Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493344

RESUMO

Venomous organisms have independently evolved the ability to produce toxins 101 times during their evolutionary history, resulting in over 200 000 venomous species. Collectively, these species produce millions of toxins, making them a valuable resource for bioprospecting and understanding the evolutionary mechanisms underlying genetic diversification. RNA-seq is the preferred method for characterizing toxin repertoires, but the analysis of the resulting data remains challenging. While early approaches relied on similarity-based mapping to known toxin databases, recent studies have highlighted the importance of structural features for toxin detection. The few existing pipelines lack an integration between these complementary approaches, and tend to be difficult to run for non-experienced users. To address these issues, we developed DeTox, a comprehensive and user-friendly tool for toxin research. It combines fast execution, parallelization and customization of parameters. DeTox was tested on published transcriptomes from gastropod mollusks, cnidarians and snakes, retrieving most putative toxins from the original articles and identifying additional peptides as potential toxins to be confirmed through manual annotation and eventually proteomic analysis. By integrating a structure-based search with similarity-based approaches, DeTox allows the comprehensive characterization of toxin repertoire in poorly-known taxa. The effect of the taxonomic bias in existing databases is minimized in DeTox, as mirrored in the detection of unique and divergent toxins that would have been overlooked by similarity-based methods. DeTox streamlines toxin annotation, providing a valuable tool for efficient identification of venom components that will enhance venom research in neglected taxa.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Peçonhas/genética , Peçonhas/química , Proteômica , Toxinas Biológicas/genética , Serpentes , Peptídeos , Transcriptoma
2.
Toxins (Basel) ; 16(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393163

RESUMO

While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.


Assuntos
Anêmonas-do-Mar , Toxinas Biológicas , Animais , Anêmonas-do-Mar/genética , Peçonhas/genética , Toxinas Biológicas/genética , Transcriptoma , RNA
3.
BMC Genomics ; 25(1): 84, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245722

RESUMO

BACKGROUND: Venoms have evolved independently over a hundred times in the animal kingdom to deter predators and/or subdue prey. Venoms are cocktails of various secreted toxins, whose origin and diversification provide an appealing system for evolutionary researchers. Previous studies of the ant venom of Tetramorium bicarinatum revealed several Myrmicitoxin (MYRTX) peptides that gathered into seven precursor families suggesting different evolutionary origins. Analysis of the T. bicarinatum genome enabling further genomic approaches was necessary to understand the processes underlying the evolution of these myrmicitoxins. RESULTS: Here, we sequenced the genome of Tetramorium bicarinatum and reported the organisation of 44 venom peptide genes (vpg). Of the eleven chromosomes that make up the genome of T. bicarinatum, four carry the vpg which are organized in tandem repeats. This organisation together with the ML evolutionary analysis of vpg sequences, is consistent with evolution by local duplication of ancestral genes for each precursor family. The structure of the vpg into two or three exons is conserved after duplication events while the promoter regions are the least conserved parts of the vpg even for genes with highly identical sequences. This suggests that enhancer sequences were not involved in duplication events, but were recruited from surrounding regions. Expression level analysis revealed that most vpg are highly expressed in venom glands, although one gene or group of genes is much more highly expressed in each family. Finally, the examination of the genomic data revealed that several genes encoding transcription factors (TFs) are highly expressed in the venom glands. The search for binding sites (BS) of these TFs in the vpg promoters revealed hot spots of GATA sites in several vpg families. CONCLUSION: In this pioneering investigation on ant venom genes, we provide a high-quality assembly genome and the annotation of venom peptide genes that we think can fosters further genomic research to understand the evolutionary history of ant venom biochemistry.


Assuntos
Venenos de Formiga , Formigas , Humanos , Animais , Peçonhas/genética , Venenos de Formiga/química , Venenos de Formiga/genética , Venenos de Formiga/metabolismo , Peptídeos/metabolismo , Genoma , Formigas/genética , Evolução Molecular
4.
Methods Mol Biol ; 2498: 89-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727542

RESUMO

Animal venoms are among the most complex natural secretions known, comprising a mixture of bioactive compounds often referred to as toxins. Venom arsenals are predominately made up of cysteine-rich peptide toxins that manipulate molecular targets, such as ion channels and receptors, making these venom peptides attractive candidates for the development of therapeutics to benefit human health. With the rise of omic strategies that utilize transcriptomic, proteomic, and bioinformatic methods, we are able to identify more venom proteins and peptides than ever before. However, identification and characterization of bioactive venom peptides remains a significant challenge due to the unique chemical structure and enormous number of peptides found in each venom arsenal (upward of 200 per organism). Here, we introduce a rapid and user-friendly in silico bioinformatic pipeline for the de novo identification and characterization of raw RNAseq reads from venom glands to elucidate cysteine-rich peptides from the arsenal of venomous organisms.Implementation: This project develops a user-friendly automated bioinformatics pipeline via a Galaxy workflow to identify novel venom peptides from raw RNAseq reads of terebrid snails. While designed for venomous terebrid snails, with minor adjustments, this pipeline can be made universal to identify secreted disulfide-rich peptide toxins from any venomous organism.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Biologia Computacional , Cisteína , Dissulfetos , Peptídeos/química , Proteômica , Caramujos , Toxinas Biológicas/genética , Peçonhas/genética
5.
Mol Cell Proteomics ; 20: 100100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34029722

RESUMO

Cone snails produce venom that contains diverse groups of peptides (conopeptides/conotoxins) and display a wide mass range, high rate of posttranslational modifications, and many potential pharmacological targets. Here we employ a proteogenomic approach to maximize conopeptide identification from the injected venom of Conus purpurascens. mRNA sequences from C. purpurascens venom ducts were assembled into a search database and complemented with known sequences and de novo approaches. We used a top-down peptidomic approach and tandem mass spectrometry identification to compare injected venom samples of 27 specimens. This intraspecific analysis yielded 543 unique conopeptide identifications, which included 33 base conopeptides and their toxiforms, 21 of which are novel. The results reveal two distinct venom profiles with different synergistic interactions to effectively target neural pathways aimed to immobilize prey. These venom expression patterns will aid target prediction, a significant step toward developing conotoxins into valuable drugs or neural probes.


Assuntos
Caramujo Conus , Peptídeos/genética , Peçonhas/genética , Animais , Feminino , Peptídeos/química , Proteogenômica , Transcriptoma , Peçonhas/química
6.
Biochemistry ; 60(16): 1299-1311, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33829763

RESUMO

The tetrapeptides Li504 and Li520, differing in the modification of the 4-trans-hydroxylation of proline, are novel conopeptides derived from the venom duct transcriptome of the marine cone snail Conus lividus. These predicted mature peptides are homologous to the active site motif of oxidoreductases that catalyze the oxidation, reduction, and rearrangement of disulfide bonds in peptides and proteins. The estimated reduction potential of the disulfide of Li504 and Li520 is within the range of disulfide reduction potentials of oxidoreductases, indicating that they may catalyze the oxidative folding of conotoxins. Conformational features of Li504 and Li520 include the trans configuration of the Cys1-Pro2/Hyp2 peptide bond with a type 1 turn that is similar to the active site motif of glutaredoxin that regulates the oxidation of cysteine thiols to disulfides. Li504- and Li520-assisted oxidative folding of α-conotoxin ImI confirms that Li520 improves the yield of the natively folded peptide by concomitantly decreasing the yield of the non-native disulfide isomer and thus acts as a miniature disulfide isomerase. The geometry of the Cys1-Hyp2 peptide bond of Li520 shifts between the trans and cis configurations in the disulfide form and thiol/thiolate form, which regulates the deprotonation of the N-terminal cysteine residue. Hydrogen bonding of the hydroxyl group of 4-trans-hydroxyproline with the interpeptide chain unit in the mixed disulfide form may play a vital role in shifting the geometry of the Cys1-Hyp2 peptide bond from cis to trans configuration. The Li520 conopeptide together with similar peptides derived from other species may constitute a new family of "redox-active" conopeptides that are integral components of the oxidative folding machinery of conotoxins.


Assuntos
Conotoxinas/química , Caramujo Conus/genética , Oligopeptídeos/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Transcriptoma , Peçonhas/genética , Animais , Oligopeptídeos/química , Oxirredução , Estereoisomerismo
7.
Toxins (Basel) ; 13(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525375

RESUMO

The growing number of known venomous marine invertebrates indicates that chemical warfare plays an important role in adapting to diversified ecological niches, even though it remains unclear how toxins fit into the evolutionary history of these animals. Our case study, the Polychaeta Eulalia sp., is an intertidal predator that secretes toxins. Whole-transcriptome sequencing revealed proteinaceous toxins secreted by cells in the proboscis and delivered by mucus. Toxins and accompanying enzymes promote permeabilization, coagulation impairment and the blocking of the neuromuscular activity of prey upon which the worm feeds by sucking pieces of live flesh. The main neurotoxins ("phyllotoxins") were found to be cysteine-rich proteins, a class of substances ubiquitous among venomous animals. Some toxins were phylogenetically related to Polychaeta, Mollusca or more ancient groups, such as Cnidaria. Some toxins may have evolved from non-toxin homologs that were recruited without the reduction in molecular mass and increased specificity of other invertebrate toxins. By analyzing the phylogeny of toxin mixtures, we show that Polychaeta is uniquely positioned in the evolution of animal venoms. Indeed, the phylogenetic models of mixed or individual toxins do not follow the expected eumetazoan tree-of-life and highlight that the recruitment of gene products for a role in venom systems is complex.


Assuntos
Perfilação da Expressão Gênica , Poliquetos/genética , Proteínas/genética , Transcriptoma , Peçonhas/genética , Animais , Filogenia , Poliquetos/metabolismo , Proteínas/metabolismo , Peçonhas/metabolismo , Sequenciamento do Exoma
8.
Genome Biol Evol ; 10(1): 249-268, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293976

RESUMO

Amphinomids, more commonly known as fireworms, are a basal lineage of marine annelids characterized by the presence of defensive dorsal calcareous chaetae, which break off upon contact. It has long been hypothesized that amphinomids are venomous and use the chaetae to inject a toxic substance. However, studies investigating fireworm venom from a morphological or molecular perspective are scarce and no venom gland has been identified to date, nor any toxin characterized at the molecular level. To investigate this question, we analyzed the transcriptomes of three species of fireworms-Eurythoe complanata, Hermodice carunculata, and Paramphinome jeffreysii-following a venomics approach to identify putative venom compounds. Our venomics pipeline involved de novo transcriptome assembly, open reading frame, and signal sequence prediction, followed by three different homology search strategies: BLAST, HMMER sequence, and HMMER domain. Following this pipeline, we identified 34 clusters of orthologous genes, representing 13 known toxin classes that have been repeatedly recruited into animal venoms. Specifically, the three species share a similar toxin profile with C-type lectins, peptidases, metalloproteinases, spider toxins, and CAP proteins found among the most highly expressed toxin homologs. Despite their great diversity, the putative toxins identified are predominantly involved in three major biological processes: hemostasis, inflammatory response, and allergic reactions, all of which are commonly disrupted after fireworm stings. Although the putative fireworm toxins identified here need to be further validated, our results strongly suggest that fireworms are venomous animals that use a complex mixture of toxins for defense against predators.


Assuntos
Anelídeos/genética , Transcriptoma , Peçonhas/genética , Animais , Cistatinas/genética , Lectinas Tipo C/genética , Lipocalinas/genética , Neurotoxinas/genética , Peptídeo Hidrolases/genética , Fosfolipases/genética , Filogenia , Serpinas/genética
9.
Mar Drugs ; 15(7)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718820

RESUMO

Conotoxins in the venom of cone snails (Conus spp.) are a mixture of active peptides that work as blockers, agonists, antagonists, or inactivators of various ion channels. Recently we reported a high-throughput method to identify 215 conotoxin transcripts from the Chinese tubular cone snail, C. betulinus. Here, based on the previous datasets of four transcriptomes from three venom ducts and one venom bulb, we explored ion channel-based conotoxins and predicted their related ion channel receptors. Homologous analysis was also performed for the most abundant ion channel protein, voltage-gated potassium (Kv; with Kv1.1 as the representative), and the most studied ion channel receptor, nicotinic acetylcholine receptor (nAChR; with α2-nAChR as the representative), in different animals. Our transcriptomic survey demonstrated that ion channel-based conotoxins and related ion channel proteins/receptors transcribe differentially between the venom duct and the venom bulb. In addition, we observed that putative κ-conotoxins were the most common conotoxins with the highest transcription levels in the examined C. betulinus. Furthermore, Kv1.1 and α2-nAChR were conserved in their functional domains of deduced protein sequences, suggesting similar effects of conotoxins via the ion channels in various species, including human beings. In a word, our present work suggests a high-throughput way to develop conotoxins as potential drugs for treatment of ion channel-associated human diseases.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Canais Iônicos/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Peptídeos/genética , Receptores Nicotínicos/genética , Alinhamento de Sequência , Inquéritos e Questionários , Peçonhas/genética
10.
Biologicals ; 48: 82-91, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28554726

RESUMO

Exendin-4 is a GLP 1 agonist incretin-mimetic peptide hormone comprising 39 amino acids. Exenatide (Byetta®) is a chemically synthesized version of Exendin-4 with an additional C-terminal amidation. Exenatide acts as a GLP-1 receptor agonist. This paper illustrates the method adopted for cloning, fermentation and purification of recombinant Exendin-4 analog expressed in Escherichia coli. The biologically expressed analog was extensively characterized using different orthogonal methods to confirm their biological activity and physicochemical properties. It was observed that the expressed analog showed comparable functional properties as that of Byetta® irrespective of their modes of development. Further, in vivo efficacy of the recombinant Exendin-4 analog was studied in Oral Glucose Tolerance Test (OGTT) in mice models. Byetta® and Exendin-4 analog treated groups showed comparable glucose lowering activity in the OGTT model.


Assuntos
Escherichia coli , Expressão Gênica , Peptídeos , Peçonhas , Animais , Avaliação Pré-Clínica de Medicamentos , Exenatida , Masculino , Camundongos , Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Peçonhas/biossíntese , Peçonhas/genética , Peçonhas/isolamento & purificação , Peçonhas/farmacologia
11.
Int J Mol Sci ; 18(3)2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28282854

RESUMO

Exendin-4 is a strong therapeutic candidate for the treatment of metabolic syndrome. Related receptor agonist drugs have been on the market since 2005. However, technical limitations and the pain caused by subcutaneous injection have severely limited patient compliance. The goal of the study is to investigate a biologically active exendin-4 analog could be administered orally. Using intraperitoneal glucose tolerance tests, we discovered that exendin4-cysteine administered by oral gavage had a distinct hypoglycemic effect in C57BL/6J mice. Using Rosetta Design and Amber, we designed and screened a series of exendin4-cysteine analogs to identify those that retained biological activity while resisting trypsin digestion. Trypsin Cleavage Site Mutated Exendin4-cysteine 1 (TSME-1), an analog whose bioactivity was similar to exendin-4 and was almost completely resistant to trypsin, was screened out. In addition, TSME-1 significantly normalized the blood glucose levels and the availability of TSME-1 was significantly higher than that of exendin-4 and exendin4-cysteine. Collectively orally administered TSME-1, a trypsin-resistant exendin-4 analog obtained by the system, is a strong candidate for future treatments of type 2 diabetes.


Assuntos
Cisteína/genética , Desenho de Fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Mutação , Peptídeos/genética , Peptídeos/farmacologia , Peçonhas/genética , Peçonhas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Glicemia/efeitos dos fármacos , AMP Cíclico/metabolismo , Cisteína/química , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Teste de Tolerância a Glucose , Intestino Delgado/enzimologia , Masculino , Camundongos , Peptídeo Hidrolases/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Ligação Proteica , Proteólise , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tripsina/metabolismo , Peçonhas/administração & dosagem , Peçonhas/química
12.
J Proteome Res ; 16(2): 763-772, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28152596

RESUMO

The occurrence of contryphans, a class of single-disulfide-bond-containing peptides, is demonstrated by the analysis of the venom of nine species of cone snails. Ten full gene sequences and two partial gene sequences coding for contryphan precursor proteins have been identified by next-generation sequencing and compared with available sequences. The occurrence of mature peptides in isolated venom has been demonstrated by LC-ESI-MS/MS analysis. De novo sequencing of reduced, alkylated contryphans from C. frigidus and C. araneosus provides evidence of sequence variation and post-translational modification, notably gamma carboxylation of glutamic acid. The characterization of Fr965 (C. frigidus) provides a rare example of a sequence lacking Pro at position 5 in the disulfide loop. The widespread occurrence of contryphan genes and mature peptides in the venom of diverse cone snails is suggestive of their potential biological significance.


Assuntos
Conotoxinas/genética , Peptídeos Cíclicos/genética , Transcriptoma/genética , Peçonhas/genética , Sequência de Aminoácidos/genética , Animais , Conotoxinas/química , Caramujo Conus/química , Caramujo Conus/genética , Espectrometria de Massas , Peptídeos/química , Peptídeos/genética , Processamento de Proteína Pós-Traducional , Peçonhas/química
13.
Microb Cell Fact ; 16(1): 4, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28093085

RESUMO

BACKGROUND: Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. RESULTS: The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. CONCLUSIONS: This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.


Assuntos
Endopeptidases/metabolismo , Escherichia coli/genética , Biossíntese Peptídica , Peptídeos/genética , Peçonhas/biossíntese , Peçonhas/genética , Animais , Biotecnologia/métodos , Clonagem Molecular , Dissulfetos/química , Endopeptidases/química , Vetores Genéticos , Ensaios de Triagem em Larga Escala , Oxirredução , Peptídeos/química , Peptídeos/isolamento & purificação , Periplasma/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Peçonhas/química , Peçonhas/metabolismo
14.
Microb Cell Fact ; 16(1): 6, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095880

RESUMO

BACKGROUND: Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. RESULTS: In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. CONCLUSIONS: Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large libraries of recombinant disulphide-reticulated peptides of remarkable interest for drug discovery programs.


Assuntos
Escherichia coli/genética , Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Peptídeos/genética , Proteínas Recombinantes/isolamento & purificação , Peçonhas/genética , Animais , Dissulfetos/química , Descoberta de Drogas/métodos , Endopeptidases/metabolismo , Proteínas de Escherichia coli/genética , Oxirredução , Peptídeos/isolamento & purificação , Peptídeos/uso terapêutico , Periplasma/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Peçonhas/química
15.
Sci Rep ; 6: 37744, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27898108

RESUMO

The importance of Glucagon like peptide 1 (GLP-1) for metabolic control and insulin release sparked the evolution of genes mimicking GLP-1 action in venomous species (e.g. Exendin-4 in Heloderma suspectum (gila monster)). We discovered that platypus and echidna express a single GLP-1 peptide in both intestine and venom. Specific changes in GLP-1 of monotreme mammals result in resistance to DPP-4 cleavage which is also observed in the GLP-1 like Exendin-4 expressed in Heloderma venom. Remarkably we discovered that monotremes evolved an alternative mechanism to degrade GLP-1. We also show that monotreme GLP-1 stimulates insulin release in cultured rodent islets, but surprisingly shows low receptor affinity and bias toward Erk signaling. We propose that these changes in monotreme GLP-1 are the result of conflicting function of this peptide in metabolic control and venom. This evolutionary path is fundamentally different from the generally accepted idea that conflicting functions in a single gene favour duplication and diversification, as is the case for Exendin-4 in gila monster. This provides novel insight into the remarkably different metabolic control mechanism and venom function in monotremes and an unique example of how different selective pressures act upon a single gene in the absence of gene duplication.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/genética , Mucosa Intestinal/metabolismo , Monotremados , Ornitorrinco , Tachyglossidae , Peçonhas/genética , Peçonhas/metabolismo , Animais , Evolução Biológica , Células Cultivadas , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Secreção de Insulina , Peptídeos/genética , Filogenia , Seleção Genética
16.
PLoS One ; 11(10): e0165130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764251

RESUMO

Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, is an excellent therapeutic peptide drug for type 2 diabetes due to longer lasting biological activity compared to GLP-1. This study explored the feasibility of using probiotic Lactobacillus paracasei as an oral vector for recombinant exendin-4 peptide delivery, an alternative to costly chemical synthesis and inconvenient administration by injection. L. paracasei transformed with a plasmid encoding the exendin-4 gene (L. paracasei L14/pMG76e-exendin-4) with a constitutive promotor was successfully constructed and showed efficient secretion of exendin-4. The secreted exendin-4 significantly enhanced insulin secretion of INS-1 ß-cells, along with an increment in their proliferation and inhibition of their apoptosis, corresponding to the effect of GLP-1 on these cells. The transcription level of the pancreatic duodenal homeobox-1 gene (PDX-1), a key transcription factor for cellular insulin synthesis and secretion, was upregulated by the treatment with secreted exendin-4, paralleling the upregulation of insulin gene expression. Caco-2 cell monolayer permeability assay showed a 34-fold increase in the transport of exendin-4 delivered by L. paracasei vs. that of free exendin-4 (control), suggesting effective facilitation of exendin-4 transport across the intestinal barrier by this delivery system. This study demonstrates that the probiotic Lactobacillus can be engineered to secrete bioactive exendin-4 and facilitate its transport through the intestinal barrier, providing a novel strategy for oral exendin-4 delivery using this lactic acid bacterium.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lacticaseibacillus paracasei/genética , Lacticaseibacillus paracasei/metabolismo , Peptídeos/administração & dosagem , Peptídeos/genética , Proteínas Recombinantes/administração & dosagem , Peçonhas/administração & dosagem , Peçonhas/genética , Animais , Apoptose , Células CACO-2 , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Exenatida , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Peptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Transativadores/genética , Transativadores/metabolismo , Regulação para Cima/efeitos dos fármacos , Peçonhas/metabolismo
17.
J Biol Chem ; 291(30): 15778-87, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226591

RESUMO

Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22-27) directing the binding of Phe(22) into a hydrophobic pocket on the GLP-1R.


Assuntos
Conotoxinas/química , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Peçonhas/química , Animais , Células CHO , Conotoxinas/genética , Cricetinae , Cricetulus , Exenatida , Peptídeo 1 Semelhante ao Glucagon/genética , Humanos , Peptídeos/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Peçonhas/genética
18.
In Vitro Cell Dev Biol Anim ; 52(5): 598-606, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26932601

RESUMO

Adipose-derived stem cell (ADSC) transplantation has emerged as a potential tool for the treatment of cardiovascular disease. However, with a limited renewal capacity and the need for mass cells during the engraftment, strategies are needed to enhance ADSC proliferative capacity. In this study, we explored the effects of exendin-4 (Ex-4), a glucagon-like peptide-1 analog, on the growth of ADSCs, focusing in particular on c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways. Firstly, ADSCs were isolated and cultured in vitro. Then, flow cytometry demonstrated that ADSCs were positive for CD90 and CD29 but negative for CD31, CD34, and CD45. Ex-4 (0-50 nM) treatment increased ADSC proliferation in a dose-dependent manner but had no effects on stem cell markers of ADSCs. Moreover, we found that Ex-4 treatment elevated the phosphorylation levels of the JNK and ERK signaling pathways. Furthermore, utilization of Ex-4 also promoted cyclin D1 and cyclin E protein expression, which was accompanied by more Edu(+) cells and a higher percentage of cells in the S-phase of the cell cycle after Ex-4 treatment. In parallel, the application of inhibitors SP600125 and PD98059, inhibitors of the JNK and ERK signaling pathways, respectively, not only reversed such effects of Ex-4 on JNK and ERK but also resulted in lower percentages of S-phase cells and fewer numbers of Edu(+) cells. In summary, Ex-4 has no effects on stem cell markers in ADSCs but promotes ADSC growth via JNK and ERK signaling pathways.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/farmacologia , Células-Tronco/efeitos dos fármacos , Peçonhas/farmacologia , Tecido Adiposo/citologia , Animais , Antígenos CD34/metabolismo , Exenatida , Citometria de Fluxo , Integrina beta1/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Peptídeos/genética , Peptídeos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/metabolismo , Antígenos Thy-1/metabolismo , Peçonhas/genética , Peçonhas/metabolismo
19.
BMC Mol Biol ; 17: 7, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944950

RESUMO

BACKGROUND: Bothrops colombiensis is a highly dangerous pit viper and responsible for over 70% of snakebites in Venezuela. Although the composition in B. colombiensis venom has been identified using a proteome analysis, the venom gland transcriptome is currently lacking. RESULTS: We constructed a cDNA library from the venom gland of B. colombiensis, and a set of 729 high quality expressed sequence tags (ESTs) was identified. A total number of 344 ESTs (47.2% of total ESTs) was related to toxins. The most abundant toxin transcripts were metalloproteinases (37.5%), phospholipases A2s (PLA2, 29.7%), and serine proteinases (11.9%). Minor toxin transcripts were linked to waprins (5.5%), C-type lectins (4.1%), ATPases (2.9%), cysteine-rich secretory proteins (CRISP, 2.3%), snake venom vascular endothelium growth factors (svVEGF, 2.3%), L-amino acid oxidases (2%), and other putative toxins (1.7%). While 160 ESTs (22% of total ESTs) coded for translation proteins, regulatory proteins, ribosomal proteins, elongation factors, release factors, metabolic proteins, and immune response proteins. Other proteins detected in the transcriptome (87 ESTs, 11.9% of total ESTs) were undescribed proteins with unknown functions. The remaining 138 (18.9%) cDNAs had no match with known GenBank accessions. CONCLUSION: This study represents the analysis of transcript expressions and provides a physical resource of unique genes for further study of gene function and the development of novel molecules for medical applications.


Assuntos
Bothrops/genética , Transcriptoma , Peçonhas/genética , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Alinhamento de Sequência , Peçonhas/química , Peçonhas/classificação
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 40(11): 1179-85, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26643419

RESUMO

OBJECTIVE: To evaluate the therapeutic effects of recombinant Exendin-4 and double-stranded adeno-associated virus (Exendin-4/dsAAV) on SD rats with type 2 diabetes (T2DM) through injecting it into submandibular gland (SG).
 METHODS: The Exendin-4/dsAAV was injected into submandibular gland of diabetic rat. The insulin and α-amylase were detected by real-time PCR at the 2nd, 4th and 8th weeks. The immunohistochemisty was used to detect the insulin contents in SG at the 8th week. The concentration of blood glucose and levels of insulin secretion were detected after pancreatectomy.
 RESULTS: The SG gland was bigger in Exendin-4/dsAAV group than that in the control group, but the changes in α-amylase were not significant. The Exendin-4 and insulin gene expression was increased in the Exendin-4/dsAAV group (P<0.05). The Exendin-4 and insulin were positive in the SG. The blood glucose was lower and insulin concentration was higher in the Exendin-4/dsAAV group than those in the control group after pancreatectomy (P<0.05), and the insulin content was also increased in the dsAAV groups.
 CONCLUSION: Continuous expression of Exendin-4 in SG may improve glucose control and insulin secretion in T2DM rats through inducing expression of insulin.


Assuntos
Dependovirus , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Terapia Genética , Peptídeos/uso terapêutico , Glândula Submandibular/química , Peçonhas/uso terapêutico , Animais , Glicemia/análise , Exenatida , Injeções , Insulina/química , Peptídeos/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Peçonhas/genética , alfa-Amilases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA