Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Neurology ; 102(8): e209268, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547417

RESUMO

OBJECTIVE: Characteristics of myositis with anti-Ku antibodies are poorly understood. The purpose of this study was to elucidate the pathologic features of myositis associated with anti-Ku antibodies, compared with immune-mediated necrotizing myopathy (IMNM) with anti-signal recognition particle (SRP) and anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibodies, in muscle biopsy-oriented registration cohorts in Japan and Germany. METHODS: We performed a retrospective pathology review of patients with anti-Ku myositis samples diagnosed in the Japanese and German cohorts. We evaluated histologic features and performed HLA phenotyping. RESULTS: Fifty biopsied muscle samples in the Japanese cohort and 10 in the German cohort were obtained. After exclusion of myositis-specific autoantibodies or other autoimmune connective tissue diseases, 26 samples (43%) of anti-Ku antibody-positive myositis were analyzed. All the samples shared some common features with IMNM, whereas they showed expression of MHC class II and clusters of perivascular inflammatory cells more frequently than the anti-SRP/HMGCR IMNM samples (71% vs 7%/16%; p < 0.005/<0.005; 64% vs 0%/0%; p < 0.005/<0.005). Anti-Ku myositis biopsies could be divided into 2 subgroups based on the extent of necrosis and regeneration. The group with more abundant necrosis and regeneration showed a higher frequency of MHC class II expression and perivascular inflammatory cell clusters. HLA phenotyping in the 44 available patients showed possible associations of HLA-DRB1*03:01, HLA-DRB1*11:01, and HLA-DQB1*03:01 (p = 0.0045, 0.019, and 0.027; odds ratio [OR] 50.2, 4.6, and 2.8; 95% CI 2.6-2942.1, 1.1-14.5, and 1.0-7.0) in the group with less conspicuous necrosis and regeneration. On the contrary, in the group of more abundant necrosis and regeneration, the allele frequencies of HLA-A*24:02, HLA-B*52:01, HLA-C*12:02, and HLA-DRB1*15:02 were lower than those of healthy controls (p = 0.0036, 0.027, 0.016, and 0.026; OR = 0.27, 0, 0, and 0; 95% CI 0.1-0.7, 0-0.8, 0-0.8, and 0-0.8). However, these HLA associations did not remain significant after statistical correction for multiple testing. DISCUSSION: While anti-Ku myositis shows necrotizing myopathy features, they can be distinguished from anti-SRP/HMGCR IMNM by their MHC class II expression and clusters of perivascular inflammatory cells. The HLA analyses suggest that anti-Ku myositis may have different subsets associated with myopathologic subgroups.


Assuntos
Doenças Autoimunes , Doenças Musculares , Miosite , Humanos , Músculo Esquelético/patologia , Estudos Retrospectivos , Cadeias HLA-DRB1/genética , Miosite/diagnóstico , Doenças Musculares/patologia , Autoanticorpos , Necrose , Partícula de Reconhecimento de Sinal
2.
Proc Natl Acad Sci U S A ; 121(12): e2312322121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478683

RESUMO

RN7SL1 (RNA component of signal recognition particle 7SL1), a component of the signal recognition particle, is a non-coding RNA possessing a small ORF (smORF). However, whether it is translated into peptides is unknown. Here, we generated the RN7SL1-Green Fluorescent Protein (GFP) gene, in which the smORF of RN7SL1 was replaced by GFP, introduced it into 293T cells, and observed cells emitting GFP fluorescence. Furthermore, RNA-seq of GFP-positive cells revealed that they were in an oncogenic state, suggesting that RN7SL1 smORF may be translated under special conditions.


Assuntos
Peptídeos , Partícula de Reconhecimento de Sinal , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/metabolismo
3.
Int J Rheum Dis ; 27(1): e14942, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828793

RESUMO

We describe the case of a 61-year-old woman with anti-signal recognition particle (SRP) antibody-positive immune-mediated necrotizing myopathy (IMNM) who exhibited biopsy-confirmed thrombotic microangiopathy (TMA). The patient developed proximal-dominant muscle weakness and was diagnosed with anti-SRP antibody-positive IMNM based on muscle biopsy results and serological examination. A high-dose corticosteroid prescription was initiated, followed by intravenous methylprednisolone and intravenous immunoglobulin therapy (IVIg). The patient showed IVIg-induced hemolytic anemia with preserved ADAMTS13 activity. Transient oral tacrolimus administration was initiated. Approximately 8 weeks after admission, the serum creatinine levels gradually increased. Renal histological examination revealed TMA, including ischemic changes in the renal tubules, stenosis, and occlusion of the interlobular arteries with fibrinoid necrosis of the afferent arteriolar walls. The arteriolar walls demonstrated an accumulation of C1q and C3c. Myofiber damage in patients with IMNM accounts for the activation of the classical pathway of the complement cascade in the sarcolemma due to antibody deposition. Additionally, a membrane attack complex is observed on capillaries in the muscle tissues of patients with anti-SRP antibody-positive IMNM. Although drug-induced pathomechanisms, such as IVIg and tacrolimus, can trigger the development of TMA, we suggest that the presence of serum anti-SRP antibodies would be implicated in complement-associated kidney vascular damage.


Assuntos
Doenças Autoimunes , Miosite , Microangiopatias Trombóticas , Feminino , Humanos , Pessoa de Meia-Idade , Imunoglobulinas Intravenosas/uso terapêutico , Músculo Esquelético/patologia , Partícula de Reconhecimento de Sinal , Tacrolimo , Autoanticorpos , Miosite/induzido quimicamente , Miosite/diagnóstico , Miosite/tratamento farmacológico , Microangiopatias Trombóticas/induzido quimicamente , Microangiopatias Trombóticas/diagnóstico , Microangiopatias Trombóticas/tratamento farmacológico
4.
BMJ Case Rep ; 16(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081733

RESUMO

Anti-signal recognition particle (anti-SRP)-positive necrotising myopathy causes severe progressive proximal weakness with a propensity to involve pharyngeal, laryngeal and respiratory muscles. It is one of the aggressive inflammatory myopathies. First-line treatment is with high-dose steroids followed by other immunosuppressants, but this conventional therapy is often ineffective. Second-line treatment involves use of either rituximab or intravenous immunonoglobulin (IVIG). Anti-SRP-positive necrotising myopathy is frequently treated as refractory myositis due to its poor responsiveness to steroid monotherapy and conventional immunosuppressive therapies. Therefore, anti-SRP-positive necrotising myopathy differs from immune-mediated myopathy. Although anti-SRP autoantibody is found in only 4-6% of patients with idiopathic inflammatory myopathy, the actual proportion of patients with refractory anti-SRP-positive necrotising myopathy is unknown. We describe a patient with multiple comorbidities who had subacute-onset anti-SRP-positive immune-mediated necrotising myopathy (IMNM). After failing steroids, methotrexate and IVIG therapy, she made a considerable recovery with rituximab. She was later diagnosed to have breast malignancy. Malignancy-associated anti-SRP-positive IMNM is rarely reported.


Assuntos
Doenças Autoimunes , Neoplasias da Mama , Doenças Musculares , Miosite , Feminino , Humanos , Músculo Esquelético/patologia , Rituximab/uso terapêutico , Partícula de Reconhecimento de Sinal , Imunoglobulinas Intravenosas/uso terapêutico , Doenças Musculares/complicações , Doenças Musculares/patologia , Miosite/complicações , Miosite/tratamento farmacológico , Miosite/diagnóstico , Doenças Autoimunes/complicações , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Autoanticorpos , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Necrose/patologia , Esteroides/uso terapêutico
5.
BMC Pediatr ; 23(1): 503, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803383

RESUMO

BACKGROUND: Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease which results in inherited bone marrow failure (IBMF) and is characterized by exocrine pancreatic dysfunction and diverse clinical phenotypes. In the present study, we reviewed the internationally published reports on SDS patients, in order to summarize the clinical features, epidemiology, and treatment of SDS. METHODS: We searched the WangFang and China National Knowledge Infrastructure databases with the keywords "Shwachman-Diamond syndrome," "SDS," "SBDS gene" and "inherited bone marrow failure" for relevant articles published from January 2002 to October 2022. In addition, studies published from January 2002 to October 2022 were searched from the Web of Science, PubMed, and MEDLINE databases, using "Shwachman-diamond syndrome" as the keyword. Finally, one child with SDS treated in Tongji Hospital was also included. RESULTS: The clinical features of 156 patients with SDS were summarized. The three major clinical features of SDS were found to be peripheral blood cytopenia (96.8%), exocrine pancreatic dysfunction (83.3%), and failure to thrive (83.3%). The detection rate of SDS mutations was 94.6% (125/132). Mutations in SBDS, DNAJC21, SRP54, ELF6, and ELF1 have been reported. The male-to-female ratio was approximately 1.3/1. The median age of onset was 0.16 years, but the diagnostic age lagged by a median age of 1.3 years. CONCLUSIONS: Pancreatic exocrine insufficiency and growth failure were common initial symptoms. SDS onset occurred early in childhood, and individual differences were obvious. Comprehensive collection and analysis of case-related data can help clinicians understand the clinical characteristics of SDS, which may improve early diagnosis and promote effective clinical intervention.


Assuntos
Doenças da Medula Óssea , Insuficiência Pancreática Exócrina , Feminino , Humanos , Lactente , Masculino , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/epidemiologia , Doenças da Medula Óssea/genética , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/epidemiologia , Insuficiência Pancreática Exócrina/terapia , Mutação , Fenótipo , Síndrome de Shwachman-Diamond , Partícula de Reconhecimento de Sinal/genética
6.
RNA ; 29(8): 1185-1200, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156570

RESUMO

The SRP9/SRP14 heterodimer is a central component of signal recognition particle (SRP) RNA (7SL) processing and Alu retrotransposition. In this study, we sought to establish the role of nuclear SRP9/SRP14 in the transcriptional regulation of 7SL and BC200 RNA. 7SL and BC200 RNA steady-state levels, rate of decay, and transcriptional activity were evaluated under SRP9/SRP14 knockdown conditions. Immunofluorescent imaging, and subcellular fractionation of MCF-7 cells, revealed a distinct nuclear localization for SRP9/SRP14. The relationship between this localization and transcriptional activity at 7SL and BC200 genes was also examined. These findings demonstrate a novel nuclear function of SRP9/SRP14 establishing that this heterodimer transcriptionally regulates 7SL and BC200 RNA expression. We describe a model in which SRP9/SRP14 cotranscriptionally regulate 7SL and BC200 RNA expression. Our model is also a plausible pathway for regulating Alu RNA transcription and is consistent with the hypothesized roles of SRP9/SRP14 transporting 7SL RNA into the nucleolus for posttranscriptional processing, and trafficking of Alu RNA for retrotransposition.


Assuntos
RNA , Sequências Repetitivas de Ácido Nucleico , Sequência de Aminoácidos , RNA/genética , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo
7.
Haematologica ; 108(10): 2594-2605, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37226705

RESUMO

Shwachman-Diamond syndrome is a rare inherited bone marrow failure syndrome characterized by neutropenia, exocrine pancreatic insufficiency, and skeletal abnormalities. In 10-30% of cases, transformation to a myeloid neoplasm occurs. Approximately 90% of patients have biallelic pathogenic variants in the SBDS gene located on human chromosome 7q11. Over the past several years, pathogenic variants in three other genes have been identified to cause similar phenotypes; these are DNAJC21, EFL1, and SRP54. Clinical manifestations involve multiple organ systems and those classically associated with the Shwachman-Diamond syndrome (bone, blood, and pancreas). Neurocognitive, dermatologic, and retinal changes may also be found. There are specific gene-phenotype differences. To date, SBDS, DNAJC21, and SRP54 variants have been associated with myeloid neoplasia. Common to SBDS, EFL1, DNAJC21, and SRP54 is their involvement in ribosome biogenesis or early protein synthesis. These four genes constitute a common biochemical pathway conserved from yeast to humans that involve early stages of protein synthesis and demonstrate the importance of this synthetic pathway in myelopoiesis.


Assuntos
Doenças da Medula Óssea , Insuficiência Pancreática Exócrina , Lipomatose , Humanos , Síndrome de Shwachman-Diamond , Lipomatose/genética , Lipomatose/metabolismo , Lipomatose/patologia , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/patologia , Mutação , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/metabolismo , Insuficiência Pancreática Exócrina/patologia , Partícula de Reconhecimento de Sinal/genética
8.
Mol Cell ; 83(6): 961-973.e7, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36764302

RESUMO

Most membrane proteins use their first transmembrane domain, known as a signal anchor (SA), for co-translational targeting to the endoplasmic reticulum (ER) via the signal recognition particle (SRP). The SA then inserts into the membrane using either the Sec61 translocation channel or the ER membrane protein complex (EMC) insertase. How EMC and Sec61 collaborate to ensure SA insertion in the correct topology is not understood. Using site-specific crosslinking, we detect a pre-insertion SA intermediate adjacent to EMC. This intermediate forms after SA release from SRP but before ribosome transfer to Sec61. The polypeptide's N-terminal tail samples a cytosolic vestibule bordered by EMC3, from where it can translocate across the membrane concomitant with SA insertion. The ribosome then docks on Sec61, which has an opportunity to insert those SAs skipped by EMC. These results suggest that EMC acts between SRP and Sec61 to triage SAs for insertion during membrane protein biogenesis.


Assuntos
Proteínas de Membrana , Triagem , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico , Retículo Endoplasmático/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo
9.
Am J Med Genet A ; 191(5): 1434-1441, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815775

RESUMO

Severe congenital neutropenia (SCN) is a rare disorder, often due to pathogenic variants in genes such as ELANE, HAX1, and SBDS. SRP54 pathogenic variants are associated with SCN and Shwachman-Diamond-like syndrome. Thirty-eight patients with SRP54-related SCN are reported in the literature. We present an infant with SCN, without classic Shwachman-Diamond syndrome features, who presented with recurrent bacterial infections and an SRP54 (c.349_351del) pathogenic variant. Despite ongoing granulocyte colony-stimulating factor therapy, this patient has no evidence of malignant transformation. Here we establish a framework for the future development of universal guidelines to care for this patient population.


Assuntos
Neutropenia , Lactente , Humanos , Virulência , Mutação , Neutropenia/genética , Neutropenia/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome de Shwachman-Diamond , Partícula de Reconhecimento de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
10.
Front Immunol ; 14: 1301109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169756

RESUMO

Background: Immune-mediated necrotizing myopathies (IMNM) is a rare disease that was first described in 2004. Due to the lack of large case series, there are no formal treatment recommendations for IMNM. Methods: We presented a case of a 47-year-old woman who experienced progressive limb weakness, starting from the lower limbs and gradually affecting the upper limbs. She also reported experiencing dyspnea after engaging in daily activities. When she was admitted to the hospital, her upper limbs were almost unable to move and she could not stand even with support. Her Creatine kinase (CK) level significantly increased (> 3500 u/l). Electromyography showed myogenic damage, anti-Signal recognition particle (anti-SRP) and anti-Ro52 antibodies were highly positive. Pathological biopsy of the right biceps muscle showed necrotizing myopathy in the skeletal muscle. She was ultimately diagnosed with anti-SRP IMNN, and was given monotherapy with methylprednisolone and combination therapy with immunoglobulin, but her symptoms continued to worsen. The patient refused to bear the possible further liver dysfunction and blood system damage caused by Cyclophosphamide and Rituximab, and she chose to try to use Ofatumumab (OFA). Results: After receiving three doses of OFA treatment without any adverse reactions, she reported that her muscle strength had basically recovered and she was able to walk independently. The B cells in the circulatory system have been depleted, and blood markers such as liver function have consistently remained within normal range. During the follow up, her activity tolerance continued to improve. Discussion: We have presented a severe case of SRP-IMNM in which the patient showed poor response to conventional immunotherapy. However, rapid symptom relief was achieved with early sequential use of OFA treatment. This provides a new option for the treatment of SRP-IMNM, and more large-scale studies will be needed in the future to verify our results.


Assuntos
Doenças Autoimunes , Doenças Musculares , Miosite , Humanos , Feminino , Pessoa de Meia-Idade , Partícula de Reconhecimento de Sinal , Autoanticorpos , Miosite/diagnóstico , Miosite/tratamento farmacológico , Doenças Musculares/diagnóstico
11.
PLoS Genet ; 18(10): e1010448, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240221

RESUMO

Establishing a catalog of Congenital Heart Disease (CHD) genes and identifying functional networks would improve our understanding of its oligogenic underpinnings. Our studies identified protein biogenesis cofactors Nascent polypeptide-Associated Complex (NAC) and Signal-Recognition-Particle (SRP) as disease candidates and novel regulators of cardiac differentiation and morphogenesis. Knockdown (KD) of the alpha- (Nacα) or beta-subunit (bicaudal, bic) of NAC in the developing Drosophila heart disrupted cardiac developmental remodeling resulting in a fly with no heart. Heart loss was rescued by combined KD of Nacα with the posterior patterning Hox gene Abd-B. Consistent with a central role for this interaction in cardiogenesis, KD of Nacα in cardiac progenitors derived from human iPSCs impaired cardiac differentiation while co-KD with human HOXC12 and HOXD12 rescued this phenotype. Our data suggest that Nacα KD preprograms cardioblasts in the embryo for abortive remodeling later during metamorphosis, as Nacα KD during translation-intensive larval growth or pupal remodeling only causes moderate heart defects. KD of SRP subunits in the developing fly heart produced phenotypes that targeted specific segments and cell types, again suggesting cardiac-specific and spatially regulated activities. Together, we demonstrated directed function for NAC and SRP in heart development, and that regulation of NAC function depends on Hox genes.


Assuntos
Ribossomos , Partícula de Reconhecimento de Sinal , Animais , Humanos , Partícula de Reconhecimento de Sinal/metabolismo , Ribossomos/metabolismo , Coração , Genes Homeobox , Drosophila/genética , Drosophila/metabolismo , Peptídeos/metabolismo
12.
J Mol Biol ; 434(22): 167832, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36210597

RESUMO

Regulation of Aberrant Protein Production (RAPP) is a protein quality control in mammalian cells. RAPP degrades mRNAs of nascent proteins not able to associate with their natural interacting partners during synthesis at the ribosome. However, little is known about the molecular mechanism of the pathway, its substrates, or its specificity. The Signal Recognition Particle (SRP) is the first interacting partner for secretory proteins. It recognizes signal sequences of the nascent polypeptides when they are exposed from the ribosomal exit tunnel. Here, we reveal the generality of the RAPP pathway on the whole transcriptome level through depletion of human SRP54, an SRP subunit. This depletion triggers RAPP and leads to decreased expression of the mRNAs encoding a number of secretory and membrane proteins. The loss of SRP54 also leads to the dramatic upregulation of a specific network of HSP70/40/90 chaperones (HSPA1A, DNAJB1, HSP90AA1, and others), increased ribosome associated ubiquitination, and change in expression of RPS27 and RPS27L suggesting ribosome rearrangement. These results demonstrate the complex nature of defects in protein trafficking, mRNA and protein quality control, and provide better understanding of their mechanisms at the ribosome.


Assuntos
Ribossomos , Partícula de Reconhecimento de Sinal , Estresse Fisiológico , Humanos , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Ribossomos/metabolismo , Estabilidade de RNA
13.
Cells ; 11(18)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139500

RESUMO

Importing proteins into the endoplasmic reticulum (ER) is essential for about 30% of the human proteome. It involves the targeting of precursor proteins to the ER and their insertion into or translocation across the ER membrane. Furthermore, it relies on signals in the precursor polypeptides and components, which read the signals and facilitate their targeting to a protein-conducting channel in the ER membrane, the Sec61 complex. Compared to the SRP- and TRC-dependent pathways, little is known about the SRP-independent/SND pathway. Our aim was to identify additional components and characterize the client spectrum of the human SND pathway. The established strategy of combining the depletion of the central hSnd2 component from HeLa cells with proteomic and differential protein abundance analysis was used. The SRP and TRC targeting pathways were analyzed in comparison. TMEM109 was characterized as hSnd3. Unlike SRP but similar to TRC, the SND clients are predominantly membrane proteins with N-terminal, central, or C-terminal targeting signals.


Assuntos
Proteômica , Partícula de Reconhecimento de Sinal , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Canais de Translocação SEC/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(38): e2204038119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095178

RESUMO

Mechanistic details of the signal recognition particle (SRP)-mediated insertion of membrane proteins have been described from decades of in vitro biochemical studies. However, the dynamics of the pathway inside the living cell remain obscure. By combining in vivo single-molecule tracking with numerical modeling and simulated microscopy, we have constructed a quantitative reaction-diffusion model of the SRP cycle. Our results suggest that the SRP-ribosome complex finds its target, the membrane-bound translocon, through a combination of three-dimensional (3D) and 2D diffusional search, together taking on average 750 ms. During this time, the nascent peptide is expected to be elongated only 12 or 13 amino acids, which explains why, in Escherichia coli, no translation arrest is needed to prevent incorrect folding of the polypeptide in the cytosol. We also found that a remarkably high proportion (75%) of SRP bindings to ribosomes occur in the cytosol, suggesting that the majority of target ribosomes bind SRP before reaching the membrane. In combination with the average SRP cycling time, 2.2 s, this result further shows that the SRP pathway is capable of targeting all substrate ribosomes to translocons.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Ribossomos , Partícula de Reconhecimento de Sinal , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Redes e Vias Metabólicas , Peptídeos/química , Peptídeos/metabolismo , Dobramento de Proteína , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
15.
Front Immunol ; 13: 975017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159802

RESUMO

Autosomal dominant mutations in the signal recognition particle (SRP) 54 gene were recently described in patients with severe congenital neutropenia (SCN). SRP54 deficiency cause a chronic and profound neutropenia with maturation arrest at the promyelocyte stage, occurring in the first months of life. Nearly all reported patients with SRP54 mutations had neutropenia without a cyclic pattern and showed a poor or no response to granulocyte colony-stimulating factor (G-CSF) therapy. We report here an 11-year-old female patient with cyclic neutropenia and recurrent heterozygous p.T117del (c.349_351del) in-frame deletion mutation in SRP54, who showed remarkable therapeutic response to G-CSF treatment. The diagnosis of cyclic pattern of neutropenia was established by acceptable standards. ELANE gene mutation was excluded by using various genetic approaches. The patient described here also had dolichocolon which has not been described before in association with SCN.


Assuntos
Neutropenia , Partícula de Reconhecimento de Sinal , Criança , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Neutropenia/congênito , Neutropenia/etiologia , Neutropenia/genética , Partícula de Reconhecimento de Sinal/genética
17.
Nat Commun ; 13(1): 2727, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585045

RESUMO

The biological role of RNA-binding proteins in the secretory pathway is not well established. Here, we describe that human HDLBP/Vigilin directly interacts with more than 80% of ER-localized mRNAs. PAR-CLIP analysis reveals that these transcripts represent high affinity HDLBP substrates and are specifically bound in their coding sequences (CDS), in contrast to CDS/3'UTR-bound cytosolic mRNAs. HDLBP crosslinks strongly to long CU-rich motifs, which frequently reside in CDS of ER-localized mRNAs and result in high affinity multivalent interactions. In addition to HDLBP-ncRNA interactome, quantification of HDLBP-proximal proteome confirms association with components of the translational apparatus and the signal recognition particle. Absence of HDLBP results in decreased translation efficiency of HDLBP target mRNAs, impaired protein synthesis and secretion in model cell lines, as well as decreased tumor growth in a lung cancer mouse model. These results highlight a general function for HDLBP in the translation of ER-localized mRNAs and its relevance for tumor progression.


Assuntos
Proteínas de Membrana , RNA Mensageiro , Proteínas de Ligação a RNA , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Citosol/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
18.
Rinsho Shinkeigaku ; 62(5): 363-368, 2022 May 31.
Artigo em Japonês | MEDLINE | ID: mdl-35474284

RESUMO

We have reported a case of a 44-year-old woman with anti-signal recognition particle (SRP) antibody-positive immune-mediated necrotizing myopathy triggered by human parvovirus B19 (PVB19) infection. She was admitted to the hospital because of lower leg edema and muscle weakness after erythema infectiosum. Magnetic resonance imaging of the lower extremities revealed high signals in the proximal muscles and subcutaneous edema on STIR. Muscle biopsy showed myofiber regenerative changes and variation in fiber size. A myositis-specific autoantibody profile indicated a positive result for anti-SRP antibodies. We diagnosed the patient with immune-mediated necrotizing myopathy (IMNM). Muscle strength and subcutaneous edema improved gradually in 3 months following immunotherapy. This is the first case report of an IMNM associated with PVB19 infection.


Assuntos
Doenças Autoimunes , Eritema Infeccioso , Doenças Musculares , Miosite , Adulto , Autoanticorpos , Doenças Autoimunes/complicações , Eritema Infeccioso/complicações , Eritema Infeccioso/patologia , Feminino , Humanos , Músculo Esquelético/patologia , Doenças Musculares/diagnóstico , Miosite/complicações , Partícula de Reconhecimento de Sinal
20.
J Mol Biol ; 434(9): 167535, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278477

RESUMO

Numerous proteins initiate their folding, localization, and modifications early during translation, and emerging data show that the ribosome actively participates in diverse protein biogenesis pathways. Here we show that the ribosome imposes an additional layer of substrate selection during N-terminal methionine excision (NME), an essential protein modification in bacteria. Biochemical analyses show that cotranslational NME is exquisitely sensitive to a hydrophobic signal sequence or transmembrane domain near the N terminus of the nascent polypeptide. The ability of the nascent chain to access the active site of NME enzymes dictates NME efficiency, which is inhibited by confinement of the nascent chain on the ribosome surface and exacerbated by signal recognition particle. In vivo measurements corroborate the inhibition of NME by an N-terminal hydrophobic sequence, suggesting the retention of formylmethionine on a substantial fraction of the secretory and membrane proteome. Our work demonstrates how molecular features of a protein regulate its cotranslational modification and highlights the active participation of the ribosome in protein biogenesis pathways via interactions of the ribosome surface with the nascent protein.


Assuntos
Bactérias , Proteínas de Bactérias , Metionina , Processamento de Proteína Pós-Traducional , Ribossomos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Metionina/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA