Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872006

RESUMO

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Assuntos
Apoptose , Neoplasias do Colo , Glicogênio Sintase Quinase 3 beta , Harmina , Peganum , Sementes , Humanos , Peganum/química , Células HCT116 , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sementes/química , Harmina/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alcaloides/farmacologia , Harmalina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proliferação de Células/efeitos dos fármacos
2.
Med Oncol ; 41(6): 144, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717574

RESUMO

Peganum harmala has been extensively employed in Algerian traditional medicine practices. This study aimed to explore the impact of n-butanol (n-BuOH) extract sourced from Peganum harmala seeds on cell proliferation, cell migration, and angiogenesis inhibition. Cytotoxic potential of n-BuOH extract was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay against human breast adenocarcinoma MCF-7 cells, cell migration was determined using scratch assay, and anti-angiogenic effect was evaluated through macroscopic and histological examinations conducted on chick embryo chorioallantoic membrane. Additionally, this research estimated the phytochemical profile of n-BuOH extract. Fifteen phenolic compounds were identified using Ultra-performance liquid chromatography UPLC-ESI-MS-MS analysis. In addition, the n-BuOH extract of P. harmala exhibited potent antioxidant and free radical scavenging properties. The n-BuOH extract showed potent cytotoxicity against MCF-7 cell with an IC50 value of 8.68 ± 1.58 µg/mL. Furthermore, n-BuOH extract significantly reduced migration. A strong anti-angiogenic activity was observed in the groups treated with n-BuOH extract in comparison to the negative control. Histological analysis confirmed the anti-angiogenic effect of the n-BuOH extract. This activity is probably a result of the synergistic effects produced by different polyphenolic classes.


Assuntos
Inibidores da Angiogênese , Movimento Celular , Peganum , Fenóis , Extratos Vegetais , Humanos , Movimento Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Peganum/química , Embrião de Galinha , Fenóis/farmacologia , Fenóis/análise , Inibidores da Angiogênese/farmacologia , Células MCF-7 , Animais , Proliferação de Células/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Antineoplásicos Fitogênicos/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/irrigação sanguínea
3.
Chin J Nat Med ; 22(2): 171-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342569

RESUMO

This study reports the isolation of four new ß-carboline alkaloids (1-4) and six previously identified alkaloids (5-10) from the roots of Peganum harmala L. Among these compounds, 1 and 2 were characterized as rare ß-carboline-quinazoline dimers exhibiting axial chirality. Compound 3 possessed a unique 6/5/6/7 tetracyclic ring system with an azepine ring, and compound 4 was a novel annomontine ß-carboline. The structures of these compounds were elucidated by spectroscopic data and quantum mechanical calculations. The biosynthetic pathways of 1-3 were proposed. Additionally, the cytotoxicity of some isolates against four cancer cell lines (HL-60, A549, MDA-MB-231, and DU145) was evaluated. Notably, compound 4 exhibited significant cytotoxicity against HL-60, A549, and DU145 cells with IC50 values of 12.39, 12.80, and 30.65 µmol·L-1, respectively. Furthermore, compound 2 demonstrated selective cytotoxicity against HL-60 cells with an IC50 value of 17.32 µmol·L-1.


Assuntos
Alcaloides , Peganum , Humanos , Peganum/química , Peganum/metabolismo , Alcaloides/química , Carbolinas/química , Células HL-60
4.
J Ethnopharmacol ; 300: 115752, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174807

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Peganum harmala L. is a traditional medicinal plant used for centuries in folk medicine. It has a wide array of therapeutic attributes, which include hypoglycemic, sedative, anti-inflammatory, and antioxidant properties. The fruit decoction of this plant was claimed by Avicenna as traditional therapy for urolithiasis. Also, P. harmala seed showed a clinical reduction in kidney stone number and size in patients with urolithiasis. AIM OF THE STUDY: In light of the above-mentioned data, the anti-urolithiatic activities of the seed extracts and the major ß-carboline alkaloids of P. harmala were investigated. MATERIALS AND METHODS: Extraction, isolation, and characterization of the major alkaloids were performed using different chromatographic and spectral techniques. The in vivo anti-urolithiatic action was evaluated using ethylene glycol (EG)-induced urolithiasis in rats by studying their mitigating effects on the antioxidant machinery, serum toxicity markers (i.e. nitrogenous waste, such as blood urea nitrogen, uric acid, urea, and creatinine), minerals (such as Ca, Mg, P, and oxalate), kidney injury marker 1 (KIM-1), and urinary markers (i.e. urine pH and urine output). RESULTS: Two major alkaloids, harmine (P1) and harmalacidine HCl (P2), were isolated and in vivo evaluated alongside the different extracts. The results showed that P. harmala and its constituents/fractions significantly reduced oxidative stress at 50 mg/kg body weight, p.o., as demonstrated by increased levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and catalase (CAT) in kidney homogenate as compared to the EG-treated group. Likewise, the total extract, pet. ether fraction, n-butanol fraction, and P1, P2 alleviated malondialdehyde (MDA) as compared to the EG-treated group. Serum toxicity markers like blood urea nitrogen (BUN), creatinine, uric acid, urea, kidney injury molecule-1 (Kim-1), calcium, magnesium, phosphate, and oxalate levels were decreased by total extract, pet. ether fraction, n-butanol fraction, P1, and P2 as compared to the EG-treated group. Inflammatory markers like NFκ-B and TNF-α were also downregulated in the kidney homogenate of treatment groups as compared to the EG-treated group. Moreover, urine output and urine pH were significantly increased in treatment groups as compared to the EG-treated group deciphering anti-urolithiatic property of P. harmala. Histopathological assessment by different staining patterns also supported the previous findings and indicated that treatment with P. harmala caused a gradual recovery in damaged glomeruli, medulla, interstitial spaces and tubules, and brown calculi materials as compared to the EG-treated group. CONCLUSION: The current research represents scientific evidence on the use of P. harmala and its major alkaloids as an effective therapy in the prevention and management of urolithiasis.


Assuntos
Alcaloides , Cálculos Renais , Peganum , Urolitíase , 1-Butanol , Alcaloides/farmacologia , Animais , Antioxidantes , Cálcio , Oxalato de Cálcio/urina , Catalase , Creatinina , Éteres , Etilenoglicol/uso terapêutico , Etilenoglicol/toxicidade , Glutationa , Glutationa Peroxidase , Glutationa Redutase , Harmina , Hipnóticos e Sedativos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Cálculos Renais/tratamento farmacológico , Magnésio , Malondialdeído , Peganum/química , Fosfatos , Extratos Vegetais , Ratos , Fator de Necrose Tumoral alfa , Ureia , Ácido Úrico , Urolitíase/induzido quimicamente , Urolitíase/tratamento farmacológico , Urolitíase/patologia
5.
Phytochemistry ; 197: 113107, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35121215

RESUMO

Six alkaloids peharmalines F-K, along with 14 known ones, were isolated from the aerial part of Peganum harmala L.. The structures of the isolated compounds were determined based on their HR-ESI-MS data, extensive NMR spectroscopic analyses, and ECD calculations. 3-(4-Hydroxyphenyl)quinoline exhibited potent antiproliferative activity against the HepG-2 cell lines with an IC50 value of 3.05 µM. Norharmane displayed a moderate inhibition against A549 and HepG-2 cells with IC50 values of 16.45 µM and 17.27 µM, respectively.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Peganum , Células A549 , Alcaloides/química , Antineoplásicos Fitogênicos/química , Células Hep G2 , Humanos , Peganum/química , Extratos Vegetais/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-33563161

RESUMO

BACKGROUND & OBJECTIVE: Peganum harmala has been traditionally used to manage rheumatoid arthritis (RA) and other inflammatory conditions. However, its use against RA has not been scientifically evaluated. The current study was designed to assess the anti-arthritic and anti-inflammatory activities of the methanolic extract of P. harmala leaves by in vitro and in vivo methods. METHODS: The in vitro assays were carried out to determine the effect of plant extract on inhibition of egg albumin denaturation and human red blood cell membrane (HRBC) stabilization. Moreover, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity was performed to determine the antioxidant potential. In vivo anti-arthritic activity was performed by determining the curative effect against Complete Freund's adjuvant (0.1 ml). The plant extract was administered to rats orally at 200, 400 and 600 mg/kg/day for 21 days. RESULTS: The values of IC50 of plant extract in protein denaturation, stabilization of HRBC and DPPH assays were 77.54 mg/ml, 23.90 mg/ml and 58.09 µg/ml, respectively. Moreover, the plant extract significantly attenuated the poly-arthritis and weight loss, anemia and paw edema. The plant extract restored the level of C-reactive protein, rheumatoid factor, alanine transaminase, aspartate transaminase and alkaline phosphatase in poly-arthritic rats. Moreover, the plant extract restored the immune organs' weight in treated rats. Treatment with P. harmala also significantly subdued the oxidative stress by reinstating superoxide dismutase, reduced glutathione, catalase and malondialdehyde in poly-arthritic rats. The plant extract notably restored the prostaglandin-E2 and tumor necrosis factor (TNF)-α in the serum of poly-arthritic rats. CONCLUSION: It was concluded that P. harmala extract had potential antioxidant, anti-inflammatory and antiarthritic activities, which primarily might be attributed to alkaloids, flavonoids and phenols.


Assuntos
Artrite Experimental/tratamento farmacológico , Peganum/química , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Artrite Experimental/patologia , Células Cultivadas , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Adjuvante de Freund/farmacologia , Adjuvante de Freund/uso terapêutico , Humanos , Medicina Tradicional , Fitoterapia , Plantas Medicinais/química , Ratos
7.
Acta Pharmacol Sin ; 43(1): 50-63, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33785860

RESUMO

Harmine is a ß-carboline alkaloid isolated from Banisteria caapi and Peganum harmala L with various pharmacological activities, including antioxidant, anti-inflammatory, antitumor, anti-depressant, and anti-leishmanial capabilities. Nevertheless, the pharmacological effect of harmine on cardiomyocytes and heart muscle has not been reported. Here we found a protective effect of harmine on cardiac hypertrophy in spontaneously hypertensive rats in vivo. Further, harmine could inhibit the phenotypes of norepinephrine-induced hypertrophy in human embryonic stem cell-derived cardiomyocytes in vitro. It reduced the enlarged cell surface area, reversed the increased calcium handling and contractility, and downregulated expression of hypertrophy-related genes in norepinephrine-induced hypertrophy of human cardiomyocytes derived from embryonic stem cells. We further showed that one of the potential underlying mechanism by which harmine alleviates cardiac hypertrophy relied on inhibition of NF-κB phosphorylation and the stimulated inflammatory cytokines in pathological ventricular remodeling. Our data suggest that harmine is a promising therapeutic agent for cardiac hypertrophy independent of blood pressure modulation and could be a promising addition of current medications for cardiac hypertrophy.


Assuntos
Cardiomegalia/tratamento farmacológico , Harmina/farmacologia , Substâncias Protetoras/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Administração Oral , Animais , Banisteriopsis/química , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Relação Dose-Resposta a Droga , Harmina/administração & dosagem , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Norepinefrina/antagonistas & inibidores , Peganum/química , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/administração & dosagem , Relação Estrutura-Atividade
8.
Mol Divers ; 26(4): 2257-2267, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34674079

RESUMO

Peganum genus is rich with its high phytochemical and botanical variability. Peganum species have been used as a sedative, antitumor, analgesic and antidepressant. This paper aims to study the molecular diversity of Peganum genus and to shed more light on the structure-activity relationship of the alkaloids isolated from Peganum genus. All Peganum alkaloids were grouped according to their structural properties. A chemoinformatic approach (SwissTargetPrediction) was used to determine the molecular targets of these alkaloids. To analyze and visualize the results, R software was used to generate hierarchical clustering heatmaps. The results of this study can help researchers to better understand the structure-activity relationship of Peganum alkaloids and how substitution can affect the biological activity of those alkaloids.


Assuntos
Alcaloides , Peganum , Alcaloides/química , Alcaloides/farmacologia , Quimioinformática , Peganum/química , Extratos Vegetais/química , Relação Estrutura-Atividade
9.
Oxid Med Cell Longev ; 2021: 5900422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257813

RESUMO

The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.


Assuntos
Alimento Funcional/normas , Peganum/química , Humanos
10.
J Microencapsul ; 38(5): 324-337, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33951988

RESUMO

Synthesis and investigation of biological activity of Peganum harmala smoke-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Peganum harmala smoke-loaded PLGA nanoparticles (PHSE-PNP) were produced by double emulsion solvent evaporation method and characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS), and ζ-potential. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) for toxicity evaluation, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assay for antioxidant power, chorioallantoic membrane (CAM), qPCR, and scratch assay for angiogenesis and mouse cancer model for antitumor effects of PHSE-PNP's were used. PHSE-PNP with a size of 216.33 nm, polydispersity index (PDI): 0.22 and ζ-potential: -25.41 mV inhibited A2780, PC3, A549, HepG2, Mda-mb-231, HT-29 as cancer cells and HUVEC as an normal cells with half-maximal inhibitory concentration (IC50) at about 208.62, 479.05, 1092.6, 1103.9, 1299.21, 3467.5, and <4000 µg/ml, respectively. Also PHSE-PNP inhibited ABTS (IC50: 0.720 mg/ml), DPPH (IC50: 1.36 mg/ml) free radicals and decreased the size of murine tumours (88.3% in 11 days) and suppressed angiogenesis in the CAM and scratch assays. PHSE-PNP can be considered as a potential chemopreventive agent in cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Peganum/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Células A549 , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Portadores de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Emulsões , Feminino , Células HT29 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Picratos/química , Fumaça
11.
Ecotoxicol Environ Saf ; 208: 111620, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396140

RESUMO

Di(2-ethylhexyl) adipate (DEHA) is a widely used plasticizer and prevalent environmental contaminant. In this study, DEHA concentrations in the milk, cheese, and butter samples wrapped with food-grade commercial polyethylene films and stored at 4 °C for 30 days were detected using gas chromatographic analysis. Also, the effects of exposure to a high dose of DEHA for a long duration on the liver, brain, and heart of Wistar rats were assessed. Besides, the possible beneficial effect of Peganum harmala oil (PGO), in relieving DEHA induced adverse effects was explored. For this purpose, four groups (8 rats/group) were orally given physiological saline, PGO (320 mg/kg bwt), DEHA (2000 mg/kg bwt), or PGO + DEHA for 60 days. The results revealed that the DEHA concentrations in the tested dairy products were ordered as follows: (butter > cheese > milk). Notably, the detected levels in butter were higher than the specific migration limit in foods. DEHA induced a significant increase in the serum levels of glucose, alanine transaminase, aspartate transaminase, acetylcholine esterase, creatine kinase-myocardium bound, malondialdehyde, tumor necrosis factor-α, and interleukin-1ß. But, significant hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hypocholesterolemia were evident following DEHA exposure. A significant reduction in the serum level of superoxide dismutase, reduced glutathione, and brain-derived neurotrophic factor was recorded. Besides, a significant downregulation in hepatic CYP2E1, brain glial fibrillary acidic protein, and cardiac troponin I gene expression was noticed. Moreover, DEHA exposure induced a significant decrease in Bcl-2 immunolabeling, but Caspase-3 immunoexpression was increased. On the contrary, PGO significantly recused DEHA injurious impacts. Therefore, PGO could represent a promising agent for preventing DEHA-induced hepatotoxicity, neurotoxicity, and cardiotoxicity.


Assuntos
Adipatos/toxicidade , Encéfalo/efeitos dos fármacos , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peganum/química , Óleos de Plantas/farmacologia , Plastificantes/toxicidade , Adipatos/análise , Anemia/sangue , Anemia/prevenção & controle , Animais , Glicemia/análise , Encéfalo/metabolismo , Encéfalo/patologia , Laticínios/análise , Embalagem de Alimentos , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Plastificantes/análise , Ratos , Ratos Wistar , Fatores de Tempo
12.
Arch Pharm Res ; 43(12): 1259-1275, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33206346

RESUMO

Harmine is isolated from the seeds of the medicinal plant, Peganum harmala L., and has been used for thousands of years in the Middle East and China. Harmine has many pharmacological activities including anti-inflammatory, neuroprotective, antidiabetic, and antitumor activities. Moreover, harmine exhibits insecticidal, antiviral, and antibacterial effects. Harmine derivatives exhibit pharmacological effects similar to those of harmine, but with better antitumor activity and low neurotoxicity. Many studies have been conducted on the pharmacological activities of harmine and harmine derivatives. This article reviews the pharmacological effects and associated mechanisms of harmine. In addition, the structure-activity relationship of harmine derivatives has been summarized.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Harmina/farmacologia , Hipoglicemiantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Peganum , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacocinética , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacocinética , Harmina/análogos & derivados , Harmina/isolamento & purificação , Harmina/farmacocinética , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacocinética , Estrutura Molecular , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacocinética , Peganum/química , Sementes , Relação Estrutura-Atividade
13.
Molecules ; 25(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036316

RESUMO

This investigation included the chemical analysis of Peganum harmala (P. harmala) seed oil and its antifungal properties against 10 fungal species. Seed oils of six populations were analyzed using high performance liquid chromatography (HPLC) and gas chromatograph/mass spectrometry (GC-MS). The HPLC analysis indicated that P. harmala seed oil exhibited a very high level of tocopherol contents, with values in the range of 2385.66-2722.68 mg/100 g. The most abundant tocopherol isomer was δ-tocopherol (90.39%), followed by γ-tocopherol (8.08%) and α-tocopherol (1.14%). We discovered for the first time the presence of tocotrenols in P. harmala seed oils of the six populations studied. The GC-MS analyses revealed that linoleic acid was the main fatty acid (65.17%), followed by oleic acid (23.12%), palmitic acid (5.36%) and stearic acid (3.08%). We also studied the antifungal activity of seed oil of the Medenine (MD) population on ten fungal pathogens. The antifungal effects differed among pathogens and depended on oil concentrations. Seed oil of the MD population caused a significant decrease in mycelial growth of all fungi tested, with values ranging 31.50-82.11%, except for Alternaria sp., which showed no inhibition. The antifungal activity against the 10 selected fungi can be explained by the richness in tocols of the extracted oil and make P. harmala a promising crop for biological control. Furthermore, the importance of fatty acids and the wide geographic spread in Tunisia of this species make this crop a potential source of renewable energy.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peganum/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sementes/química , Tocoferóis/química , Tocoferóis/farmacologia , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/química , Ácido Linoleico/farmacologia , Ácido Oleico/química , Ácido Oleico/farmacologia , Ácido Palmítico/química , Ácido Palmítico/farmacologia
14.
Org Lett ; 22(19): 7522-7525, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32936652

RESUMO

Two nonbiaryl axially chiral ß-carboline-quinazoline dimers, pegaharmols A (1) and B (2), were isolated from the roots of Peganum harmala. Their planar structures were elucidated by the spectroscopic methods of high-resolution mass spectrometry and 1D and 2D nuclear magnetic resonance (NMR). The stereochemistry was established by a comparison between the experimental data of NMR and electronic circular dichroism and the computed data by quantum mechanical calculations. It is discovered for the first time that the ß-carboline at the C-8 position is bonded to the vasicine at the C-9 position. 1 exhibited moderate cytotoxic activity against HL-60 and A549 cell lines.


Assuntos
Alcaloides/química , Antineoplásicos Fitogênicos/farmacologia , Carbolinas/farmacologia , Peganum/química , Raízes de Plantas/química , Quinazolinas/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Carbolinas/química , Carbolinas/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Estrutura Molecular , Extratos Vegetais/química
15.
Molecules ; 25(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708364

RESUMO

Many substances of secondary plant metabolism have often attracted the attention of scientists and the public because they have certain beneficial effects on human health, although the reason for their biosynthesis in the plant remains unclear. This is also the case for alkaloids. More than 200 years have passed since the discovery of the first alkaloid (morphine), and several thousand substances of this character have been isolated since then. Most often, alkaloid-rich plants are part of folk medicine with centuries-old traditions. What is particularly important to monitor for these herbal products is the spectrum and concentrations of the present active substances, which decide whether the product has a beneficial or toxic effect on human health. In this work, we present a fast, reliable, and robust method for the extraction, preconcentration, and determination of four selected alkaloids with an indole skeleton, i.e., harmine, harmaline, yohimbine, and ajmalicine, by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The applicability of the method was demonstrated for tobacco and Tribulus terrestris plant tissue, the seeds of Peganum harmala, and extract from the bark of the African tree Pausinystalia johimbe.


Assuntos
Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Alcaloides Indólicos/análise , Extratos Vegetais/análise , Sementes/química , Espectrometria de Massas em Tandem/métodos , Peganum/química , Nicotiana/química , Tribulus/química , Ioimbina/química
16.
Int J Biol Macromol ; 161: 681-691, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544588

RESUMO

Huntington's disease (HD) is a relentlessly progressive neurodegenerative disease featured by the over-expanded polyglutamine (polyQ)-induced protein aggregation. Using Caenorhabditis elegans (C. elegans) as a model system, we show that water soluble polysaccharide extracted from the herb Peganum harmala L. (PS1) not only reduces polyQ aggregation but also alleviates the associated neurotoxicity. Genetic and pharmacologic analysis suggested that PS1 treatment acts though proteasome-mediated protein degradation pathway to inhibit polyQ aggregation. Notably, the efficacy of PS1 is aroused specifically by co-incubation with live Escherichia coli OP50, which is the sole food source for worms. Further UPLC-Q-TOF/MS analysis determined the bioactivity of polyQ inhibition, which is composed of several oligosaccharides, including stachyoses, verbascoses, trisaccharides and tetrasaccharides composed of galacturonic acids. Together, our study revealed a potential drug target for further HD treatment and pinpointed the possibility that the secreted metabolites produced from bacteria treated with various compounds may provide direct beneficial effect to human bodies.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Escherichia coli/química , Peganum/química , Peptídeos/metabolismo , Polissacarídeos , Agregados Proteicos/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia
17.
Phytomedicine ; 63: 153007, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31301537

RESUMO

BACKGROUND: Aerial parts of Peganum harmala Linn is used as a traditional medical herb for treatment of amnesia in Uighur medicine in China. Deoxyvasicine (DVAS) is one of the chief active ingredients in P. harmala, it possesses strong acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in vitro, but the therapeutic effect and mechanisms on amnesia in vivo are unclear. PURPOSE: The objective of this study was to investigate the improvement effect of DVAS from P. harmala in learning and memory deficits of scopolamine-induced mice and elucidate the underlying mechanisms involved. METHODS: Mice were pretreated with DVAS (5, 15 and 45 mg/kg) and huperzine-A (0.2 mg/kg) by gavage for 7 days, and subsequently were daily intraperitoneally injected with scopolamine (1 mg/kg) to induce learning and memory deficits and behavioral performance was assessed by Morris water maze. To further evaluate the potential mechanisms of DVAS in improving learning and memory capabilities, pathological change, levels of various biochemical markers and protein expressions related to cholinergic system, oxidative stress, and neuroinflammation were examined. RESULTS: The results showed that DVAS could alleviate learning and memory deficits in scopolamine-treated mice. DVAS could regulate cholinergic function by inhibiting AChE and activating choline acetyltransferase (ChAT) activities and protein expressions. DVAS could induce brain-derived neurotrophic factor and protect hippocampal pyramidal cells against neuronal damage. DVAS also enhanced antioxidant defense via increasing the antioxidant enzyme level and activity of glutathione peroxidase, and anti-inflammatory function through suppressing tumor necrosis factor-α. Additionally, DVAS could regulate the neurotransmitters by elevating acetylcholine, 5-hydroxytryptamine, γ-aminobutyric acid and reducing 5-hydroxyindole-3-acetic acid and glutamic acid. CONCLUSION: Results illustrated that DVAS may be a promising candidate compound against amnesia via restoration of cholinergic function, regulating neurotransmitters, attenuating neuroinflammation and oxidative stress.


Assuntos
Alcaloides/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Quinazolinas/farmacologia , Acetilcolina/metabolismo , Amnésia/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peganum/química , Escopolamina/toxicidade , Sesquiterpenos/farmacologia
18.
Biotechnol Appl Biochem ; 66(4): 664-672, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31141208

RESUMO

Shape, size, and homogeneity affect the biological activity of gold nanoparticles (AuNPs) in nanomedicine and catalytic applications. Here we biosynthesized monodispersed isotropic and polydispersed anisotropic spherical AuNPs from leaf and seed extract broths of the medicinal plant Peganum harmala L. (Ph. L). Synthesized AuNPs were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IRS), field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of AuNPs against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) human pathogens was also assessed. Leaf- and seed-derived AuNPs had characteristic localized surface plasmon resonances of 530 and 578 nm, respectively. TEM, FE-SEM, EDX, and XRD revealed the formation of elemental face-centered cubic spherical monodispersed isotropic AuNPs of average size 43.44 nm and polydispersed anisotropic AuNPs of average size 52.04 nm from leaf and seed extract broths, respectively. FT-IR revealed polyphenols and alcohols as responsible for AuNP capping, reduction, and protection. Anisotropic AuNPs showed no antibacterial activity, whereas isotropic AuNPs showed good inhibition of both E. coli and S. aureus. This represents a simple and ecofriendly protocol for the green synthesis of monodispersed isotropic spherical AuNPs, which may have value in a variety of applications.


Assuntos
Escherichia coli/metabolismo , Ouro/metabolismo , Química Verde , Nanopartículas Metálicas/química , Peganum/química , Folhas de Planta/química , Sementes/química , Staphylococcus aureus/metabolismo , Escherichia coli/química , Ouro/química , Humanos , Peganum/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Staphylococcus aureus/química , Ressonância de Plasmônio de Superfície
19.
Cell Physiol Biochem ; 45(5): 1807-1817, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29510387

RESUMO

BACKGROUND/AIMS: Reversion-inducing cysteine-rich protein with kazal motifs (RECK) is a novel tumor suppressor gene that is critical for regulating tumor cell invasion and metastasis. The expression of RECK is dramatically down-regulated in human cancers. Harmine, a tricyclic compound from Peganum harmala, has been shown to have potential anti-cancer activity. METHODS: Cell proliferation assay (CCK-8 cell viability assay), cell cycle analysis (detection by flow cytometry), apoptosis staining assay (TUNEL staining), cell migration assay and invasion assay (transwell assay) were carried out to investigate the Harmine's efficacy on non-small cell lung cancer (NSCLC) cells in vitro. A549-luciferase cell orthotropic transplantation xenograft mouse model was used to determine the effect of Harmine treatment on NSCLC in vivo. Western blotting analysis of cell growth and metastasis related signal pathways was conducted to investigate the molecular mechanism of Harmine's inhibitory effect on NSCLC. RESULTS: Harmine treatment effectively inhibited cell proliferation and induced the G1/S cell cycle arrest of NSCLC cells. Further study proved that Harmine treatment led to apoptosis induction. Furthermore, treatment with NSCLC cells with Hamine resulted in decreased cell migration and cell invasion in vitro. More importantly, Harmine treatment significantly suppressed the NSCLC tumor growth and metastasis in mouse xenograft model in vivo. Mechanistically, in Harmine-treated NSCLC cells, RECK expression and its downstream signaling cascade were dramatically activated. As a consequence, the expression level of MMP-9 and E-cadherin were significantly decreased. CONCLUSION: These findings identify Harmine as a promising activator of RECK signaling for metastatic NSCLC treatment.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Harmina/toxicidade , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proteínas Ligadas por GPI/agonistas , Harmina/química , Harmina/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , Peganum/química , Peganum/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo
20.
Environ Sci Pollut Res Int ; 25(11): 11100-11110, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29411282

RESUMO

The revival of cultural heritage in a form of natural colorants for textile dyeing is gaining popularity due to their soothing nature and bright shades. The present study was conducted to explore the coloring potential of harmala (Peganum harmala) seeds and to improve color strength of dye using microwave radiations followed by a mordanting process. The results showed that harmala plant seeds could be an excellent source of natural dyes for cotton dyeing if the irradiated acidified methanolic extract (RE, 4 min) is used to dye un-irradiated fabric (NRC) at 85 °C for 45 min using a dye bath of pH 9.0 having salt concentration of 7 g/100 mL. Alum (1%) as pre-mordants and iron (7%) as post-mordants have improved the color strength in chemical mordanting more than other mordants employed. The bio-mordants employed reveal that 10% of acacia as pre-bio-mordants and 7% of acacia as post-bio-mordants are effective amounts to obtain high color strength. Suggested ISO standards for colorfastness illustrate that bio-mordanting has given more excellent rating as compared to chemical mordants. It is concluded that harmala seeds have a great potential to act as a source of natural colorant for cotton dyeing under the influence of microwave radiation.


Assuntos
Corantes/farmacologia , Micro-Ondas , Peganum/química , Têxteis/análise , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA