Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nature ; 590(7846): 438-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505029

RESUMO

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados Unidos
2.
Rev. bras. plantas med ; 18(2): 488-493, 2016. tab
Artigo em Inglês | LILACS | ID: lil-787947

RESUMO

ABSTRACT Medicinal plants with essential oils in their composition havetypicallybeen shown to be promising in plant control. Sage (Salvia officinalis L.) is cited for its allelopathic effects. This study evaluated the allelopathic potential of dried sage leaves in vegetation, soil and the development of Lycopersicon esculentum Mill. (tomato), Panicum maximum Jacq. (guinea grass) and Salvia hispanica L. (chia) plants. Three seedlings were transplanted seven days after germination in 1 kg plastic containers with soil, in a greenhouse. The grinded dry mass of sage was placed at rates of 3.75; 7.5 15 t ha-1, and a control (no mass). After 30 days, the chlorophyll index of tomato and guinea grass plants were inhibited with 7.5 and 15 t ha-1 sage cover crops. Tomato shoot length was inhibited in all tested rates, and guinea grass plants showed some reduction in growth when using the highest rate of sage mass (15 t ha-1). The dry mass of tomato and guinea grass plants was reduced when using the15 t ha-1, and 7.5 and 15 t ha-1 of sage cover crops, respectively. It can be concluded that there was some effect of sage coverage on the soil in tomato and guinea grass, but no effect was observed on chia plants.


RESUMO As plantas medicinais que apresentam óleos essenciais em sua composição normalmente têm se mostrado promissoras no controle de plantas. A sálvia (Salvia officinalis L.) é citada por seus efeitos alelopáticos. Assim, esse estudo avaliou o potencial alelopático das folhas secas de sálvia na cobertura vegetal, no solo, sobre o desenvolvimento das plantas de Lycopersicon esculentum Mill. (tomate), Panicum maximum Jacq. (capim mombaça) e Salvia hispanica L. (chia). Três plântulas foram transplantadas, sete dias após germinação, em vasos plásticos de 1 kg, com terra, em casa de vegetação. Sobre elas foi disposta a massa seca triturada de sálvia nas proporções 3,75; 7,5 e 15 t ha-1, além da testemunha (sem massa). Após 30 dias, o teor de clorofila das plantas de tomate e capim mombaça foi inibido com 7,5 e 15 t ha-1 de sálvia em cobertura. O comprimento da parte aérea do tomate foi inibido em todas as proporções testadas e as plantas de capim mombaça apresentaram redução do crescimento quando se utilizou 15 t ha-1 de sálvia como cobertura. A massa seca das plantas de tomate e capim mombaça reduziu com o uso de 15 t ha-1 e, 7,5 e 15 t ha-1 de sálvia como cobertura, respectivamente. Finalmente, pode-se concluir que houve efeito da sálvia em cobertura sobre o solo em tomate e capim mombaça, mas não houve efeito da mesma sobre as plantas de chia.


Assuntos
Plantas Medicinais/anatomia & histologia , Salvia officinalis/classificação , Alelopatia/fisiologia , Solanum lycopersicum/classificação , Panicum/classificação
3.
Plant J ; 84(4): 800-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26426343

RESUMO

Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between the populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.


Assuntos
Exoma/genética , Variação Genética , Panicum/genética , Análise de Sequência de DNA/métodos , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA , Ecossistema , Ecótipo , Genética Populacional , Genoma de Planta/genética , Genótipo , Geografia , Panicum/classificação , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Poliploidia , Especificidade da Espécie , Estados Unidos
4.
PLoS One ; 10(6): e0130414, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26125564

RESUMO

Switchgrass (Panicum virgatum L.) is a North American grass that exhibits vast genetic diversity across its geographic range. In the Northeastern US, local switchgrass populations were restricted to a narrow coastal zone before European settlement, but current populations inhabit inland road verges raising questions about their origin and genetics. These questions are important because switchgrass lines with novel traits are being cultivated as a biofuel feedstock, and gene flow could impact the genetic integrity and distribution of local populations. This study was designed to determine if: 1) switchgrass plants collected in the Long Island Sound Coastal Lowland coastal Level IV ecoregion represented local populations, and 2) switchgrass plants collected from road verges in the adjacent inland regions were most closely related to local coastal populations or switchgrass from other geographic regions. The study used 18 microsatellite markers to infer the genetic relationships between 122 collected switchgrass plants and a reference dataset consisting of 28 cultivars representing ecotypes, ploidy levels, and lineages from North America. Results showed that 84% of 88 plants collected in the coastal plants were most closely aligned with the Lowland tetraploid genetic pool. Among this group, 61 coastal plants were similar to, but distinct from, all Lowland tetraploid cultivars in the reference dataset leading to the designation of a genetic sub-population called the Southern New England Lowland Tetraploids. In contrast, 67% of 34 plants collected in road verges in the inland ecoregions were most similar to two Upland octoploid cultivars; only 24% of roadside plants were Lowland tetraploid. These results suggest that cryptic, non-local genotypes exist in road verges and that gene flow from biofuels plantations could contribute to further changes in switchgrass population genetics in the Northeast.


Assuntos
Panicum/genética , Biocombustíveis , Connecticut , Conservação dos Recursos Naturais , Ecótipo , Fluxo Gênico , Pool Gênico , Interação Gene-Ambiente , Variação Genética , Genética Populacional , Genoma de Planta , Genótipo , Repetições de Microssatélites , Panicum/classificação , Poliploidia , Tetraploidia
5.
J Exp Bot ; 65(12): 3165-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723408

RESUMO

Panicum miliaceum (broomcorn millet) is a tetraploid cereal, which was among the first domesticated crops, but is now a minor crop despite its high water use efficiency. The ancestors of this species have not been determined; we aimed to identify likely candidates within the genus, where phylogenies are poorly resolved. Nuclear and chloroplast DNA sequences from P. miliaceum and a range of diploid and tetraploid relatives were used to develop phylogenies of the diploid and tetraploid species. Chromosomal in situ hybridization with genomic DNA as a probe was used to characterize the genomes in the tetraploid P. miliaceum and a tetraploid accession of P. repens. In situ hybridization showed that half the chromosomes of P. miliaceum hybridized more strongly with labelled genomic DNA from P. capillare, and half with labelled DNA from P. repens. Genomic DNA probes differentiated two sets of 18 chromosomes in the tetraploid P. repens. Our phylogenetic data support the allotetraploid origin of P. miliaceum, with the maternal ancestor being P. capillare (or a close relative) and the other genome being shared with P. repens. Our P. repens accession was also an allotetraploid with two dissimilar but closely related genomes, the maternal genome being similar to P. sumatrense. Further collection of Panicum species, particularly from the Old World, is required. It is important to identify why the water-efficient P. miliaceum is now of minimal importance in agriculture, and it may be valuable to exploit the diversity in this species and its ancestors.


Assuntos
Evolução Molecular , Panicum/classificação , Panicum/genética , Proteínas de Plantas/genética , Tetraploidia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Panicum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
6.
PLoS One ; 7(6): e38702, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719924

RESUMO

Polyploidy poses challenges for phylogenetic reconstruction because of the need to identify and distinguish between homoeologous loci. This can be addressed by use of low copy nuclear markers. Panicum s.s. is a genus of about 100 species in the grass tribe Paniceae, subfamily Panicoideae, and is divided into five sections. Many of the species are known to be polyploids. The most well-known of the Panicum polyploids are switchgrass (Panicum virgatum) and common or Proso millet (P. miliaceum). Switchgrass is in section Virgata, along with P. tricholaenoides, P. amarum, and P. amarulum, whereas P. miliaceum is in sect. Panicum. We have generated sequence data from five low copy nuclear loci and two chloroplast loci and have clarified the origin of P. virgatum. We find that all members of sects. Virgata and Urvilleana are the result of diversification after a single allopolyploidy event. The closest diploid relatives of switchgrass are in sect. Rudgeana, native to Central and South America. Within sections Virgata and Urvilleana, P. tricholaenoides is sister to the remaining species. Panicum racemosum and P. urvilleanum form a clade, which may be sister to P. chloroleucum. Panicum amarum, P. amarulum, and the lowland and upland ecotypes of P. virgatum together form a clade, within which relationships are complex. Hexaploid and octoploid plants are likely allopolyploids, with P. amarum and P. amarulum sharing genomes with P. virgatum. Octoploid P. virgatum plants are formed via hybridization between disparate tetraploids. We show that polyploidy precedes diversification in a complex set of polyploids; our data thus suggest that polyploidy could provide the raw material for diversification. In addition, we show two rounds of allopolyploidization in the ancestry of switchgrass, and identify additional species that may be part of its broader gene pool. This may be relevant for development of the crop for biofuels.


Assuntos
Núcleo Celular/genética , Genes de Plantas , Panicum/genética , Poliploidia , Sequência de Bases , Teorema de Bayes , Cloroplastos/genética , Clonagem Molecular , Primers do DNA , Citometria de Fluxo , Panicum/classificação , Filogenia , Reação em Cadeia da Polimerase
7.
Genetica ; 139(7): 933-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21786028

RESUMO

Switchgrass (Panicum virgatum), a central and Eastern USA native, is highly valued as a component in tallgrass prairie and savanna restoration and conservation projects and a potential bioenergy feedstock. The purpose of this study was to identify regional diversity, gene pools, and centers-of-diversity of switchgrass to gain an understanding of its post-glacial evolution and to identify both the geographic range and potential overlap between functional gene pools. We sampled a total of 384 genotypes from 49 accessions that included the three main taxonomic groups of switchgrass (lowland 4x, upland 4x, and upland 8x) along with one accession possessing an intermediate phenotype. We identified primary centers of diversity for switchgrass in the eastern and western Gulf Coast regions. Migration, drift, and selection have led to adaptive radiation in switchgrass, creating regional gene pools within each of the main taxa. We estimate that both upland-lowland divergence and 4x-to-8x polyploidization within switchgrass began approximately 1.5-1 M ybp and that subsequent ice age cycles have resulted in gene flow between ecotype lineages and between ploidy levels. Gene flow has resulted in "hot spots" of genetic diversity in the southeastern USA and along the Atlantic Seaboard.


Assuntos
Evolução Biológica , DNA de Cloroplastos/genética , Variação Genética/genética , Repetições Minissatélites/genética , Panicum/genética , Teorema de Bayes , DNA de Cloroplastos/química , Ecótipo , Fluxo Gênico , Pool Gênico , Deriva Genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Estruturas Genéticas , Genótipo , Panicum/classificação , Filogeografia , Ploidias , Seleção Genética , Análise de Sequência de DNA , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA