolismo , Humanos , Lipodistrofia , Microglia/metabolismo , Osteocondrodisplasias , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia
6.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576123

RESUMO

Nasu-Hakola Disease (NHD) is a recessively inherited systemic leukodystrophy disorder characterized by a combination of frontotemporal presenile dementia and lytic bone lesions. NHD is known to be genetically related to a structural defect of TREM2 and DAP12, two genes that encode for different subunits of the membrane receptor signaling complex expressed by microglia and osteoclast cells. Because of its rarity, molecular or proteomic studies on this disorder are absent or scarce, only case reports based on neuropsychological and genetic tests being reported. In light of this, the aim of this paper is to provide evidence on the potential of a label-free proteomic platform based on the Multidimensional Protein Identification Technology (MudPIT), combined with in-house software and on-line bioinformatics tools, to characterize the protein expression trends and the most involved pathways in NHD. The application of this approach on the Lymphoblastoid cells from a family composed of individuals affected by NHD, healthy carriers and control subjects allowed for the identification of about 3000 distinct proteins within the three analyzed groups, among which proteins anomalous to each category were identified. Of note, several differentially expressed proteins were associated with neurodegenerative processes. Moreover, the protein networks highlighted some molecular pathways that may be involved in the onset or progression of this rare frontotemporal disorder. Therefore, this fully automated MudPIT platform which allowed, for the first time, the generation of the whole protein profile of Lymphoblastoid cells from Nasu-Hakola subjects, could be a valid approach for the investigation of similar neurodegenerative diseases.


Assuntos
Lipodistrofia/metabolismo , Lipodistrofia/patologia , Linfócitos/metabolismo , Linfócitos/patologia , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Proteômica , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Análise por Conglomerados , Análise Discriminante , Humanos , Glicoproteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Receptores Imunológicos/metabolismo , Biologia de Sistemas
7.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903248

RESUMO

Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.


Assuntos
Vírus do Sarampo/genética , Sarampo/genética , Panencefalite Esclerosante Subaguda/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Humanos , Sarampo/patologia , Sarampo/virologia , Vírus do Sarampo/patogenicidade , Mutação/genética , Neurônios/patologia , Neurônios/virologia , Panencefalite Esclerosante Subaguda/patologia , Panencefalite Esclerosante Subaguda/virologia , Células Vero
8.
J Alzheimers Dis ; 79(1): 25-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33216037

RESUMO

Nasu-Hakola disease is a rare autosomal recessive disorder associated to mutations in TREM2 and DAP12 genes, neuropathologically characterized by leukoencephalopathy with axonal spheroids. We report the neuropathologic findings of a 51-year-old female with a homozygous mutation (Q33X) of TREM2 gene. Beside severe cerebral atrophy and hallmarks of Nasu-Hakola disease, significant Alzheimer's disease lesions were present. Neurofibrillary changes showed an atypical topographic distribution being severe at spots in the neocortex while sparing the mesial temporal structures. Our finding suggests that TREM2 genetic defects may favor Alzheimer's disease pathology with neurofibrillary changes not following the hierarchical staging of cortical involvement identified by Braak.


Assuntos
Encéfalo/patologia , Lipodistrofia/patologia , Emaranhados Neurofibrilares/patologia , Osteocondrodisplasias/patologia , Placa Amiloide/patologia , Panencefalite Esclerosante Subaguda/patologia , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/genética , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
9.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619560

RESUMO

Measles virus (MeV) is an enveloped RNA virus bearing two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. Upon receptor binding, the H protein triggers conformational changes of the F protein, causing membrane fusion and subsequent virus entry. MeV may persist in the brain, infecting neurons and causing fatal subacute sclerosing panencephalitis (SSPE). Since neurons do not express either of the MeV receptors, signaling lymphocytic activation molecule (SLAM; also called CD150) and nectin-4, how MeV propagates in neurons is unknown. Recent studies have shown that specific substitutions in the F protein found in MeV isolates from SSPE patients are critical for MeV neuropathogenicity by rendering the protein unstable and hyperfusogenic. Recombinant MeVs possessing the F proteins with such substitutions can spread in primary human neurons and in the brains of mice and hamsters and induce cell-cell fusion in cells lacking SLAM and nectin-4. Here, we show that receptor-blind mutant H proteins that have decreased binding affinities to receptors can support membrane fusion mediated by hyperfusogenic mutant F proteins, but not the wild-type F protein, in cells expressing the corresponding receptors. The results suggest that weak interactions of the H protein with certain molecules (putative neuron receptors) trigger hyperfusogenic F proteins in SSPE patients. Notably, where cell-cell contacts are ensured, the weak cis interaction of the H protein with SLAM on the same cell surface also could trigger hyperfusogenic F proteins. Some enveloped viruses may exploit such cis interactions with receptors to infect target cells, especially in cell-to-cell transmission.IMPORTANCE Measles virus (MeV) may persist in the brain, causing incurable subacute sclerosing panencephalitis (SSPE). Because neurons, the main target in SSPE, do not express receptors for wild-type (WT) MeV, how MeV propagates in the brain is a key question for the disease. Recent studies have demonstrated that specific substitutions in the MeV fusion (F) protein are critical for neuropathogenicity. Here, we show that weak cis and trans interactions of the MeV attachment protein with receptors that are not sufficient to trigger the WT MeV F protein can trigger the mutant F proteins from neuropathogenic MeV isolates. Our study not only provides an important clue to understand MeV neuropathogenicity but also reveals a novel viral strategy to expand cell tropism.


Assuntos
Moléculas de Adesão Celular/metabolismo , Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Panencefalite Esclerosante Subaguda/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Cricetinae , Hemaglutininas Virais/genética , Humanos , Vírus do Sarampo/genética , Vírus do Sarampo/patogenicidade , Camundongos , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Proteínas Virais de Fusão/genética
10.
Cytokine ; 116: 115-119, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30690291

RESUMO

Homozygous mutations in Triggering Receptor Expressed on Myeloid cells 2 gene (TREM2) are one of the major causes of Nasu Hakola Disease (NHD). We analysed Peripheral Blood Mononuclear Cells (PBMC) profile of 164 inflammatory factors in patients with NHD carrying the TREM2 Q33X mutation as compared with heterozygous and wild type individuals. Several molecules related to bone formation and angiogenesis were altered in NHD compared to non-carriers: Bone Morphogenetic Protein (BMP)-1 mRNA levels were significantly increased in PBMC (2.32 fold-increase; P = 0.01), as were Transforming Growth Factor Beta (TGFB)3 levels (1.51 fold-increase; P = 0.02). Conversely, CXCL5 and Pro Platelet Basic Protein (PPBP) were strongly downregulated (-28.26, -9.85 fold-decrease over non-carriers, respectively, P = 0.01), as well as Platelet Factor 4 Variant 1 (PF4V1; -41.44, P = 0.03). Among other inflammatory factors evaluated, Interleukin (IL)-15 and Tumor Necrosis Factor Superfamily Member (TNFSF)4 mRNA levels were decreased in NHD as compared with non-carriers (-2.25 and -3.87 fold-decrease, P = 0.01 and 0.001, respectively). In heterozygous individuals, no significant differences were observed, apart from IL-15 mRNA levels, that were decreased at the same extent as NHD (-2.05 fold-decrease over non-carriers, P = 0.002). We identified a signature in PBMC from patients with NHD consisting of strongly decreased mRNA levels of CXCL5, PPBP, PF4V1, mildly decreased IL-15 and TNFSF4 and mildly increased BMP-1 and TGFB3.


Assuntos
Citocinas/sangue , Leucócitos Mononucleares/imunologia , Lipodistrofia/genética , Osteocondrodisplasias/genética , RNA Mensageiro/análise , Panencefalite Esclerosante Subaguda/genética , Proteína Morfogenética Óssea 1/genética , Quimiocina CXCL5/genética , Citocinas/genética , Feminino , Humanos , Inflamação , Leucócitos Mononucleares/patologia , Lipodistrofia/sangue , Lipodistrofia/patologia , Masculino , Glicoproteínas de Membrana/genética , Ligante OX40/genética , Osteocondrodisplasias/sangue , Osteocondrodisplasias/patologia , Fator Plaquetário 4/genética , RNA Mensageiro/genética , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/sangue , Panencefalite Esclerosante Subaguda/patologia , Fator de Crescimento Transformador beta3/genética , beta-Tromboglobulina/genética
11.
Acta Neurol Belg ; 118(4): 607-615, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30242731

RESUMO

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia, and Nasu Hakola disease or polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy are both underrecognized progressive degenerative white matter diseases that can present with young dementia, leukoencephalopathy and brain calcifications. We report and compare three cases in terms of clinical phenotype, imaging and neuropathological findings. Both cases have led to the identification of two novel causal mutations.


Assuntos
Encéfalo/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Demência/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Leucoencefalopatias/diagnóstico por imagem , Lipodistrofia/diagnóstico por imagem , Osteocondrodisplasias/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Adulto , Encéfalo/patologia , Calcinose/patologia , Demência/patologia , Epilepsia/patologia , Feminino , Humanos , Leucoencefalopatias/patologia , Lipodistrofia/patologia , Masculino , Pessoa de Meia-Idade , Osteocondrodisplasias/patologia , Panencefalite Esclerosante Subaguda/patologia
12.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298883

RESUMO

Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.


Assuntos
Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Sarampo/transmissão , Neurônios/metabolismo , Panencefalite Esclerosante Subaguda/transmissão , Proteínas Virais de Fusão/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/metabolismo , Sarampo/patologia , Vírus do Sarampo/genética , Vírus do Sarampo/patogenicidade , Neurônios/patologia , Neurônios/virologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Células Vero , Proteínas Virais de Fusão/genética
13.
Brain Pathol ; 27(6): 748-769, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27608278

RESUMO

The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP.


Assuntos
Leucoencefalopatias/patologia , Lipodistrofia/patologia , Osteocondrodisplasias/patologia , Panencefalite Esclerosante Subaguda/patologia , Adulto , Atrofia/patologia , Autopsia , Axônios/patologia , Encéfalo/patologia , Feminino , Humanos , Japão , Leucoencefalopatias/diagnóstico , Lipodistrofia/diagnóstico , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Neuroglia/patologia , Osteocondrodisplasias/diagnóstico , Panencefalite Esclerosante Subaguda/diagnóstico , Substância Branca/patologia
14.
PLoS One ; 11(9): e0162823, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27612283

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model.


Assuntos
Vírus do Sarampo/fisiologia , Peptídeos/farmacologia , Sequências Repetitivas de Aminoácidos , Proteínas Virais de Fusão/química , Replicação Viral/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Modelos Animais de Doenças , HIV-1/metabolismo , Humanos , Vírus do Sarampo/efeitos dos fármacos , Vírus do Sarampo/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos/química , Peptídeos/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Panencefalite Esclerosante Subaguda/virologia , Fatores de Tempo , Células Vero
15.
Brain Nerve ; 68(5): 543-50, 2016 May.
Artigo em Japonês | MEDLINE | ID: mdl-27156507

RESUMO

Nasu-Hakola disease (NHD) is a rare intractable autosomal recessive disorder, characterized by pathological bone fractures and progressive dementia owing to multifocal bone cysts and leukoencephalopathy, caused by various genetic mutations of either DAP12 or TREM2. Loss-of-function of TREM2-DAP12, constituting a signaling complex on osteoclasts and microglia, plays a central role in the pathogenesis of NHD. Recently, NHD has been recognized as the disease entity designated "microgliopathy". However, at present, TREM2-specific ligands in microglia and the precise molecular mechanism underlying leukoencephalopathy remain to be investigated in order to establish an effective molecular targeted therapy for NHD.


Assuntos
Encéfalo/metabolismo , Lipodistrofia/metabolismo , Osteocondrodisplasias/metabolismo , Panencefalite Esclerosante Subaguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Humanos , Lipodistrofia/genética , Lipodistrofia/patologia , Lipodistrofia/fisiopatologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Osteocondrodisplasias/fisiopatologia , Ligação Proteica , Receptores Imunológicos/metabolismo , Transdução de Sinais , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Panencefalite Esclerosante Subaguda/fisiopatologia
16.
BMJ Open ; 6(1): e009499, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26758262

RESUMO

OBJECTIVES: The previously reported functional mutation rs75932628-T (p.R47H) in the triggering receptor expressed on myeloid cells 2 (TREM2) is a genetic risk factor for Alzheimer's disease, Parkinson's disease (PD) and frontotemporal dementia, in European populations. This study aims to assess the genetic association of the variant rs75932628-T with PD and leucoaraiosis (LA) in a Han Chinese population. SETTING: This population-based study was conducted in China by Xiamen University and its affiliated hospital. PARTICIPANTS: 308 patients with LA, 342 patients with PD and 198 healthy blood donors were recruited from the First Affiliated Hospital of Xiamen University. OUTCOME MEASURES: Genotyping was performed by molecular beacon real-time PCR and Sanger sequencing. RESULTS: None of our participants carried the rs75932628-T mutation. CONCLUSIONS: Our results corroborate and extend previous findings, concluding that the variant rs75932628-T (p.R47H) in TREM2 is not a risk factor for LA or PD in the Han Chinese population.


Assuntos
Doença de Alzheimer/patologia , Povo Asiático/genética , Genótipo , Glicoproteínas de Membrana/genética , Mutação , Doença de Parkinson , Polimorfismo Genético , Receptores Imunológicos/genética , Idoso , Doença de Alzheimer/genética , China , Etnicidade , Feminino , Humanos , Lipodistrofia/patologia , Masculino , Pessoa de Meia-Idade , Osteocondrodisplasias/patologia , Doença de Parkinson/genética , Reação em Cadeia da Polimerase em Tempo Real , Panencefalite Esclerosante Subaguda/patologia , Substância Branca/patologia
17.
Brain Pathol ; 26(4): 542-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26462994

RESUMO

Tauopathies are sporadic or familial neurodegenerative diseases characterized by the accumulation of phosphorylated tau in neurons and glial cells and include encephalitis related to measles virus such as subacute sclerosing panencephalitis. We describe a 45-year-old woman, with a history of lymphoma treated with immunosuppressant therapy who underwent an open biopsy of the right frontal cortex for a suspect of encephalitis, and died 4 days later. The neuropathological assessment on the bioptic sample revealed edema, severe gliosis and microglial activation, with lymphomonocytic perivascular cuffing and neurons containing both nuclear and cytoplasmic eosinofilic inclusions that ultrastructurally appeared as tubular and curvilinear non-membrane-bound 12-18 nm structures, leading to the diagnosis of measles inclusion-bodies encephalitis. The biopsy specimen showed several cortical neurons with intense perikaryal immunoreactivity for anti-tau antibodies recognizing phosphorylated epitopes while on autoptic specimens no phosphorylated tau immunoreactivity was detected. Our findings suggest that in specific conditions biopsy-derived human tau may be phosphorylated at sites that may result not phosphorylated in autopsy-derived specimens, most likely caused by post-mortem dephosphorylation.


Assuntos
Neurônios/patologia , Mudanças Depois da Morte , Panencefalite Esclerosante Subaguda/patologia , Proteínas tau/metabolismo , Autopsia , Biópsia , Feminino , Humanos , Pessoa de Meia-Idade , Neurônios/metabolismo , Fosforilação
18.
J Biol Chem ; 291(9): 4334-41, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26694609

RESUMO

The triggering receptor expressed on myeloid cells (TREM) 2 is a member of the immunoglobulin superfamily of receptors and mediates signaling in immune cells via engagement of its co-receptor DNAX-activating protein of 12 kDa (DAP12). Homozygous mutations in TREM2 or DAP12 cause Nasu-Hakola disease, which is characterized by bone abnormalities and dementia. Recently, a variant of TREM2 has also been associated with an increased risk for Alzheimer disease. The selective expression of TREM2 on immune cells and its association with different forms of dementia indicate a contribution of this receptor in common pathways of neurodegeneration.


Assuntos
Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Células Mieloides/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Humanos , Lipodistrofia/genética , Lipodistrofia/imunologia , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Mutação , Células Mieloides/imunologia , Células Mieloides/patologia , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Neurônios/imunologia , Neurônios/patologia , Osteocondrodisplasias/genética , Osteocondrodisplasias/imunologia , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/imunologia , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Receptor Gatilho 1 Expresso em Células Mieloides
19.
Neuropathology ; 35(6): 529-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26087043

RESUMO

Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, characterized by formation of multifocal bone cysts and development of leukoencephalopathy, caused by genetic mutations of either DNAX-activation protein 12 (DAP12) or triggering receptor expressed on myeloid cells 2 (TREM2). Although increasing evidence suggests a defect in microglial TREM2/DAP12 function in NHD, the molecular mechanism underlying leukoencephalopathy with relevance to microglial dysfunction remains unknown. TREM2, by transmitting signals via the immunoreceptor tyrosine-based activation motif (ITAM) of DAP12, stimulates phagocytic activity of microglia, and ITAM signaling is counterbalanced by sialic acid-binding immunoglobulin (Ig)-like lectins (Siglecs)-mediated immunoreceptor tyrosine-based inhibitory motif (ITIM) signaling. To investigate a role of CD33, a member of the Siglecs family acting as a negative regulator of microglia activation, in the pathology of NHD, we studied CD33 expression patterns in five NHD brains and 11 controls by immunohistochemistry. In NHD brains, CD33 was identified exclusively on ramified and amoeboid microglia accumulated in demyelinated white matter lesions but not expressed in astrocytes, oligodendrocytes, or neurons. However, the number of CD33-immunoreactive microglia showed great variability from case to case and from lesion to lesion without significant differences between NHD and control brains. These results do not support the view that CD33-expressing microglia play a central role in the development of leukoencephalopathy in NHD brains.


Assuntos
Lipodistrofia/metabolismo , Lipodistrofia/patologia , Microglia/metabolismo , Microglia/patologia , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/biossíntese , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/análise
20.
Clin Neuropathol ; 34(5): 258-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25943270

RESUMO

A 29-year-old pregnant woman developed progressively worsening encephalopathy, left hemiparesis, and hemodynamic instability over a 6-week period. Initial brain MRI and work-up for infectious and autoimmune causes were normal, although elevated IgG and oligoclonal bands were seen on analysis of the cerebrospinal fluid (CSF). After uncomplicated spontaneous delivery of a preterm healthy infant, her condition worsened. Repeat brain MRI demonstrated generalized volume loss and evidence of corticospinal tract degeneration. She underwent a brain biopsy, which showed characteristic viral inclusions of the type seen in subacute sclerosing panencephalitis (SSPE). The diagnosis was confirmed by immunohistochemistry and electron microscopy, and additional CSF analysis also showed markedly elevated IgG titer for measles. Sequence analysis of the nucleoprotein gene N-450 demonstrated a close relationship to the sequences of viruses in genotype D7. This case documents an ~ 6-month progression to death of SSPE in a pregnant woman.


Assuntos
Encéfalo/patologia , Complicações na Gravidez/patologia , Panencefalite Esclerosante Subaguda/patologia , Adulto , Encéfalo/fisiopatologia , Evolução Fatal , Feminino , Hemodinâmica/fisiologia , Humanos , Imageamento por Ressonância Magnética , Gravidez , Complicações na Gravidez/fisiopatologia , Panencefalite Esclerosante Subaguda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA