Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(6): e0064323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272841

RESUMO

Cutaneous human papillomavirus type 5 (HPV5) belongs to the supposedly oncogenic ß-HPVs associated with specific types of skin and oral cavity cancers. Three viral proteins, namely, helicase E1 and transcription factors E2 and E8^E2, are master regulators of the viral life cycle. HPV5 E2 is a transcriptional activator that also participates in the E1-dependent replication and nuclear retention of the viral genome, whereas E8^E2 counterbalances the activity of E2 and inhibits HPV transcription and replication. In the present study, we demonstrate that the HPV5 E2 protein is extensively phosphorylated by cellular protein kinases, and serine residue 402 (S402) is the highest scoring phosphoacceptor site. This residue is located within a motif conserved among many ß-HPVs and in the oncogenic HPV31 α-type. Using the nonphosphorylatable and phosphomimetic mutants, we demonstrate that phosphorylation of the E2 S402 residue is required for the transcription and replication of the HPV5 genome in U2OS cells and human primary keratinocytes. Mechanistically, the E2-S402-phopshodeficient protein is unable to trigger viral gene transcription and has an impaired ability to support E1-dependent replication, but the respective E8^E2-S213 mutant displays no phenotype. However, phosphorylation of the E2 S402 residue has no impact on the E2 stability, subcellular localization, self-assembly, DNA-binding capacity, and affinity to the E1 and BRD4 proteins. Further studies are needed to identify the protein kinase(s) responsible for this phosphorylation. IMPORTANCE Human papillomavirus type 5 (HPV5) may play a role in the development of specific types of cutaneous and head and neck cancers. The persistence of the HPV genome in host cells depends on the activity of its proteins, namely, a helicase E1 and transcription/replication factor E2. The latter also facilitates the attachment of episomal viral genomes to host cell chromosomes. In the present study, we show that the HPV5 E2 protein is extensively phosphorylated by host cell protein kinases, and we identify serine residue 402 as the highest scoring phosphoacceptor site of E2. We demonstrate that the replication of the HPV5 genome may be blocked by a single point mutation that prevents phosphorylation of this serine residue and switches off the transcriptional activity of the E2 protein. The present study contributes to a better understanding of ß-HPV5 replication and its regulation by host cell protein kinases.


Assuntos
Papillomavirus Humano , Proteínas Oncogênicas Virais , Fatores de Transcrição , Replicação Viral , Humanos , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/genética , Papillomavirus Humano/genética , Papillomavirus Humano/fisiologia
2.
J Virol ; 97(5): e0005623, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37167561

RESUMO

Human papillomavirus (HPV) infects epithelial basal cells in the mucosa and either proliferates with the differentiation of the basal cells or persists in them. Multiple host factors are required to support the HPV life cycle; however, the molecular mechanisms involved in cell entry are not yet fully understood. In this study, we performed a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) knockout (KO) screen in HeLa cells and identified folliculin (FLCN), a GTPase-activating protein for Rag GTPases, as an important host factor for HPV infection. The introduction of single guide RNAs for the FLCN gene into HeLa, HaCaT, and ectocervical Ect1 cells reduced infection by HPV18 pseudovirions (18PsVs) and 16PsVs. FLCN KO HeLa cells also exhibited strong resistance to infection with 18PsVs and 16PsVs; nevertheless, they remained highly susceptible to infections with vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus. Immunofluorescence microscopy revealed that the numbers of virions binding to the cell surface were slightly increased in FLCN KO cells. However, virion internalization analysis showed that the internalized virions were rapidly degraded in FLCN KO cells. This degradation was blocked by treatment with the lysosome inhibitor bafilomycin A1. Furthermore, the virion degradation phenotype was also observed in Ras-related GTP-binding protein C (RagC) KO cells. These results suggest that FLCN prevents the lysosomal degradation of incoming HPV virions by enhancing lysosomal RagC activity. IMPORTANCE Cell entry by human papillomavirus (HPV) involves a cellular retrograde transport pathway from the endosome to the trans-Golgi network/Golgi apparatus. However, the mechanism by which this viral trafficking is safeguarded is poorly understood. This is the first study showing that the GTPase-activating protein folliculin (FLCN) protects incoming HPV virions from lysosomal degradation and supports infectious cell entry by activating the Rag GTPases, presumably through the suppression of excessive lysosomal biosynthesis. These findings provide new insights into the effects of small GTPase activity regulation on HPV cell entry and enhance our understanding of the HPV degradation pathway.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Proteínas Proto-Oncogênicas , Proteínas Supressoras de Tumor , Internalização do Vírus , Humanos , Proteínas Ativadoras de GTPase , Células HeLa , Papillomavirus Humano/fisiologia , Lisossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
3.
Sci Adv ; 9(3): eadc9830, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662862

RESUMO

During entry, human papillomavirus (HPV) traffics from the cell surface to the endosome and then to the trans-Golgi network (TGN) and Golgi apparatus. HPV must transit across the TGN/Golgi and exit these compartments to reach the nucleus to cause infection, although how these steps are accomplished is unclear. Combining cellular fractionation, unbiased proteomics, and gene knockdown strategies, we identified the coat protein complex I (COPI), a highly conserved protein complex that facilitates retrograde trafficking of cellular cargos, as a host factor required for HPV infection. Upon TGN/Golgi arrival, the cytoplasmic segment of HPV L2 binds directly to COPI. COPI depletion causes the accumulation of HPV in the TGN/Golgi, resembling the fate of a COPI binding-defective L2 mutant. We propose that the L2-COPI interaction drives HPV trafficking through the TGN and Golgi stacks during virus entry. This shows that an incoming virus is a cargo of the COPI complex.


Assuntos
Complexo I de Proteína do Envoltório , Papillomavirus Humano , Infecções por Papillomavirus , Internalização do Vírus , Humanos , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Papillomavirus Humano/fisiologia , Infecções por Papillomavirus/virologia , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA