Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Acta Crystallogr D Struct Biol ; 80(Pt 9): 675-685, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207895

RESUMO

Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent ß-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.


Assuntos
Dissulfetos , Látex , Papaver , Proteínas de Plantas , Papaver/metabolismo , Papaver/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Látex/química , Látex/metabolismo , Cristalografia por Raios X , Ligantes , Conformação Proteica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Sítios de Ligação , Benzilisoquinolinas/metabolismo , Benzilisoquinolinas/química , Ligação Proteica
2.
Curr Pharm Des ; 28(25): 2039-2042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674306

RESUMO

Opium is defined as the air-dried latex obtained by incision from the unripe capsules of Papaver somniferum L. Opium is a complex mixture that contains approximately 10% morphine and 2% codeine. It is commonly used to prepare opium tinctures for people with chronic diarrhea. Morphine and related opioids are powerful but highly addictive analgesics; designing less addictive opioids is an active area of pharmaceutical research that may lead to significant improvements in chronic pain management. Recently, the International Agency for Research on Cancer (IARC) has classified opium consumption as carcinogenic to humans (Group 1) based on sufficient evidence of carcinogenicity in human studies. However, all human studies analyzed by the IARC Working Group included participants who consumed opium that was mixed, adulterated, and/or contaminated with known and probable human carcinogens (e.g., tarry residues of combusted opium, arsenic, lead, and chromium). The working group considered that these carcinogens were part of the complex mixture that opium is, rather than co-exposure or confounders. No evidence of carcinogenicity was available for pure opium in human, animal, or mechanistic studies. To avoid confusion and concern among health professionals and patients using medicinal opium preparations and in scientists involved in the design and development of new opium derivatives, opium should be classified in Group 3 (not classifiable as to its carcinogenicity to humans). The term 'street opium' could be used to refer to opium that probably contains human carcinogens not present in pure opium and should remain in Group 1 (carcinogenic to humans).


Assuntos
Neoplasias , Papaver , Analgésicos Opioides , Animais , Carcinógenos , Humanos , Morfina , Neoplasias/induzido quimicamente , Ópio/efeitos adversos , Ópio/química , Papaver/química
3.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164114

RESUMO

The objective of this study is to valorize Papaver rhoeas L. from the Taounate region of Morocco by determining the total polyphenol content (TPC), the total flavonoid content (TFC) and the antioxidant and antimicrobial activities of four organs. The quantification of TPC and TFC in root, stem, leaf and flower extracts (RE, SE, LE and FE, respectively) was estimated by the Folin-Ciocalteu reaction and the aluminum trichloride method, respectively. Two tests were used to assess antioxidant power: the DPPH test and TAC assay. The antimicrobial activity was studied against five pathogenic bacteria and yeast, using two methods: disk diffusion and microdilution. The TPC in LE and LF was twice as high as that in RE and SE (24.24 and 22.10 mg GAE/g, respectively). The TFC values in the four extracts were very close and varied between 4.50 mg QE/g in the FE and 4.38 mg QE/g in the RE. The LE and FE showed low DPPH values with IC50 = 0.50 and 0.52 mg/mL, respectively. The TAC measurement revealed the presence of a significant amount of antioxidants in the studied extracts, mainly in LE and FE (6.60 and 5.53 mg AAE/g, respectively). The antimicrobial activity results revealed significant activity on almost all of the tested strains. The MIC of FE and SE against E. coli 57 was 1.56 and 0.78 mg/mL, respectively, while against the S. aureus it was 50 and 25 mg/mL, respectively. The low MLC value (1.56 mg/mL) was recorded against E. coli 57 by RE and SE.


Assuntos
Anti-Infecciosos , Antioxidantes , Bactérias/crescimento & desenvolvimento , Papaver/química , Extratos Vegetais , Folhas de Planta/química , Polifenóis , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Marrocos , Papaver/crescimento & desenvolvimento , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia
4.
Oxid Med Cell Longev ; 2022: 2041769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824615

RESUMO

The genus Papaver is highly esteemed in the pharmacy industry, in the culinary field, and as ornamental plants. These plants are also valued in traditional medicine. Among all Papaver species, Papaver somniferum L. (opium poppy) is the most important species in supplying phytochemicals for the formulation of drugs, mainly alkaloids like morphine, codeine, rhoeadine, thebaine, and papaverine. In addition, Papaver plants present other types of phytochemicals, which altogether are responsible for its biological activities. Therefore, this review covers the phytochemical composition of Papaver plants, including alkaloids, phenolic compounds, and essential oils. The traditional uses are reviewed along with their pharmacological activities. Moreover, safety aspects are reported to provide a deep overview of the pharmacology potential of this genus. An updated search was carried out in databases such as Google Scholar, ScienceDirect, and PubMed to retrieve the information. Overall, this genus is a rich source of alkaloids of different types and also contains interesting phenolic compounds, such as anthocyanins, flavonols, and the characteristic indole derivatives nudicaulins. Among other pharmacological properties, numerous preclinical studies have been published about the analgesic, anticancer, antimicrobial, antioxidant, and antidiabetic activities of Papaver plants. Although it highlights the significant impact of this genus for the treatment of a variety of diseases and conditions, as a future prospect, characterization works accompanying preclinical studies are required along with clinical and toxicology studies to establish a correlation between the scientific and traditional knowledge.


Assuntos
Alcaloides , Papaver , Papaver/química , Antocianinas , Alcaloides/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Medicina Tradicional
5.
Bioorg Chem ; 115: 105135, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303039

RESUMO

Noscapine is a natural product first isolated from the opium poppy (Papaver somniferum L.) with anticancer properties. In this work, we report the synthesis and cellular screening of a noscapine-based library. A library of novel noscapine derivatives was synthesized with modifications in the isoquinoline and phthalide scaffolds. The so generated library, consisting of fifty-seven derivatives of the natural product noscapine, was tested against MDA-MB-231 breast cancer cells in a cellular proliferation assay (with a Z' > 0.7). The screening resulted in the identification of two novel noscapine derivatives as inhibitors of MDA cell growth with IC50 values of 5 µM and 1.5 µM, respectively. Both hit molecules have a five-fold and seventeen-fold higher potency, compared with that of lead compound noscapine (IC50 26 µM). The identified active derivatives retain the tubulin-binding ability of noscapine. Further testing of both hit molecules, alongside the natural product against additional cancer cell lines (HepG2, HeLa and PC3 cells) confirmed our initial findings. Both molecules have improved anti-proliferative properties when compared to the initial natural product, noscapine.


Assuntos
Antineoplásicos/síntese química , Noscapina/química , Bibliotecas de Moléculas Pequenas/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzofuranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Isoquinolinas/química , Papaver/química , Papaver/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
6.
Molecules ; 25(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630455

RESUMO

The objective of this study was to compare the effects of the dietary inclusion of hemp seed oil (HO) and poppy seed oil (PO) on the lipid metabolism and antioxidant status of lean and genetically obese Zucker rats. The rats were fed a control diet for laboratory rodents or a modification with HO or PO. Both oils reduced body and epididymal fat and liver cholesterol levels and promoted oxidative stress in the liver of obese rats. The HO reduced plasma triglycerides and had a stronger liver cholesterol-lowering effect in obese rats than PO. In the lean rats, HO and PO had no effects on the body fat content, plasma lipid profile, or lipid metabolism in the liver. HO considerably elevated the content of α-linolenic acid in the liver and increased the liver ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) in the lean rats. In conclusion, the regular consumption of both oils increases the accumulation of essential fatty acids in the liver of healthy animals, whilst not having any adverse effects on the body, whereas in genetically obese rats, the effects of both dietary oils on the lipid metabolism and antioxidant status are unequivocal and only partially beneficial.


Assuntos
Antioxidantes/farmacologia , Cannabis/química , Dieta , Obesidade/tratamento farmacológico , Papaver/química , Óleos de Plantas/farmacologia , Magreza/tratamento farmacológico , Animais , Metabolismo dos Lipídeos , Obesidade/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Zucker , Magreza/patologia
7.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316453

RESUMO

Papaver rhoeas plant is common in many regions worldwide and contributes to the landscape with its red flower. In the present study we first carried out morphological investigation by optical and scanning electron microscopy of the ovules within the ovary. After ovules' isolation we prepared extracts to test possible cytotoxic activities on HL60 leukemia human cells and investigated the extracts using thin-layer chromatography (TLC) and gas-chromatography/mass spectrometry (GC-MS). P. rhoeas ovules showed an elongated, round shape and the presence of ordered sculptures on the ovule surface. The ovule extracts showed cytotoxic activity on HL60 human cells mainly found in some TLC-isolated spots. Compounds consisting of active spots were identified by GC-MS investigations. Our findings on the P. rhoeas ovule compounds open perspectives for further investigations of TLC-isolated spots on other human cancer cell lines.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Papaver/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Fracionamento Químico , Cromatografia em Camada Fina , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Células HL-60 , Humanos , Óvulo Vegetal/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
8.
Mater Sci Eng C Mater Biol Appl ; 103: 109740, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349401

RESUMO

To overcome the disadvantages of chemical and physical methods, phyto-fabricated nanoparticles attained great attention due to their multifarious applications. Here we successfully demonstrated Papaver somniferum L. mediated green synthesis of lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles. Characterization of nanoparticles involved techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and energy dispersive X-ray (EDX) associated with scanning electron microscopy (SEM). XRD analysis confirmed the phase identification and crystalline nature. FTIR analysis confirmed the capping of nanoparticles by plants' phytochemicals. SEM revealed morphological features of PbO and Fe2O3 with size of nanoparticles being 23 ±â€¯11 nm and 38 ±â€¯13 nm, respectively. The elemental composition of the nanoparticles was confirmed by EDX. Both bacterial and fungal isolates showed susceptibility towards PbO and Fe2O3 NPs. Both the NPs also showed considerable total antioxidant potential, free radical scavenging potential and reducing power. Insignificant level of α-amylase for both NPs was observed. Fe2O3 NPs showed superior biocompatibility with human RBCs as compared to PbO whereas PbO showed more potent anti-cancer activity as compared to Fe2O3 NPs. Overall our study concluded that both NPs played vital role in multiple biological assays however, extensive research focused on cytotoxic evaluation of NPs in-vivo is required.


Assuntos
Compostos Férricos/química , Chumbo/química , Nanopartículas Metálicas/química , Óxidos/química , Papaver/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Eritrócitos/efeitos dos fármacos , Hemolíticos/química , Hemolíticos/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Nanopartículas Metálicas/uso terapêutico , Papaver/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
9.
BMC Complement Altern Med ; 19(1): 90, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036001

RESUMO

BACKGROUND: Papaver nudicaule belongs to the Papaveraceae family, which is planted as an annual herbaceous species generally for ornamental purpose. Papaver rhoeas in the same family has been reported to have various pharmacological activities such as antioxidant and analgesic effects. In contrast, little is known about the pharmacological activity of Papaver nudicaule. In this study, the anti-inflammatory activity of Papaver nudicaule extracts and the action mechanisms were investigated in RAW264.7 macrophage cells. METHODS: To investigate the anti-inflammatory activity of five cultivars of Papaver nudicaule with different flower color, samples were collected from their aerial parts at two growth stages (60 and 90 days) and their ethanol extracts were evaluated in the lipopolysaccharide (LPS)-treated RAW264.7 cells by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) levels. Interleukin 1-beta (IL-1ß), Interleukin-6 (IL-6) and Tumor necrosis factor alpha (TNF-α) production were also analyzed by RT-PCR and multiplex assays. Nuclear Factor-kappa-light-chain-enhancer of activated B cells (NF-κB) and Signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using western blotting and luciferase reporter assays to reveal the action mechanism of Papaver nudicaule extracts in their anti-inflammatory activity. RESULTS: All of the Papaver nudicaule extracts were effective in reducing the LPS-induced NO, which is an important inflammatory mediator, and the extract of Papaver nudicaule with white flower collected at 90 days (NW90) was selected for further experiments because of the best effect on reducing the LPS-induced NO as well as no toxicity. NW90 lowered the LPS-induced PGE2 level and decreased the LPS-induced Nitric oxide synthase 2 (NOS2) and Cyclooxygenase 2 (COX2). In addition, NW90 reduced the LPS-induced inflammatory cytokines, IL-1ß and IL-6. Furthermore, NW90 inhibited the LPS-induced activation of NF-κB and STAT3. CONCLUSIONS: These results indicate that NW90 may restrain inflammation by inhibiting NF-κB and STAT3, suggesting the potential therapeutic properties of Papaver nudicaule against inflammatory disease.


Assuntos
Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Papaver/química , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
10.
Drug Metab Dispos ; 47(2): 164-172, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478158

RESUMO

The antitussive agent noscapine has been shown to inhibit the proliferation of cancer cells by disruption of tubulin dynamic. However, the efficacy of several anticancer drugs that inhibit tublin dynamics (vinca alkaloids and taxanes) is reduced by the multidrug resistance phenotype. These compounds are substrates for P-glycoprotein (P-gp)-mediated extrusion from cells. Consequently, the antiproliferative activity of noscapine and a series of derivatives was measured in drug-sensitive and drug-resistant cells that overexpress P-gp. None of the noscapine derivatives displayed lower potency in cells overexpressing P-gp, thereby suggesting a lack of interaction with this pump. However, the cellular efflux of a fluorescent substrate by P-gp was potently inhibited by noscapine and most derivatives. Further investigation with purified, reconstituted P-gp demonstrated that inhibition of P-gp function was due to direct interaction of noscapine derivatives with the transporter. Moreover, coadministration of vinblastine with two of the noscapine derivatives displayed synergistic inhibition of proliferation, even in P-gp-expressing resistant cell lines. Therefore, noscapine derivatives offer a dual benefit of overcoming the significant impact of P-gp in conferring multidrug resistance and synergy with tubulin-disrupting anticancer drugs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Noscapina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Neoplasias/patologia , Noscapina/análogos & derivados , Papaver/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Vimblastina/farmacologia
11.
Forensic Sci Int ; 295: 121-127, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30579243

RESUMO

Papaver somniferum (opium poppy) is one of the world's oldest medicinal plants which are widely used for medicinal, nutritive and scientific purposes. Turkey is one of the major legal opium poppy producer countries in the world and the seed paste of the poppies is consumed in great deal, even more than 100g per meal. The main objective of this study is to investigate the influence of poppy seed paste ingestion on urine tests for opiates whether or not could lead to opiate positive urine test results. For this purpose, a variety of poppies were used and the morphine content of white, yellow and blue-black poppies were determined as 1.9, 4.0 and 2.6mg/kg, respectively. 100g of these seed pastes were consumed in the breakfast by ten healthy adults enrolled in the study over three days and urine samples were collected before and after the breakfast. Opiate screening analysis was carried out by enzyme immunoassay method and the results were evaluated by two different cut-off values (300 and 2000ng/mL). Morphine confirmation analysis was made by GC-MS system and the chromatographic method was validated in terms of selectivity, extraction efficiency, linearity (25-2000ng/ml), intra-assay precision, accuracy, limit of detection (LOD) and limit of quantitation (LOQ) (3 and 10ng/ml), carryover, matrix effect, dilution integrity and stability. According to cut-off value 300ng/ml, opiate concentrations were found positive up to 48h. For cut-off value 2000ng/mL; this time was up to 12h in collected urine samples after consumption of three different colored poppy seed pastes. In all urine samples, thebaine was detected while the heroin abuse metabolite 6-acetyl morphine (6-AM) was not. Urine drug testing legislation was revised on 2016 in Turkey and opiate screening cut-off values increased from 300 to 2000ng/mL. Overall results have shown that poppy seed paste as food consumption could lead to opiate positive urine test result even if increased cut off levels are used. It can also be deduced that thebaine can be taken as supportive biomarker for poppy seed paste consumption. Awareness of interpretation of urine test results and defining the procedures especially for forensic drug testing must be done in legal aspect to ensure justice for each individual (workplace, traffic, court etc.).


Assuntos
Alimentos , Morfina/urina , Papaver/química , Sementes/química , Adulto , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Técnicas Imunoenzimáticas , Limite de Detecção , Masculino , Fatores de Tempo , Turquia
12.
Chem Biodivers ; 14(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28599092

RESUMO

Poppy seeds (Papaver somniferum L.) belong to tasty food ingredients however, they should be considered also as valuable source of biologically active compounds. Content of selected metabolites, antioxidant and proteinase inhibitory activities were analyzed in vitro in extracts from seeds of fifteen poppy genotypes. Considerable variation in all parameters was detected within the set of analyzed poppy genotypes. The genotype Major expressed the highest antioxidant activity determined by all four methodological approaches (DPPH, ABTS, FRAP, RP). The genotype MS 423 exhibited the highest inhibitory activities against trypsin, thrombin and collagenase. Very specific position among all had the genotype Redy. Its grain extract reached significantly high levels in 9 out of 14 measured parameters (TPC, TFC, TTC, TAC, FRAP, RP, inhibitory activities against trypsin, thrombin, collagenase). Edible grains of poppy are valuable source of natural compounds which may be beneficial in pathological states associated with oxidative stress or increased proteinase activities.


Assuntos
Antioxidantes/química , Papaver/química , Extratos Vegetais/química , Inibidores de Proteases/química , Sementes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Genótipo , Humanos , Papaver/genética , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/genética , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Sementes/genética
13.
Sci Rep ; 6: 37062, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830833

RESUMO

Osteosarcoma, the most common primary malignant bone tumor, usually arises in the metaphysis of long bones. Amplification and mutation of the epidermal growth factor receptor (EGFR) gene represent signature genetic abnormalities encountered in osteosarcoma. Noscapine is a benzylisoquinoline alkaloid derived from the opium poppy Papaver somniferum. Recently several studies have suggested its anti-cancer effect in melanoma, ovarian cancer, gliomas, breast cancer, lung cancer, and colon cancer. However, the underlying molecular mechanism for its anti-cancer effect still remains unclear. In this paper, we found the mechanism of noscapine effectively suppressed proliferation and invasion of MG63 cell line by inhibiting the phosphorylation of EGFR and its downstream pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Noscapina/farmacologia , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Terapia de Alvo Molecular , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Noscapina/química , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Papaver/química , Fosforilação/efeitos dos fármacos , Fosfotirosina/análise , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Waste Manag Res ; 34(12): 1316-1321, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27895286

RESUMO

The feasibility of biofuel production via the pyrolysis of poppy capsule pulp, the main waste product of Afyon Alkoloid Factory, was investigated. The poppy capsule pulp was shown to have a high volatile matter content (ca. 76%). Pyrolysis experiments were carried out in the temperature range 400-550°C (heating rate 18°C min-1 and holding time 20 min) under a nitrogen atmosphere. The chemical components of the bio-oil were characterized by Fourier transform infrared spectrometry and gas chromatography-mass spectrometry. The effects of pyrolysis temperature on the production efficiency and the calorific value of the bio-oil were investigated. The maximum bio-oil yield and its calorific value at 500°C were 23.6% and 31.6 MJ kg-1, respectively. The latter value is close to that of many petroleum fractions. This high-energy bio-oil is therefore a clean fuel precursor and can be upgraded into higher quality fuels.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Papaver/química , Óleos de Plantas/metabolismo , Resíduos , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
15.
Chembiochem ; 17(4): 318-27, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670055

RESUMO

Nudicaulins are a group of indole alkaloid glycosides responsible for the color of yellow petals of Papaver nudicaule (Iceland poppy). The unique aglycone scaffold of these alkaloids attracted our interest as one of the most unusual flavonoid-indole hybrid structures that occur in nature. Stable isotope labeling experiments with sliced petals identified free indole, but not tryptamine or l-tryptophan, as one of the two key biosynthetic precursors of the nudicaulin aglycone. Pelargonidin was identified as the second key precursor, contributing the polyphenolic unit to the nudicaulin molecule. This finding was inferred from the temporary accumulation of pelargonidin glycosides in the petals during flower bud development and a drop at the point in time when nudicaulin levels start to increase. The precursor-directed incorporation of cyanidin into a new 3'-hydroxynudicaulin strongly supports the hypothesis that anthocyanins are involved in the biosynthesis of nudicaulins.


Assuntos
Alcaloides/metabolismo , Antocianinas/metabolismo , Alcaloides Indólicos/metabolismo , Papaver/metabolismo , Alcaloides/química , Antocianinas/química , Vias Biossintéticas , Alcaloides Indólicos/química , Papaver/química , Policetídeos/química , Policetídeos/metabolismo
16.
Phytochemistry ; 111: 7-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583437

RESUMO

Noscapine is a phthalideisoquinoline alkaloid, which represents a class of plant specialized metabolites within the large and structurally diverse group of benzylisoquinoline alkaloids. Along with the narcotic analgesic morphine, noscapine is a major alkaloid in the latex of opium poppy (Papaver somniferum) that has long been used as a cough suppressant and has undergone extensive investigation as a potential anticancer drug. Cultivated opium poppy plants remain the only commercial source of noscapine. Despite its isolation from opium more than two centuries ago, the almost complete biosynthesis of noscapine has only recently been established based on an impressive combination of molecular genetics, functional genomics, and metabolic biochemistry. In this review, we provide a historical account of noscapine from its discovery through to initial investigations of its formation in opium poppy. We also describe recent breakthroughs that have led to an elucidation of the noscapine biosynthetic pathway, and we discuss the pharmacological properties that have prompted intensive evaluation of the potential pharmaceutical applications of noscapine and several semi-synthetic derivatives. Finally, we speculate on the future potential for the production of noscapine using metabolic engineering and synthetic biology in plants and microbes.


Assuntos
Alcaloides , Antitussígenos , Noscapina , Papaver/química , Alcaloides/síntese química , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antitussígenos/síntese química , Antitussígenos/química , Antitussígenos/isolamento & purificação , Antitussígenos/farmacologia , Benzilisoquinolinas/química , Látex/química , Estrutura Molecular , Noscapina/síntese química , Noscapina/química , Noscapina/isolamento & purificação , Noscapina/farmacologia
17.
J Med Food ; 18(4): 460-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25185065

RESUMO

The aim of this work was to analyze the antioxidant and antimutagenic/anticarcinogenic capacity of Papaver rhoeas L. water extract against standard mutagen/carcinogen methyl methanesulfonate (MMS) and radiomimetic zeocin (Zeo) on a test system Saccharomyces cerevisiae. The following assays were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, quantitative determination of superoxide anion (antireactive oxygen species [antiROS test]), DNA topology assay, D7ts1 test--for antimutagenic--and Ty1 transposition test--for anticarcinogenic effects. Strong pro-oxidative capacity of Zeo was shown to correlate with its well-expressed mutagenic and carcinogenic properties. The mutagenic and carcinogenic effects of MMS were also confirmed. Our data concerning the antioxidant activity of P. rhoeas L. extract revealed that concentration corresponding to IC(50) in the DPPH assay possessed the highest antioxidant activity in the antiROS biological assay. It was also observed that a concentration with 50% scavenging activity expressed the most pronounced antimutagenic properties decreasing Zeo-induced gene conversion twofold, reverse mutation fivefold, and total aberrations fourfold. The same concentration possessed well-expressed anticarcinogenic properties measured as reduction of MMS-induced Ty1 transposition rate fivefold and fourfold when Zeo was used as an inductor. Based on the well-expressed antioxidant, antimutagenic, and anticarcinogenic properties obtained in this work, the P. rhoeas L. extract could be recommended for further investigations and possible use as a food additive.


Assuntos
Anticarcinógenos/farmacologia , Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Papaver/química , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Carcinógenos/toxicidade , Testes de Mutagenicidade , Mutagênicos/toxicidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Planta ; 240(1): 19-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24671624

RESUMO

Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.


Assuntos
Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Regulação da Expressão Gênica de Plantas , Ópio/química , Papaver/metabolismo , Alcaloides/química , Benzilisoquinolinas/química , Transporte Biológico , Vias Biossintéticas , Expressão Gênica , Genômica , Engenharia Metabólica , Modelos Biológicos , Papaver/química , Papaver/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais
19.
ChemMedChem ; 9(2): 399-410, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24339417

RESUMO

Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, is a well-known antitussive drug that has a relatively safe in vitro toxicity profile. Noscapine is also known to possess weak anticancer efficacy, and since its discovery, efforts have been made to design derivatives with improved potency. Herein, the synthesis of a series of noscapine analogues, which have been modified in the 6', 9', 1 and 7-positions, is described. In a previous study, replacement of the naturally occurring N-methyl group in the 6'-position with an N-ethylaminocarbonyl was shown to promote cell-cycle arrest and cytotoxicity against three cancer cell lines. Here, this modification has been combined with other structural changes that have previously been shown to improve anticancer activity, namely halo substitution in the 9'-position, regioselective O-demethylation to reveal a free phenol in the 7-position, and reduction of the lactone to the corresponding cyclic ether in the 1-position. The incorporation of new aryl substituents in the 9'-position was also investigated. The study identified interesting new compounds able to induce G2/M cell-cycle arrest and that possess cytotoxic activity against the human prostate carcinoma cell line PC3, the human breast adenocarcinoma cell line MCF-7, and the human pancreatic epithelioid carcinoma cell line PANC-1. In particular, the ethyl urea cyclic ether noscapinoids and a compound containing a 6'-ethylaminocarbonyl along with 9'-chloro, 7-hydroxy and lactone moieties exhibited the most promising biological activities, with EC50 values in the low micromolar range against all three cancer cell lines, and these derivatives warrant further investigation.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Noscapina/análogos & derivados , Noscapina/farmacologia , Papaver/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
20.
J Environ Sci Health B ; 48(2): 133-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23305281

RESUMO

The main aim of this study was to determine antioxidant properties and antibacterial activity of monofloral bee pollen samples to pathogenic bacteria. These samples were collected in different localities in Slovakia. The antioxidant properties of examined plant species were different and decreasing in the following order: Brassica napus subsp. napus L > Papaver somniferum L. > Helianthus annuus L. The antimicrobial effect of the bee product samples were tested by using the agar well diffusion method. The methanol (99.9% and 70%) and the ethanol (96% and 70%) were used for extraction. In this study, five different strains of bacteria were tested: Listeria monocytogenes CCM 4699; Pseudomonas aeruginosa CCM 1960; Staphylococcus aureus CCM 3953; Salmonella enterica CCM 4420; and Escherichia coli CCM 3988. The most sensitive bacteria of the poppy pollen ethanolic extract was Staphylococcus aureus was (70%) The most sensitive bacteria of rape bee pollen methanolic extract (70%) and sunflower ethanolic extract (70%) was Salmonella enterica.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/metabolismo , Abelhas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Pólen/química , Animais , Anti-Infecciosos/química , Abelhas/metabolismo , Brassica napus/química , Brassica napus/metabolismo , Helianthus/química , Helianthus/metabolismo , Papaver/química , Papaver/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Pólen/metabolismo , Eslováquia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA