Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Food Chem ; 451: 139493, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703728

RESUMO

Iron chelating peptides have been widely utilized as iron supplements due to their excellent absorption capacity, However, the high cost and cumbersome manufacturing process of these peptides significantly limit their industrial application. In this study, fermentation was used for the first time to prepare iron chelating peptides. Bacillus altitudinis 3*1-3 was selected as the most suitable strain from 50 strains. The hydrolysates of fermented scallop skirts showed excellent iron-chelating capacity (9.39 mg/g). Aspartic acid, glutamic acid, and histidine are crucial for the binding of peptides to ferrous ions. The heptapeptide (FEDPEFE) forms six binding bonds with ferrous irons. Compared with ferrous sulfate, peptide-ferrous chelate showed more stability in salt solution and simulated gastrointestinal juice (p < 0.05). Furthermore, the fermentation method could save >50% of the cost compared with the enzymatic method. The results can provide a theoretical basis for the preparation of ferrous-chelated peptides using the fermentation method.


Assuntos
Bacillus , Fermentação , Quelantes de Ferro , Pectinidae , Peptídeos , Animais , Pectinidae/química , Pectinidae/metabolismo , Pectinidae/microbiologia , Peptídeos/química , Peptídeos/metabolismo , Quelantes de Ferro/química , Quelantes de Ferro/metabolismo , Bacillus/metabolismo , Bacillus/química , Ferro/química , Ferro/metabolismo
2.
Medicine (Baltimore) ; 103(10): e37410, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457563

RESUMO

RATIONALE: Acute type B aortic dissection (ABAD) is a fatal cardiovascular disease with high morbidity and mortality. Isolated left vertebral artery (ILVA) is a rare aortic arch mutation originating from the aortic arch. The simultaneous occurrence of both increases the complexity and difficulty of thoracic endovascular aortic repair. However, there have been few reports on the recommendation of thoracic endovascular aortic repair treatment strategies for aortic dissection patients concomitant ILVA with insufficient landing zone. Here, we report a case of ABAD combined with ILVA treated with hybrid surgery of left vertebral artery transposition alliance with Scallop and in vivo fenestration endograft. PATIENT CONCERNS: A 38-year-old middle-aged man was transferred to our vascular department with persistent pain in his lower abdomen for 8 hours. DIAGNOSES: Preoperative computed tomography angiogram of the thoracic and abdominal aorta diagnosed with ABAD accompanied with ILVA. INTERVENTIONS: Hybrid surgery of left vertebral artery transposition alliance with Scallop and in situ fenestration endograft for revascularization of ILVA, left subclavian artery, and left common carotid artery. OUTCOMES: The hybridization operation was successfully completed. There were no complications of cerebral and spinal cord ischemia after operation. Computed tomography angiogram examination indicated no internal leakage existed in the stent and patency of the arch vessels and the transposed left vertebral artery follow-up 3 months after surgery. LESSONS: This study gave us experience in the treatment of aortic dissection with left vertebral artery variation and suggested that left vertebral artery transposition combined with scallop and in vivo fenestration stent is safe and effective.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Implante de Prótese Vascular , Procedimentos Endovasculares , Pectinidae , Masculino , Pessoa de Meia-Idade , Humanos , Adulto , Animais , Aorta Torácica/cirurgia , Artéria Vertebral/diagnóstico por imagem , Artéria Vertebral/cirurgia , Prótese Vascular , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/cirurgia , Procedimentos Endovasculares/métodos , Resultado do Tratamento , Dissecção Aórtica/complicações , Dissecção Aórtica/cirurgia , Artéria Subclávia , Stents/efeitos adversos , Implante de Prótese Vascular/métodos
3.
Fish Shellfish Immunol ; 147: 109443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354964

RESUMO

The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family has been reported to be involved in many immune pathways. In a previous study, we identified 5 TRAF genes, including TRAF2, 3, 4, 6, and 7, in the bay scallop (Argopecten irradians, Air) and the Peruvian scallop (Argopecten purpuratus, Apu). Since TRAF6 is a key molecular link in the TNF superfamily, we conducted a series of studies targeting the TRAF6 gene in the Air and Apu scallops as well as their hybrid progeny, Aip (Air ♀ × Apu ♂) and Api (Apu ♀ × Air ♂). Subcellular localization assay showed that the Air-, Aip-, and Api-TRAF6 were widely distributed in the cytoplasm of the human embryonic kidney cell line (HEK293T). Additionally, dual-luciferase reporter assay revealed that among TRAF3, TRAF4, and TRAF6, only the overexpression of TRAF6 significantly activated NF-κB activity in the HEK293T cells in a dose-dependent manner. These results suggest a crucial role of TRAF6 in the immune response in Argopecten scallops. To investigate the specific immune mechanism of TRAF6 in Argopecten scallops, we conducted TRAF6 knockdown using RNA interference. Transcriptomic analyses of the TRAF6 RNAi and control groups identified 1194, 2403, and 1099 differentially expressed genes (DEGs) in the Air, Aip, and Api scallops, respectively. KEGG enrichment analyses revealed that these DEGs were primarily enriched in transport and catabolism, amino acid metabolism, peroxisome, lysosome, and phagosome pathways. Expression profiles of 28 key DEGs were confirmed by qRT-PCR assays. The results of this study may provide insights into the immune mechanisms of TRAF in Argopecten scallops and ultimately benefit scallop breeding.


Assuntos
Pectinidae , Fator 6 Associado a Receptor de TNF , Humanos , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Células HEK293 , Fator 2 Associado a Receptor de TNF/metabolismo , Receptores do Fator de Necrose Tumoral , Pectinidae/genética , Fator 4 Associado a Receptor de TNF/metabolismo
4.
Chemosphere ; 352: 141512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387655

RESUMO

This study aimed to assess the impact of acute exposure (96 h) to Cd in gills, digestive gland and muscle of the Tehuelche scallop Aequipecten tehuelchus from San José gulf in Patagonia, Argentina. Scallops were exposed to Cd concentrations of 0, 25, 50, 100, 150, 204, 275, 371, and 500 µg/L, and mortality rates were recorded after 96 h of exposure. Surviving organisms were analyzed for the biochemical response through reactive oxygen and nitrogen species (RONS), activities of catalase (CAT) and glutathione-S-transferase (GST), metallothioneins (MT), lipid peroxidation (LPO) and liposoluble antioxidants α-tocopherol (α-T) and ß-carotene (ß-C). The mean lethal concentration (LC50) was 155.8 µg Cd/L, a lower value than other scallops' species, showing that A. tehuelchus has a particular sensitivity to Cd. In the three tissues, at all exposure concentrations, there was no significant response in RONS levels, GST activity or LPO. Nevertheless, CAT activity and α-T levels decreased in the gills but increased in the digestive gland, with no significant response in the muscle. Two-way ANOVA revealed a significant interaction between Cd concentration and tissue on MT, which increased significantly in gills, decreased in digestive gland with 100 compared to 50 µg Cd/L; whereas in muscle a significant increase was observed with 25 µg Cd/L compared to control. The results show a significant effect of Cd in scallop's gills on CAT activity and α-T levels, highlighting this tissue as the primary target against relevant concentrations of metal in seawater. The effect on digestive gland and muscle was minimal. The overall results suggest that Cd toxicity is tissue-specific. This study will help reduce the existence knowledge gap regarding potential impacts of acute exposure to Cd in a bivalve species with high ecological and commercial importance, as well as identifying the most responsive biomarkers associated with Cd stress for monitoring assessment.


Assuntos
Pectinidae , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Cádmio/análise , Estresse Oxidativo , Catalase/metabolismo , Pectinidae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Brânquias/metabolismo , Poluentes Químicos da Água/análise , Peroxidação de Lipídeos , Biomarcadores/metabolismo
5.
Environ Toxicol Chem ; 43(4): 748-761, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088252

RESUMO

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) with the most carcinogenic effects of all the PAHs, has multiple toxic effects on marine bivalves. We investigated the interference mechanism of B[a]P on food metabolism (sugars, proteins, and sugars), and on reproductive endocrine and ovarian development in female scallops (Chlamys farreri). Scallops were exposed to different concentrations of B[a]P concentrations of 0, 0.38, 3.8, and 38 µg/L throughout gonadal development. Total cholesterol and triglyceride contents in the digestive glands were increased, and their synthesis genes were upregulated. The plasma glucose contents decreased with the inhibition of glycogen synthesis genes and the induction of glycolysis genes in the digestive gland. The results showed that B[a]P had endocrine-disrupting effects on scallops, that it negatively affected genes related to ovarian cell proliferation, sex differentiation, and egg development, and that it caused damage to ovarian tissue. Our findings supplement the information on B[a]P disruption in gonadal development of marine bivalves. Environ Toxicol Chem 2024;43:748-761. © 2023 SETAC.


Assuntos
Benzo(a)pireno , Pectinidae , Animais , Feminino , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Diferenciação Sexual , Pectinidae/genética , Pectinidae/metabolismo , Alimentos Marinhos , Açúcares/farmacologia
6.
Mar Environ Res ; 192: 106221, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844368

RESUMO

The effects of the toxic dinoflagellate Alexandrium catenella were investigated on growth, survival, and histopathology in larvae and spat of the Tehuelche scallop Aequipecten tehuelchus from Patagonia, Argentina. The study consisted of laboratory incubations of scallop larvae/spat with A. catenella, using environmentally realistic abundances of the dinoflagellate. Survival, growth, and histopathological effects were documented for scallop larvae/spat before, during, and after 7-day-long exposure to A. catenella. The scallops were grouped in flasks containing 0 (control), 20, 200, and 2000 cells mL-1 of A. catenella. The presence of A. catenella induced reduced larvae survival after 24 h, whereas a clear effect was observed after 3 days (survival of control larvae 95%, 72, and 79% for 20 and 200 cells mL-1, respectively, and 43% for 2000 cells mL-1). The growth rates of the control larvae and those exposed to 20 mL-1 cells were significantly different from zero. Histopathological effects (melanization, loss of connective tissue, necrosis, and inflammatory responses) were observed in spat exposed to A. catenella. These effects were more pronounced at the highest dinoflagellate concentration. Blooms of A. catenella frequently coincide with the reproductive season of A. tehuelchus, thus there is a need to further study the relationship between harmful algal blooms and the effect on scallops' natural populations in the region.


Assuntos
Dinoflagellida , Pectinidae , Animais , Dinoflagellida/fisiologia , Proliferação Nociva de Algas , Alimentos Marinhos , Argentina , Larva
7.
Artigo em Inglês | MEDLINE | ID: mdl-37661044

RESUMO

As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 µg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.


Assuntos
Benzo(a)pireno , Pectinidae , Feminino , Animais , Benzo(a)pireno/toxicidade , Antioxidantes , Pectinidae/genética , Dano ao DNA , Apoptose
9.
Fish Shellfish Immunol ; 140: 108998, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586601

RESUMO

AMP-activated protein kinase α subunit (AMPKα), the central regulatory molecule of energy metabolism, plays an important role in maintaining energy homeostasis and helping cells to resist the influence of various adverse factors. In the present study, an AMPKα was identified from Yesso scallop Patinopecten yessoensis (PyAMPKα). The open reading frame (ORF) of PyAMPKα was of 1599 bp encoding a putative polypeptide of 533 amino acid residues with a typical KD domain, a α-AID domain and a α-CTD domain. The deduced amino acid sequence of PyAMPKα shared 59.89-74.78% identities with AMPKαs from other species. The mRNA transcripts of PyAMPKα were found to be expressed in haemocytes and all the examined tissues, including gill, mantle, gonad, adductor muscle and hepatopancreas, with the highest expression level in adductor muscle. PyAMPKα was mainly located in cytoplasm of scallop haemocytes. At 3 h after high temperature stress treatment (25 °C), the mRNA transcripts of PyAMPKα, the phosphorylation level of PyAMPKα at Thr170 and the lactic acid (LD) content in adductor muscle all increased significantly, while the glycogen content decreased significantly. The activity of pyruvate kinase (PyPK) and the relative mRNA expression level of phosphofructokinase (PyPFK) were significantly up-regulated at 3 h after high temperature stress treatment (25 °C). Furthermore, the PyAMPKα activator AICAR could effectively upregulate the phosphorylation level of PyAMPKα, and increase activities of PyPFK and pyruvate kinase (PyPK). Meanwhile the glycogen content also declined under AICAR treatment. These results collectively suggested that PyAMPKα was involved in the high temperature stress response of scallops by enhancing glycolysis pathway of glycogen. These results would be helpful for understanding the functions of PyAMPKα in maintaining energy homeostasis under high temperature stress in scallops.


Assuntos
Proteínas Quinases Ativadas por AMP , Pectinidae , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Temperatura , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Pectinidae/genética , Pectinidae/metabolismo , Glicólise , RNA Mensageiro/metabolismo , Filogenia
10.
J Agric Food Chem ; 71(33): 12609-12617, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566884

RESUMO

Dry/reimmersed storage is often used in the transportation of live scallops. In this study, tandem mass tag (TMT)-labeled protein omics were used to quantitatively analyze the protein changes in scallops during dry/reimmersed stress. The results showed that during dry storage, scallops maintained cellular redox homeostasis through the upregulation of SCO1-like protein and thioredoxin domain-containing protein and reduced organic acids from the ATP synthetic process by the downregulation of NADH dehydrogenase, thereby reducing the damage caused during dry storage. During reimmersed storage, mitochondrial proteins underwent very sensitive changes. By upregulating aerobic respiration-related proteins (including proteins involved in glucose phosphate metabolism, glyceraldehyde 3-phosphate metabolism, etc.), the ATP synthesis ability was improved. However, the damage to the mitochondrial structure by dry storage could not be completely recovered, even by reimmersion. This included some apoptosis-related proteins that were obviously upregulated. In summary, compared with ATP-related indexes, mitochondria can respond more sensitively to dry storage stress.


Assuntos
Pectinidae , Proteômica , Animais , Pectinidae/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo
11.
J Food Sci ; 88(7): 3007-3021, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37248780

RESUMO

The synergistic effects of the combination of ultrahigh pressure (UHP) with allicin on the gel properties, flavor characteristics, and myosin structure of scallops were investigated. The results indicated that chewiness reached maximum, uniform, and dense microstructures at B-300 MPa, and scallops with favorable gel properties. In addition, the electronic nose and tongue could clearly distinguish the olfactory and gustatory properties of scallops, and the interaction of UHP and allicin increased the variety of volatile compounds in scallops, which mainly included 1-hydroxy-2-propanone, 1-hexenal, 2-butanone-D, and 1-octen-3-ol. The main performance was fruit aroma and a plantlike aroma and mushroomlike odor. UHP and allicin changed the microenvironment of tryptophan residues, and allicin formed larger aggregates by forming disulfides with myosin. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis results could show that myosin had low degradation in B-300 MPa. Thus, comprehensively viewed, UHP and allicin play a role in gel formation of myosin from obturator muscle at 300 MPa, whereas allicin and myosin form disulfides as the main factor of myosin gelation. PRACTICAL APPLICATION: To enhance the diversity of scallop preparation methods and improve the quality of the obtained product, UHP and allicin treatment result in scallops with satisfactory chewiness and flavor, which provides application prospects for scallop processing.


Assuntos
Pectinidae , Animais , Pectinidae/química , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Dissulfetos
12.
Mar Environ Res ; 188: 106011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37201292

RESUMO

Scallops Aequipecten tehuelchus (Patagonia, Argentina) were exposed to 0, 2, 5 and 12 µg Cd/L for 7 and 14 days, causing in digestive gland a significant production of reactive oxygen and nitrogen species (RONS), induction of catalase (CAT) and glutathione S-transferase (GST) activities and metallothioneins (MT) synthesis. In gills, there was inhibition of GST and induction of CAT, MT and α-tocopherol (α-Toc). In muscle, a significant increment of MT was also registered and inhibition of CAT. Lipid peroxidation, measured as TBARS, was not promoted in any tissue. More significant effects were observed in digestive gland than in gills and muscle, evidencing the critical role of digestive gland in Cd accumulation and metabolisation. This research would evidence dose-dependent effects of Cd on MT, GST, CAT and α-Toc in the three organs assayed, as well as a time-dependent effect of Cd on the response of CAT, GST and TBARS in digestive gland.


Assuntos
Pectinidae , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Peroxidação de Lipídeos , Brânquias , Glutationa Transferase/metabolismo , Poluentes Químicos da Água/análise , Biomarcadores/metabolismo , Superóxido Dismutase/metabolismo
13.
J Hazard Mater ; 453: 131395, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058935

RESUMO

The Potentially toxic elements (PTEs) cadmium (Cd) is one of the most serious stressors polluting the marine environment. Marine bivalves have specific high enrichment capacity for Cd. Previous studies have investigated the tissue distribution changes and toxic effects of Cd in bivalves, but the sources of Cd enrichment, migration regulation during growth, and toxicity mechanisms in bivalves have not been fully explained. Here, we used stable-isotope labeling to investigate the contributions of Cd from different sources to scallop tissues. We sampled the entire growth cycle of Chlamys farreri, which is widely cultured in northern China, from juveniles to adult scallops. We found tissue variability in the bioconcentration-metabolism pattern of Cd in different bound states, with Cd in the aqueous accounting for a significant contribution. The accumulation pattern of Cd in all tissues during growth was more significant in the viscera and gills. Additionally, we combined a multi-omics approach to reveal a network of oxidative stress-induced toxicity mechanisms of Cd in scallops, identifying differentially expressed genes and proteins involved in metal ion binding, oxidative stress, energy metabolism, and apoptosis. Our findings have important implications for both ecotoxicology and aquaculture. They also provide new insights into marine environmental assessment and mariculture development.


Assuntos
Bivalves , Pectinidae , Poluentes Químicos da Água , Animais , Cádmio/metabolismo , Bioacumulação , Poluentes Químicos da Água/metabolismo , Pectinidae/metabolismo , Bivalves/metabolismo
14.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108240

RESUMO

[Ca2+]-dependent crystallization of the Ca2+-ATPase molecules in sarcoplasmic reticulum (SR) vesicles isolated from scallop striated muscle elongated the vesicles in the absence of ATP, and ATP stabilized the crystals. Here, to determine the [Ca2+]-dependence of vesicle elongation in the presence of ATP, SR vesicles in various [Ca2+] environments were imaged using negative stain electron microscopy. The images obtained revealed the following phenomena. (i) Crystal-containing elongated vesicles appeared at ≤1.4 µM Ca2+ and almost disappeared at ≥18 µM Ca2+, where ATPase activity reaches its maximum. (ii) At ≥18 µM Ca2+, almost all SR vesicles were in the round form and covered by tightly clustered ATPase crystal patches. (iii) Round vesicles dried on electron microscopy grids occasionally had cracks, probably because surface tension crushed the solid three-dimensional spheres. (iv) [Ca2+]-dependent ATPase crystallization was rapid (<1 min) and reversible. These data prompt the hypothesis that SR vesicles autonomously elongate or contract with the help of a calcium-sensitive ATPase network/endoskeleton and that ATPase crystallization may modulate physical properties of the SR architecture, including the ryanodine receptors that control muscle contraction.


Assuntos
Pectinidae , Retículo Sarcoplasmático , Animais , Retículo Sarcoplasmático/metabolismo , Adenosina Trifosfatases , ATPases Transportadoras de Cálcio/metabolismo , Contração Muscular , Pectinidae/metabolismo , Trifosfato de Adenosina , Cálcio/metabolismo
15.
Front Immunol ; 14: 1150280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936911

RESUMO

Mass mortality events caused by vibriosis have emerged in hatchery-reared scallop larvae from Chile, threatening scallop aquaculture. In an attempt to mitigate this emerging infectious disease and provide candidates for marker-assisted selective breeding, we tested here the existence of a genetic component of Argopecten purpuratus scallop resistance to the pathogen Vibrio bivalvicida. Through a dual RNA-seq approach we analyzed the basal transcriptome and the transcriptional response to infection in two resistant and two susceptible families as well as the pathogen transcriptomic response to host colonization. The results highlighted a genetic basis in the resistance of scallop larvae to the pathogen. The Vibrio response was characterized by a general metabolic adaptation to the host environment, along with several predicted virulence factors overexpressed in infected scallop larvae with no difference between resistant and susceptible host phenotypes. On the host side, several biological processes were enriched in uninfected resistant larvae. Within these enriched categories, immune-related processes were overexpressed, while morphogenesis, biomineral tissue development, and angiogenesis were under expressed. Particularly, genes involved in immune recognition and antimicrobial response, such as lipopolysaccharide-binding proteins (LBPs), lysozyme, and bactericidal permeability-increasing protein (BPI) were overexpressed in uninfected resistant larvae. As expected, immune-related biological processes were enriched in Vibrio-infected larvae, but they were more numerous in resistant larvae. Overexpressed immune genes in response to infection included several Toll-like receptors, TNF and NF-κB immune signaling genes, and the antimicrobial peptide Big defensin ApBD1. Results strongly suggest that both a front-loading of immune genes and an enhanced antimicrobial response to infection contribute to the resistance, while pathogen infective strategy does not discriminate between host phenotypes. Overall, early expression of host immune genes appears as a strong determinant of the disease outcome that could be used in marker-assisted selective breeding.


Assuntos
Anti-Infecciosos , Pectinidae , Vibrioses , Animais , Larva/genética , Larva/metabolismo , Pectinidae/genética , NF-kappa B/metabolismo , Vibrioses/veterinária
16.
Fish Shellfish Immunol ; 135: 108675, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36906048

RESUMO

The tumor necrosis factor receptor-related factor (TRAF) family has been reported to be involved in many immune pathways, such as TNFR, TLR, NLR, and RLR in animals. However, little is known about the roles of TRAF genes in the innate immune of Argopecten scallops. In this study, we first identified five TRAF genes, including TRAF2, TRAF3, TRAF4, TRAF6 and TRAF7, but not TRAF1 and TRAF5, from both the bay scallop A. irradians (Air) and the Peruvian scallop A. purpuratus (Apu). The phylogenetic analysis showed that the TRAF genes in Argopecten scallops (AiTRAF) belong to the branch of molluscan TRAF family, which lacks TRAF1 and TRAF5. Since TRAF6 is a key bridge factor in the tumor necrosis factor superfamily and plays an important role in innate and adaptive immunity, we cloned the ORFs of the TRAF6 gene in both A. irradians and A. purpuratus, as well as in two reciprocal hybrids (Aip for the hybrid Air × Apu and Api for the hybrid Apu × Air). Differences in conformational and post-translational modification resulted from the variation in amino acid sequences may cause differences in activity among them. Analysis of conserved motifs and protein structural domains revealed that AiTRAF contains typical structural domains similar to those of other mollusks and has the same conserved motifs. Tissue expression of TRAF in Argopecten scallops challenged by Vibrio anguillarum was examined by qRT-PCR. The results showed that AiTRAF were higher in gill and hepatopancreas. When challenged by Vibrio anguillarum, the expression of AiTRAF was significantly increased compared with the control group, indicating that AiTRAF may play an important role in the immunity of scallops. In addition, the expression of TRAF was higher in Api and Aip than in Air when challenged by Vibrio anguillarum, suggesting that TRAF may have contributed to the high resistance of Api and Aip to Vibrio anguillarum. The results of this study may provide new insights into the evolution and function of TRAF genes in bivalves and ultimately benefit scallop breeding.


Assuntos
Pectinidae , Vibrio , Animais , Filogenia , Vibrio/fisiologia , Sequência de Aminoácidos , Pectinidae/genética
17.
J Steroid Biochem Mol Biol ; 231: 106302, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990165

RESUMO

Estrogen receptors (ERs) were known as estrogen-activated transcription factors and function as major reproduction regulators in vertebrates. The presence of er genes had been reported in Molluscan cephalopods and gastropods. However, they were considered as constitutive activators with unknown biological functions since reporter assays for these ERs did not show a specific response to estrogens. In this study, we tried characterization of ER orthologues from the Yesso scallop, Patinopecten yessoensis, in which estrogens had been proven to be produced in the gonads and involved in the spermatogenesis and vitellogenesis. Identified ER and estrogen related receptor (ERR) of Yesso scallops, designated as py-ER and py-ERR, conserved specific domain structures for a nuclear receptor. Their DNA binding domains showed high similarities to those of vertebrate ER orthologues, while ligand binding domains had low similarities with them. Both the py-er and py-err expression levels decreased in the ovary at the mature stage while py-vitellogenin expression increased in the ovary by quantitative real-time RT-PCR. Also, the py-er and py-err showed higher expressions in the testis than ovary during the developing and mature period, suggesting both genes might function in the spermatogenesis and testis development. The py-ER showed binding affinities to vertebrate estradiol-17ß (E2). However, the intensity was weaker than the vertebrate ER, indicating scallops might exist endogenous estrogens with a different structure. On the other hand, the binding property of py-ERR to E2 was not confirmed in this assay, speculating that py-ERR was a constitutive activator as other vertebrate ERRs. Further, the py-er was localized in the spermatogonia in the testis and in the auxiliary cells in the ovary by in situ hybridization, indicating its potential roles in promoting spermatogenesis and vitellogenesis. Taken together, the present study demonstrated that py-ER was an authentic E2 receptor in the Yesso scallop and might have functions for the spermatogonia proliferation and vitellogenesis, while py-ERR was involved in the reproduction by undiscovered manners.


Assuntos
Pectinidae , Receptores de Estrogênio , Masculino , Animais , Feminino , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Gônadas , Pectinidae/genética , Pectinidae/metabolismo , Estrogênios/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-36690296

RESUMO

High temperature increases energy demand in ectotherms, limiting their physiological capability to cope with hypoxic events. The present study aimed to assess the metabolic tolerance of juvenile Nodipecten subnodosus scallops to acute hyperthermia combined with moderate hypoxia. A previous study showed that juveniles exhibited a high upper temperature limit (32 °C), but the responses of juveniles to combined hyperthermia and low dissolved oxygen are unknown. Scallops were exposed to control conditions (treatment C: 22 °C, ∼7.1 mg O2 L-1 or PO2 156.9 mmHg), acute hyperthermia under normoxia (treatment T: 30 °C, ∼6.0 mg O2 L-1 or PO2 150.9 mmHg) or acute hyperthermia plus hypoxia (treatment TH: 30 °C, ∼2.5 mg O2 L-1 or PO2 62.5 mmHg) for 18 h. In T, juveniles exhibited an enhanced oxygen consumption, together with a decrease in adenylate energy charge (AEC) and arginine phosphate (ArgP), and with no changes in metabolic enzyme activity in the muscle. In TH, scallops maintained similar AEC and ArgP levels in muscle as those observed in T treatment. This response occurred along with the accumulation of inosine monophosphate and hypoxanthine. Besides, reduced citrate synthase and pyruvate kinase activities, enhanced hexokinase activity, and a higher octopine dehydrogenase/lactate dehydrogenase ratio in the mantle indicated the onset of anaerobiosis in TH. These responses indicate that juvenile scallops showed tissue-specific compensatory responses regarding their energy balance under moderate hypoxia at high temperatures. Our results give an insight into the tolerance limit of this species to combined hyperthermia and hypoxia in its northern limit of distribution.


Assuntos
Oxigênio , Pectinidae , Animais , Temperatura , Metabolismo Energético , Hipóxia/metabolismo , Pectinidae/fisiologia , Monofosfato de Adenosina/metabolismo , Consumo de Oxigênio
19.
Food Chem ; 402: 134285, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162169

RESUMO

Scallop is well known for its high accumulation of cadmium. The bioaccessibility and speciation of cadmium in different tissues of scallops during gastrointestinal digestion could influence the evaluation of its biological effects and consumption safety in humans. The bioaccessibility of total Cd ranged from 44.0 % (kidney) to 90.2 % (gonad) for different tissues of scallop Chlamys farreri. Steaming decreased the total Cd bioaccessibility in the mantle, gill, gonad, digestive gland and the muscle. During in vitro digestion, the reactive inorganic Cd2+ could be detected in the digestive juice of five tissues except for the muscle. Steaming process increased the bioaccessible Cd2+ content for the digestive gland, gill and gonad tissues. Based on the bioaccessible total Cd and Cd2+ content, the muscle, gonad, and mantle of the steamed scallops are the safe tissues for human consumption according to the scenarios of Cd intake established by WHO and EFSA.


Assuntos
Cádmio , Pectinidae , Animais , Humanos , Alimentos Marinhos , Brânquias , Digestão
20.
Food Res Int ; 162(Pt B): 112126, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461356

RESUMO

Scallops are delicious and healthy, but their filter feeding habits make them vulnerable to ingesting and accumulating toxic chemicals from the environment, resulting in food safety issues. The purpose of this study was to investigate the effects of steaming process on the concentration, distribution and bioaccessibility of cadmium (Cd) in Chlamys farreri tissues. The results indicated that the Cd concentration calculated based on wet weight (ww) increased from 0.3 mg/kg-28.1 mg/kg to 0.5 mg/kg-30.8 mg/kg after steaming, in which viscera was found to show the largest accumulation of Cd that accounted for 85 % of the total Cd in the fresh scallops. The proportion of Cd in viscera dropped to 66.5 %, while reached to 22.7 % in juice, indicating that steaming altered the Cd distribution in scallops. INFOGEST 2.0 was carried out to investigate the in vitro bioaccessibility of Cd (BCd) in C. farreri tissues. The result shows that steaming could improve edible safety of scallops by reducing the BCd in gonad and viscera. This current study directed safer scallop consumption, which would provide scientific support for incorporating physical cutting steps into the shellfish industrial pretreatment process, as well as suggestions for the targeted development of heavy metal removal technology in bivalves.


Assuntos
Cádmio , Pectinidae , Animais , Vapor , Alimentos Marinhos , Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA