Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392867

RESUMO

More than 20 recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Kcnt1Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Kcnt1Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Kcnt1Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.


Assuntos
Neurônios GABAérgicos , Mutação com Ganho de Função , Parvalbuminas , Somatostatina , Animais , Somatostatina/metabolismo , Somatostatina/genética , Camundongos , Neurônios GABAérgicos/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/genética , Heterozigoto , Córtex Cerebral/metabolismo , Masculino , Potenciais de Ação , Feminino , Mutação de Sentido Incorreto , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
2.
Elife ; 132024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297605

RESUMO

In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.


Assuntos
Callithrix , Neurônios GABAérgicos , Vetores Genéticos , Interneurônios , Parvalbuminas , Animais , Parvalbuminas/metabolismo , Parvalbuminas/genética , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Dependovirus/genética , Córtex Visual Primário/metabolismo , Expressão Gênica , Transgenes , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Córtex Visual/virologia
3.
Adv Sci (Weinh) ; 11(5): e2305659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044302

RESUMO

Dysfunction of parvalbumin (PV) neurons is closely involved in depression, however, the detailed mechanism remains unclear. Based on the previous finding that multiple endocrine neoplasia type 1 (Protein: Menin; Gene: Men1) mutation (G503D) is associated with a higher risk of depression, a Menin-G503D mouse model is generated that exhibits heritable depressive-like phenotypes and increases PV expression in brain. This study generates and screens a serial of neuronal specific Men1 deletion mice, and found that PV interneuron Men1 deletion mice (PcKO) exhibit increased cortical PV levels and depressive-like behaviors. Restoration of Menin, knockdown PV expression or inhibition of PV neuronal activity in PV neurons all can ameliorate the depressive-like behaviors of PcKO mice. This study next found that ketamine stabilizes Menin by inhibiting protein kinase A (PKA) activity, which mediates the anti-depressant function of ketamine. These results demonstrate a critical role for Menin in depression, and prove that Menin is key to the antidepressant function of ketamine.


Assuntos
Antidepressivos , Ketamina , Neoplasia Endócrina Múltipla Tipo 1 , Animais , Camundongos , Ketamina/farmacologia , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Mutação , Parvalbuminas/genética , Parvalbuminas/metabolismo , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Antidepressivos/farmacologia
4.
Sci Rep ; 12(1): 17851, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284123

RESUMO

Recombinant adeno-associated viruses (rAAV) are extensively used in both research and clinical applications. Despite significant advances, there is a lack of short promoters able to drive the expression of virus delivered genes in specific classes of neurons. We designed an efficient rAAV vector suitable for the rAAV-mediated gene expression in cortical interneurons, mainly in the parvalbumin expressing cells. The vector includes a short parvalbumin promoter and a specialized poly(A) sequence. The degree of conservation of the parvalbumin gene adjoining non-coding regions was used in both the promoter design and the selection of the poly(A) sequence. The specificity was established by co-localizing the fluorescence of the virus delivered eGFP and the antibody for a neuronal marker. rAAV particles were injected in the visual cortex area V1/V2 of adult rats (2-4 months old). Neurons expressing the virus delivered eGFP were mainly positive for interneuronal markers: 66.5 ± 2.8% for parvalbumin, 14.6 ± 2.4% for somatostatin, 7.1 ± 1.2% for vasoactive intestinal peptide, 2.8 ± 0.6% for cholecystokinin. Meanwhile, only 2.1 ± 0.5% were positive for CaMKII, a marker for principal cells in the cortex. The efficiency of the construct was verified by optogenetic experiments: the expression of the virus delivered ChR2 channels was sufficient to evoke by blue light laser high frequency bursts of action potentials in putative fast spiking neurons. We conclude that our promoter allows highly specific expression of the rAAV delivered cDNAs in cortical interneurons with a strong preference for the parvalbumin positive cells.


Assuntos
Parvalbuminas , Peptídeo Intestinal Vasoativo , Animais , Ratos , Parvalbuminas/genética , Peptídeo Intestinal Vasoativo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Interneurônios/metabolismo , Dependovirus/genética , Somatostatina/metabolismo , Colecistocinina/metabolismo
5.
Nat Commun ; 13(1): 3913, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798748

RESUMO

Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity.


Assuntos
Aromatase , Parvalbuminas , Animais , Aromatase/genética , Estradiol/farmacologia , Feminino , Hipocampo/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Sinapses/metabolismo
6.
Neurosci Res ; 178: 33-40, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35189175

RESUMO

GABAergic neurons are classified into multiple subtypes based on morphology, physiological properties, and gene expression profiles. Although traditionally defined axo-axonic cells (AACs) are a unique type of interneuron that expresses parvalbumin and innervates the axon initial segment (AIS) of pyramidal neurons, a genetic marker for AACs in the basolateral amygdala (BLA) has not been identified. Here, we show that vasoactive intestinal peptide receptor 2 (Vipr2)-expressing interneurons exhibit anatomical and electrophysiological properties of AACs in the BLA. Using a reporter mouse expressing fluorescent proteins specifically in Vipr2+ cells, we analyzed the distribution, postsynaptic targeting and electrophysical properties of Vipr2+ cells in the BLA. More than half of the Vipr2+ cells showed parvalbumin immunoreactivity and innervated the AIS of pyramidal neurons in the BLA of Vipr2-tdTomato mice. Notably, most of the Vipr2+ cells showed fast-spiking properties. Furthermore, the use of a Cre-dependent adeno-associated virus led to more selective labeling of AACs in the BLA. These results suggest that AACs are genetically identifiable in the BLA without anatomical or physiological analysis.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Animais , Axônios/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Camundongos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo
7.
J Vet Sci ; 23(2): e26, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35187882

RESUMO

BACKGROUND: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. OBJECTIVES: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. METHODS: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. RESULTS: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. CONCLUSIONS: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.


Assuntos
Ácido Glutâmico , Parvalbuminas , Animais , Apoptose , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/farmacologia , Morte Celular , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Parvalbuminas/genética , Parvalbuminas/metabolismo , Parvalbuminas/farmacologia , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Cell Rep ; 37(3): 109837, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686328

RESUMO

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.


Assuntos
Lobo Frontal/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Inibição Neural , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Sinapses/metabolismo , Tálamo/citologia , Tálamo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
9.
Biomolecules ; 11(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439824

RESUMO

Strontium salts are used for treatment of osteoporosis and bone cancer, but their impact on calcium-mediated physiological processes remains obscure. To explore Sr2+ interference with Ca2+ binding to proteins of the EF-hand family, we studied Sr2+/Ca2+ interaction with a canonical EF-hand protein, α-parvalbumin (α-PA). Evaluation of the equilibrium metal association constants for the active Ca2+ binding sites of recombinant human α-PA ('CD' and 'EF' sites) from fluorimetric titration experiments and isothermal titration calorimetry data gave 4 × 109 M-1 and 4 × 109 M-1 for Ca2+, and 2 × 107 M-1 and 2 × 106 M-1 for Sr2+. Inactivation of the EF site by homologous substitution of the Ca2+-coordinating Glu in position 12 of the EF-loop by Gln decreased Ca2+/Sr2+ affinity of the protein by an order of magnitude, whereas the analogous inactivation of the CD site induced much deeper suppression of the Ca2+/Sr2+ affinity. These results suggest that Sr2+ and Ca2+ bind to CD/EF sites of α-PA and the Ca2+/Sr2+ binding are sequential processes with the CD site being occupied first. Spectrofluorimetric Sr2+ titration of the Ca2+-loaded α-PA revealed presence of secondary Sr2+ binding site(s) with an apparent equilibrium association constant of 4 × 105 M-1. Fourier-transform infrared spectroscopy data evidence that Ca2+/Sr2+-loaded forms of α-PA exhibit similar states of their COO- groups. Near-UV circular dichroism (CD) data show that Ca2+/Sr2+ binding to α-PA induce similar changes in symmetry of microenvironment of its Phe residues. Far-UV CD experiments reveal that Ca2+/Sr2+ binding are accompanied by nearly identical changes in secondary structure of α-PA. Meanwhile, scanning calorimetry measurements show markedly lower Sr2+-induced increase in stability of tertiary structure of α-PA, compared to the Ca2+-induced effect. Theoretical modeling using Density Functional Theory computations with Polarizable Continuum Model calculations confirms that Ca2+-binding sites of α-PA are well protected against exchange of Ca2+ for Sr2+ regardless of coordination number of Sr2+, solvent exposure or rigidity of sites. The latter appears to be a key determinant of the Ca2+/Sr2+ selectivity. Overall, despite lowered affinity of α-PA to Sr2+, the latter competes with Ca2+ for the same EF-hands and induces similar structural rearrangements. The presence of a secondary Sr2+ binding site(s) could be a factor contributing to Sr2+ impact on the functional activity of proteins.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Parvalbuminas/metabolismo , Estrôncio/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Cátions Bivalentes , Clonagem Molecular , Teoria da Densidade Funcional , Motivos EF Hand , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Parvalbuminas/química , Parvalbuminas/genética , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluções
10.
Sci Rep ; 11(1): 3163, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542365

RESUMO

The development of GABAergic interneurons is important for the functional maturation of cortical circuits. After migrating into the cortex, GABAergic interneurons start to receive glutamatergic connections from cortical excitatory neurons and thus gradually become integrated into cortical circuits. These glutamatergic connections are mediated by glutamate receptors including AMPA and NMDA receptors and the ratio of AMPA to NMDA receptors decreases during development. Since previous studies have shown that retinal input can regulate the early development of connections along the visual pathway, we investigated if the maturation of glutamatergic inputs to GABAergic interneurons in the visual cortex requires retinal input. We mapped the spatial pattern of glutamatergic connections to layer 4 (L4) GABAergic interneurons in mouse visual cortex at around postnatal day (P) 16 by laser-scanning photostimulation and investigated the effect of binocular enucleations at P1/P2 on these patterns. Gad2-positive interneurons in enucleated animals showed an increased fraction of AMPAR-mediated input from L2/3 and a decreased fraction of input from L5/6. Parvalbumin-expressing (PV) interneurons showed similar changes in relative connectivity. NMDAR-only input was largely unchanged by enucleation. Our results show that retinal input sculpts the integration of interneurons into V1 circuits and suggest that the development of AMPAR- and NMDAR-only connections might be regulated differently.


Assuntos
Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Visual/metabolismo , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Conectoma , Enucleação Ocular/métodos , Feminino , Neurônios GABAérgicos/patologia , Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiopatologia , Parvalbuminas/genética , Parvalbuminas/metabolismo , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Visão Binocular/fisiologia , Córtex Visual/fisiopatologia
11.
Genes Brain Behav ; 19(6): e12678, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468668

RESUMO

The activated mammalian Ste20-like serine/threonine kinases 1 (MST1) was found in the central nervous system diseases, such as cerebral ischemia, stroke and ALS, which were related with cognitions. The aim of this study was to examine the effect of elevated MST1 on memory functions in C57BL/6J mice. We also explored the underlying mechanism about the pattern alteration of neural oscillations, closely associated with cognitive dysfunctions, at different physiological rhythms, which were related to a wide range of basic and higher-level cognitive activities. A mouse model of the adeno-associated virus (AAV)-mediated overexpression of MST1 was established. The behavioral experiments showed that spatial memory was significantly damaged in MST1 mice. The distribution of either theta or gamma power was clearly disturbed in MST1 animals. Moreover, the synchronization in both theta and gamma rhythms, and theta-gamma cross-frequency coupling were significantly weakened in MST1 mice. In addition, the expressions of GABAA receptor, GAD67 and parvalbumin (PV) were obviously increased in MST1 mice. Meanwhile, blocking MST1 activity could inhibit the activation of FOXO3a and YAP. The above data suggest that MST1-overexpression may induce memory impairments via disturbing the patterns of neural activities, which is possibly associated with the abnormal GABAergic expression level.


Assuntos
Ritmo Gama , Proteínas Serina-Treonina Quinases/genética , Memória Espacial , Ritmo Teta , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Cognição , Proteína Forkhead Box O3/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/genética , Parvalbuminas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Regulação para Cima , Proteínas de Sinalização YAP
12.
J Mol Neurosci ; 70(5): 796-805, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32036579

RESUMO

Focal cortical dysplasia (FCD) is the main cause of medically intractable pediatric epilepsy. Previous studies have suggested that alteration of cortical interneurons and abnormal cytoarchitecture have been linked to initiation and development for seizure. However, whether each individual subpopulation of cortical interneurons is linked to distinct FCD subtypes remains largely unknown. Here, we retrospectively analyzed both control samples and epileptic specimens pathologically diagnosed with FCD types Ia, IIa, or IIb. We quantified three major interneuron (IN) subpopulations, including parvalbumin (PV)-, somatostatin (Sst)-, and vasoactive intestinal peptide (Vip)-positive INs across all the subgroups. Additionally, we calculated the ratio of the subpopulations of INs to the major INs (mINs) by defining the total number of the PV-, Sst-, and Vip-INs as mINs. Compared with the control, the density of the PV-INs in FCD type IIb was significantly lower, and the ratio of PV/mINs was lower in the superficial part of the cortex of the FCD type Ia and IIb groups. Interestingly, we found a significant increase in the ratio of Vip/mINs only in FCD type IIb. Overall, these results suggest that in addition to a reduction in PV-INs, the increase in Vip/mINs may be related to the initiation of epilepsy in FCD type IIb. Furthermore, the increase in Vip/mINs in FCD type IIb may, from the IN development perspective, indicate that FCD type IIb forms during earlier stages of pregnancy than FCD type Ia.


Assuntos
Epilepsia Resistente a Medicamentos/patologia , Interneurônios/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Adulto , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/metabolismo , Feminino , Humanos , Lactente , Interneurônios/classificação , Masculino , Malformações do Desenvolvimento Cortical/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
13.
Allergy ; 75(2): 326-335, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31325321

RESUMO

BACKGROUND: Early introduction of food allergens into children's diet is considered as a strategy for the prevention of food allergy. The major fish allergen parvalbumin exhibits high stability against gastrointestinal digestion. We investigated whether resistance of carp parvalbumin to digestion affects oral tolerance induction. METHODS: Natural Cyp c 1, nCyp c 1, and a gastrointestinal digestion-sensitive recombinant Cyp c 1 mutant, mCyp c 1, were analyzed for their ability to induce oral tolerance in a murine model. Both antigens were compared by gel filtration, circular dichroism measurement, in vitro digestion, and splenocyte proliferation assays using synthetic Cyp c 1-derived peptides. BALB/c mice were fed once with high doses of nCyp c 1 or mCyp c 1, before sensitization to nCyp c 1. Immunological tolerance was studied by measuring Cyp c 1-specific antibodies and cellular responses by ELISA, basophil activation, splenocyte proliferations, and intragastric allergen challenge. RESULTS: Wild-type and mCyp c 1 showed the same physicochemical properties and shared the same major T-cell epitope. However, mCyp c 1 was more sensitive to enzymatic digestion in vitro than nCyp c 1. A single high-dose oral administration of nCyp c 1 but not of mCyp c 1 induced long-term oral tolerance, characterized by lack of parvalbumin-specific antibody and cellular responses. Moreover, mCyp c 1-fed mice, but not nCyp c 1-fed mice developed allergic symptoms upon challenge with nCyp c 1. CONCLUSION: Sensitivity to digestion in the gastrointestinal tract influences the capacity of an allergen to induce prophylactic oral tolerance.


Assuntos
Alérgenos/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Digestão/imunologia , Proteínas de Peixes/imunologia , Hipersensibilidade Alimentar/prevenção & controle , Absorção Gastrointestinal/imunologia , Tolerância Imunológica , Imunização/métodos , Parvalbuminas/imunologia , Profilaxia Pré-Exposição/métodos , Alérgenos/genética , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Carpas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Proteínas de Peixes/genética , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mutantes/imunologia , Parvalbuminas/genética , Ratos
14.
Methods Mol Biol ; 1929: 157-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30710273

RESUMO

A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo , Motivos EF Hand , Diagnóstico Precoce , Humanos , Família Multigênica , Parvalbuminas/química , Parvalbuminas/genética , Parvalbuminas/metabolismo , Prognóstico , Proteínas S100/química , Proteínas S100/genética , Proteínas S100/metabolismo , Troponina/química , Troponina/genética , Troponina/metabolismo
15.
Methods Mol Biol ; 1929: 187-205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30710274

RESUMO

Heart failure is the leading cause of combined morbidity and mortality in the USA with 50% of cases being diastolic heart failure. Diastolic heart failure results from poor myocardial relaxation and inadequate filling of the left ventricular chamber caused in part by calcium-handling dysregulation. In this chapter we describe methods to investigate new approaches of novel human Ca2+ binding protein motifs to restore normal Ca2+ handling function to diseased myocardium. Gene transfer of parvalbumin into adult cardiac myocytes has been studied as a potential therapeutic, specifically as a strategic Ca2+ buffer to correct cardiac mechanical dysfunction in disease. This chapter provides protocols for studying wild-type parvalbumin isoforms and parvalbumins with strategically designed EF-hand motifs in adult cardiac myocytes via acute adenoviral gene transfer. These protocols have been used extensively to optimize parvalbumin function as a potential therapeutic for failing heart muscle.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Miócitos Cardíacos/citologia , Parvalbuminas/metabolismo , Adulto , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Vetores Genéticos/farmacologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Modelos Biológicos , Mutação , Miócitos Cardíacos/metabolismo , Parvalbuminas/genética , Ratos Sprague-Dawley
16.
Cell Rep ; 26(2): 381-393.e6, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625321

RESUMO

Cortical plasticity peaks early in life and tapers in adulthood, as exemplified in the primary visual cortex (V1), wherein brief loss of vision in one eye reduces cortical responses to inputs from that eye during the critical period but not in adulthood. The synaptic locus of cortical plasticity and the cell-autonomous synaptic factors determining critical periods remain unclear. We here demonstrate that the immunoglobulin protein Synaptic Cell Adhesion Molecule 1 (SynCAM 1/Cadm1) is regulated by visual experience and limits V1 plasticity. Loss of SynCAM 1 selectively reduces the number of thalamocortical inputs onto parvalbumin (PV+) interneurons, impairing the maturation of feedforward inhibition in V1. SynCAM 1 acts in PV+ interneurons to actively restrict cortical plasticity, and brief PV+-specific knockdown of SynCAM 1 in adult visual cortex restores juvenile-like plasticity. These results identify a synapse-specific, cell-autonomous mechanism for thalamocortical visual circuit maturation and closure of the visual critical period.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Células Cultivadas , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Parvalbuminas/genética , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia
17.
Cereb Cortex ; 29(8): 3540-3550, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30247542

RESUMO

Visuospatial working memory (WM), which is impaired in schizophrenia, depends on a distributed network including visual, posterior parietal, and dorsolateral prefrontal cortical regions. Within each region, information processing is differentially regulated by subsets of γ-aminobutyric acid (GABA) neurons that express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP). In schizophrenia, WM impairments have been associated with alterations of PV and SST neurons in the dorsolateral prefrontal cortex. Here, we quantified transcripts selectively expressed in GABA neuron subsets across four cortical regions in the WM network from comparison and schizophrenia subjects. In comparison subjects, PV mRNA levels declined and SST mRNA levels increased from posterior to anterior regions, whereas VIP mRNA levels were comparable across regions except for the primary visual cortex (V1). In schizophrenia subjects, each transcript in PV and SST neurons exhibited similar alterations across all regions, whereas transcripts in VIP neurons were unaltered in any region except for V1. These findings suggest that the contribution of each GABA neuron subset to inhibitory regulation of local circuitry normally differs across cortical regions of the visuospatial WM network and that in schizophrenia alterations of PV and SST neurons are a shared feature across these regions, whereas VIP neurons are affected only in V1.


Assuntos
Encéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Memória de Curto Prazo/fisiologia , Parvalbuminas/genética , Esquizofrenia/genética , Somatostatina/genética , Peptídeo Intestinal Vasoativo/genética , Adulto , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Glutamato Descarboxilase/genética , Humanos , Proteínas com Homeodomínio LIM/genética , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Lobo Parietal/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Opioides mu/genética , Esquizofrenia/fisiopatologia , Processamento Espacial , Fatores de Transcrição/genética , Córtex Visual/metabolismo
18.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1197-1206, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30392897

RESUMO

S100 proteins are members of the superfamily of Ca2+-binding proteins characterized by the specific Ca2+-binding motif, the EF-hand. Proteins of this superfamily are of clinical use as important diagnostic and prognostic biomarkers in adult and pediatric Laboratory Medicine. For example, measurements of troponin are nowadays the 'gold standard' in the diagnosis of patients with acute coronary syndrome. Parvalbumins were identified as major fish allergens and blocking antibodies, induced by immunization with a hypoallergenic parvalbumin mutant, were shown to reduce allergic symptoms. Mutations in calmodulin are linked to inherited ventricular tachycardia, and cardiac arrhythmias. S100 proteins, the largest sub-group within the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation and autoimmune pathologies and brain diseases. The intention of this review is to focus on the clinical use of S100 proteins as biomarkers and potential drug targets helping to improve the diagnosis of these human diseases in children and adults leading to more selective therapeutic interventions.


Assuntos
Biomarcadores Tumorais , Encefalopatias , Proteínas de Neoplasias , Neoplasias , Proteínas S100 , Taquicardia Ventricular , Adolescente , Adulto , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Encefalopatias/diagnóstico , Encefalopatias/genética , Encefalopatias/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Criança , Pré-Escolar , Humanos , Inflamação , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
19.
Neuropsychopharmacology ; 43(12): 2478-2486, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120408

RESUMO

Working memory requires the activity of parvalbumin (PV) interneurons in the dorsolateral prefrontal cortex (DLPFC). Impaired working memory and lower PV expression in the DLPFC are reported in schizophrenia and to a lesser degree in mood disorders. We previously proposed that activity-dependent PV expression is lower in schizophrenia due to a shift in the splicing of erb-b2 receptor tyrosine kinase 4 (ErbB4) transcripts from major to inactive minor variants that reduces excitatory drive to PV interneurons. Here, we tested the hypothesis that the degree of major-to-minor shift in ErbB4 splicing predicts the level of PV expression across schizophrenia and mood disorders. Levels of ErbB4 splice variants and PV mRNA were quantified by PCR in the DLPFC from 40 matched tetrads (N = 160 subjects) of schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), and unaffected comparison subjects. Relative to unaffected comparison subjects, the magnitude of increases in minor variant levels and decreases in major variant levels was greatest in schizophrenia, intermediate in BD, and least in MDD. The same rank order was present for the magnitude of increases in the composite splicing score, which reflects the degree of major-to-minor shift across all ErbB4 splice loci, and for the magnitude of deficient PV expression. Finally, the composite splicing score negatively predicted PV expression across all subject groups. Together, these findings demonstrate a shared relationship between ErbB4 splicing and PV expression and suggest that scaling of the major-to-minor shift in ErbB4 splicing may influence the severity of deficient PV interneuron activity across diagnoses.


Assuntos
Interneurônios/metabolismo , Transtornos do Humor/metabolismo , Parvalbuminas/biossíntese , Receptor ErbB-4/biossíntese , Esquizofrenia/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/genética , Transtornos do Humor/fisiopatologia , Parvalbuminas/genética , Isoformas de Proteínas/genética , Receptor ErbB-4/genética , Esquizofrenia/genética , Esquizofrenia/fisiopatologia
20.
Mol Autism ; 9: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507711

RESUMO

Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods: Based on the hypothesis that PV expression might be increased by 17-ß estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results: PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion: Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments.


Assuntos
Transtorno Autístico/tratamento farmacológico , Estradiol/uso terapêutico , Parvalbuminas/genética , Comportamento Social , Comportamento Estereotipado , Animais , Transtorno Autístico/genética , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Fenótipo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA