Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473977

RESUMO

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Assuntos
Peixes Listrados , Fatores de Crescimento Neural , Receptores de Fator de Crescimento Neural , Humanos , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Retina/metabolismo , Receptor trkA , Neurotrofina 3 , Fator Neurotrófico Derivado do Encéfalo
2.
J Toxicol Environ Health A ; 87(1): 1-21, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830742

RESUMO

The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.


Assuntos
Cyprinidae , Microbioma Gastrointestinal , Peixes Listrados , Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Peixes Listrados/genética , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , RNA Ribossômico 16S , Hidrocarbonetos , Golfo do México , Poluentes Químicos da Água/toxicidade
3.
Proc Biol Sci ; 290(2009): 20231686, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876194

RESUMO

Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel role for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a circulating Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.


Assuntos
Peixes Listrados , Animais , Peixes Listrados/genética , Receptor Tipo 2 de Galanina/genética , Bahamas , Fenótipo
4.
Aquat Toxicol ; 262: 106667, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37619397

RESUMO

Temperate freshwater fishes can experience large seasonal temperature fluctuations that could affect their exposure and sensitivity to trace metals. Yet, temperature effects are overlooked in ecotoxicology studies, especially for cold temperatures typical of the winter. In the present study, the effects of long-term cold acclimation on Cd bioaccumulation and toxicity were investigated in a freshwater fish, the banded killifish (Fundulus diaphanus). Killifish were acclimated to 14 °C or gradually cooled (2 °C/week) to 4 °C and cold acclimated for 6 weeks. Then, both acclimation groups were exposed to environmentally realistic waterborne Cd concentrations (0, 0.5 or 5 µg Cd L-1) for a further 28 d at their respective acclimation temperatures. Tissue metal bioaccumulation, fish survival, condition, and markers of oxidative and ionoregulation stress, were measured after 0, 2, 5 and 28 days of Cd exposure. Cadmium tissue accumulation increased over the exposure duration and was typically lower in cold-acclimated fish. In agreement with this lower bioaccumulation, fewer Cd toxic effects were observed in cold-acclimated fish. There was little evidence of a difference in intrinsic Cd sensitivity between 4 °C- and 14 °C-acclimated fish, as Cd toxicity appeared to closely follow Cd bioaccumulation. Our study suggests that current environmental water quality guidelines would be protective in the winter for the abundant and ecologically-important banded killifish.


Assuntos
Fundulidae , Peixes Listrados , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Bioacumulação , Estações do Ano , Poluentes Químicos da Água/toxicidade , Aclimatação
5.
Mar Environ Res ; 189: 106071, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37390514

RESUMO

Microplastics (MPs), plastic particles smaller than 5 mm in diameter, have received extensive attention as new environmental pollutants with still unexplored potential ecological risks. The main objective of the present study is to see if the concomitant exposure to MPs and Cd is more toxic than that to MPs or Cd separately in Aphanius fasciatus. Immature female were exposed to Cd and/or MPs for 21 days, and the subsequent effects were monitored by a combination of biochemical, histological and molecular toxicity markers. Exposure to Cd, but not to MPs, increased metallothioneins content and mRNA levels of the metallothioneins gene MTA both in liver and gills. In addition, we observed a significant oxidative stress response at histological, enzymatic (Catalase and Superoxide dismutase), non-enzymatic (proteins sulfhydryl and malondialdehyde) and gene expression levels to both toxicants in both tissues, particularly in gills, but no clear evidence for interaction between the two factors. Our results indicate a major effect of MPs on gills at different organizational levels. Finally, exposure to both MPs and Cd induced spinal deformities, although bone composition was only altered by the latter, whereas MTA mRNA bone levels were only increased realtive to controls in doubly-exposed samples. Interestingly, the simultaneous use of both pollutants produced the same effects as Cd and MPs alone, probably due to reduced bioavailability of this heavy metal.


Assuntos
Peixes Listrados , Metais Pesados , Poluentes Químicos da Água , Animais , Feminino , Cádmio/toxicidade , Cádmio/metabolismo , Microplásticos/toxicidade , Plásticos/toxicidade , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
6.
Environ Toxicol Pharmacol ; 97: 104042, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549414

RESUMO

Currently, endocrine disruptors (EDs) can be found in all the environmental compartments. To understand the effects of estrogenic EDs (EEDs), adults of Cyprinodon variegatus have been classically used as a marine model. However, it is during development that exposure to contaminants may generate permanent consequences. Thus, the aim of this study was to verify the effects produced by acute exposure to 17α-ethinylestradiol (EE2) in C. variegatus larvae. Quantitative PCR (qPCR) results revealed the induction of vtg and zp gene expression on exposure to 1000 ng/L EE2 and the induction of vtgc, zp2, zp3 and cyp19a2, and inhibition of vtgab, wap and cyp1a1 on exposure to 100 ng/L EE2. Lower concentrations inhibited the gene expression of vtgab and wap (50 ng/L), cyp1a1 (25 ng/L) and zp2 (12.5 ng/L). These alterations in gene expression allow us to affirm that larvae of C. variegatus are an efficient and sensitive model for biomonitoring EEDs.


Assuntos
Disruptores Endócrinos , Peixes Listrados , Poluentes Químicos da Água , Animais , Disruptores Endócrinos/toxicidade , Peixes Listrados/metabolismo , Citocromo P-450 CYP1A1/genética , Monitoramento Biológico , Estrogênios , Etinilestradiol/toxicidade , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade
7.
Chromosome Res ; 30(4): 309-333, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208359

RESUMO

Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.


Assuntos
Fundulidae , Peixes Listrados , Animais , Humanos , Peixes Listrados/genética , Fundulidae/genética , Hibridização in Situ Fluorescente , Hibridização Genômica Comparativa , Cromossomos Sexuais/genética , Cromossomo Y/genética , População Africana , Evolução Molecular
8.
PLoS One ; 17(9): e0273177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112615

RESUMO

Adaptive radiations offer an excellent opportunity to understand the eco-evolutionary dynamics of gut microbiota and host niche specialization. In a laboratory common garden, we compared the gut microbiota of two novel derived trophic specialist pupfishes, a scale-eater and a molluscivore, to closely related and distant outgroup generalist populations, spanning both rapid trophic evolution within 10 kya and stable generalist diets persisting over 11 Mya. We predicted an adaptive and highly divergent microbiome composition in the trophic specialists reflecting their rapid rates of craniofacial and behavioral diversification. We sequenced 16S rRNA amplicons of gut microbiomes from lab-reared adult pupfishes raised under identical conditions and fed the same high protein diet. In contrast to our predictions, gut microbiota largely reflected phylogenetic distance among species, rather than generalist or specialist life history, in support of phylosymbiosis. However, we did find significant enrichment of Burkholderiaceae bacteria in replicated lab-reared scale-eater populations. These bacteria sometimes digest collagen, the major component of fish scales, supporting an adaptive shift. We also found some enrichment of Rhodobacteraceae and Planctomycetia in lab-reared molluscivore populations, but these bacteria target cellulose. Overall phylogenetic conservation of microbiome composition contrasts with predictions of adaptive radiation theory and observations of rapid diversification in all other trophic traits in these hosts, including craniofacial morphology, foraging behavior, aggression, and gene expression, suggesting that the functional role of these minor shifts in microbiota will be important for understanding the role of the microbiome in trophic diversification.


Assuntos
Microbioma Gastrointestinal , Peixes Listrados , Animais , Bactérias/genética , Celulose , Microbioma Gastrointestinal/genética , Especiação Genética , Peixes Listrados/genética , Filogenia , RNA Ribossômico 16S/genética
9.
Aquat Toxicol ; 251: 106267, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058102

RESUMO

DNA methylation is an important epigenetic mark involved in modulating transcription. While multiple studies document the ability of environmental stressors to alter methylation patterns, there is little information regarding the effects of oil and hypoxia on the methylome. Oil and hypoxic stress are threats in coastal ecosystems, which act as nursery habitats for developing fish. To explore the methylation altering effects of oil and hypoxia on developing fish, we exposed larval Cyprinodon variegatus to oil, hypoxia, or both for 48 h followed by 48 h of depuration in clean, normoxic conditions. We then used immunoprecipitation coupled with high-throughput sequencing (MeDIP seq) to evaluate genome-wide methylation changes. We also performed RNA seq to associate methylation and altered transcription. Oil and hypoxia together elicited greater impacts to methylation than either stressor individually. Additionally, the oil+hypoxia treatment exhibited an overlap between differentially methylated regions and differential gene expression at 20 loci. Functional analyses of these loci revealed enrichment of processes related to neurological function and development. Two neurological genes (slc1a2, asxl2) showed altered methylation of promoter CpG islands and transcriptional changes, suggesting epigenetic modulation of gene expression. Our results suggest a possible mechanism explaining altered behavior patterns noted in fish following oil exposure.


Assuntos
Peixes Listrados , Poluentes Químicos da Água , Animais , Metilação de DNA , Ecossistema , Hipóxia/genética , Larva/genética , Poluentes Químicos da Água/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-35902003

RESUMO

Many fish experience diminished reproductive performance under atypically high or prolonged elevations of temperature. Such high temperature inhibition of reproduction comes about in part from altered stimulation of gametogenesis by the hypothalamic-pituitary-gonadal (HPG) endocrine axis. Elevated temperatures have also been shown to affect thyroid hormone (TH) signaling, and altered TH status under high temperatures may impact gametogenesis via crosstalk with HPG axis pathways. Here, we examined effects of temperature and 3'-triiodo-L-thyronine (T3) on pathways for gonadal steroidogenesis and gametogenesis in Amargosa pupfish (Cyprinodon nevadensis amargosae) from two allopatric populations: 1) the Amargosa River - a highly variable temperature habitat, and 2) Tecopa Bore - an invariably warm groundwater-fed marsh. These populations were previously shown to differ in TH signaling profiles both in the wild and under common laboratory conditions. Sexually-mature pupfish from each population were maintained at 24 °C or 34 °C for 88 days, after which a subset of fish was treated with T3 for 18-24 h. In both populations, mRNA abundances for follicle-stimulating hormone receptor and luteinizing hormone receptor were higher in the ovary and testis at 24 °C compared to 34 °C. Females from Tecopa Bore - but not from the Amargosa River - also had greater ovarian transcript abundances for steroidogenic enzymes cytochrome P450 aromatase, 3ß-hydroxysteroid dehydrogenase, and 17ß-hydroxysteroid dehydrogenase at 24 °C compared to 34 °C, as well as higher liver mRNA levels of vitellogenins and choriogenins at cooler temperature. Transcript abundances for estrogen receptors esr1, esr2a, and esr2b were reduced at 34 °C in Amargosa River females, but not in Tecopa Bore females. T3 augmented gonadal gene transcript levels for steroid acute regulatory protein (StAR) transporter in both sexes and populations. T3 also downregulated liver estrogen receptor mRNAs in females from the warmer Tecopa Bore habitat only, suggesting T3 modulation of liver E2 sensitivity as a possible mechanism whereby temperature-induced changes in TH status may contribute to shifts in thermal sensitivity for oogenesis.


Assuntos
Peixes Listrados , Animais , Feminino , Peixes/metabolismo , Temperatura Alta , Peixes Listrados/metabolismo , Masculino , Oogênese , RNA Mensageiro/genética , Temperatura , Hormônios Tireóideos
11.
Aquat Toxicol ; 248: 106189, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537357

RESUMO

Quantitative proteomic changes in the liver of adult males of Sheepshead minnow (Cyprinodon variegatus) upon exposure to ethinyl estradiol (EE2) were assessed to provide an advanced understanding of the metabolic pathways affected by estrogenic endocrine disruption in marine fish, and to identify potential novel molecular biomarkers for the environmental exposure to estrogens. From a total of 3188 identified protein groups (hereafter proteins), 463 showed a statistically significant difference in their abundance between EE2 treatment and solvent control samples. The most affected biological processes upon EE2 exposure were related to ribosomal biogenesis, protein synthesis and transport of nascent proteins to endoplasmic reticulum, and nuclear mRNA catabolism. Within the group of upregulated proteins, a subset of 14 proteins, involved in egg production (Vitellogenin, Zona Pellucida), peptidase activity (Cathepsine E, peptidase S1, Serine/threonine-protein kinase PRP4 homolog, Isoaspartyl peptidase and Whey acidic protein), and nucleic acid binding (Poly [ADP-ribose] polymerase 14) were significantly upregulated with fold-change values higher than 3. In contrast, Collagen alpha-2, involved in the process of response to steroid hormones, among others, was significantly downregulated (fold change = 0.2). This pattern of alterations in the liver proteome of adult males of C. variegatus can be used to identify promising novel biomarkers for the characterization of exposure of marine fish to estrogens. The Whey acidic protein-like showed the highest upregulation in EE2-exposed individuals (21-fold over controls), suggesting the utility of abundance levels of this protein in male liver as a novel biomarker of xenoestrogen exposure.


Assuntos
Disruptores Endócrinos , Peixes Listrados , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Etinilestradiol/toxicidade , Peixes/metabolismo , Peixes Listrados/metabolismo , Fígado , Masculino , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Proteômica , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade
12.
Elife ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35616528

RESUMO

Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood and processes for surmounting fitness valleys remain controversial. One outstanding system for addressing these connections is a recent adaptive radiation of ecologically and morphologically novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 single nucleotide polymorphisms (SNPs) that were significantly associated with fitness in field enclosures. Six out of the 13 regions most strongly associated with fitness contained differentially expressed genes and fixed SNPs between trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from adaptive alleles and show that scale-eating specialists are the most isolated of the three species on these networks. Intriguingly, introgressed and de novo variants reduced fitness landscape ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness paths from generalist to specialists. Our results suggest that adaptive introgression and de novo mutations alter the shape of the fitness landscape, providing key connections in adaptive walks circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation.


One of the main drivers of evolution is natural selection, which is when organisms better adapted to their environment are more likely to survive and reproduce. A common metaphor to explain this process is a landscape covered in peaks and valleys: the peaks represent genetic combinations or traits with high evolutionary fitness, while the valleys represent those with low fitness. As a population evolves and its environment changes, it moves among these peaks taking small steps across the landscape. However, there is a limit to how far an organism can travel in one leap. So, what happens when they need to cross a valley of low fitness to get to the next peak? To address this question, Patton et al. studied three young species of pupfish that recently evolved from a common ancestor and co-habit the same environment in the Caribbean. Patton et al. sequenced whole genomes of each new species and used this to build a genotypic fitness landscape, a network linking neighboring genotypes which each have a unique fitness value that was measured during field experiments. This revealed that most of the paths connecting the different species passed through valleys of low fitness. But there were rare, narrow ridges connecting each species. Next, Patton et al. found that new mutations as well as genetic variations that arose from mating with pupfish on other Caribbean islands altered genetic interactions and changed the shape of the fitness landscape. Ultimately, this significantly increased the accessibility of fitness peaks by both adding more ridges and decreasing the lengths of paths, expanding the realm of possible evolutionary outcomes. Understanding how fitness landscapes change during evolution could help to explain where new species come from. Other researchers could apply the same approach to estimate the genotypic fitness landscapes of other species, from bacteria to vertebrates. These networks could be used to visualize the complex fitness landscape that connects all lifeforms on Earth.


Assuntos
Especiação Genética , Peixes Listrados , Animais , Ecossistema , Aptidão Genética , Genótipo , Hibridização Genética , Peixes Listrados/anatomia & histologia , Peixes Listrados/genética
13.
Proc Biol Sci ; 289(1975): 20220613, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611537

RESUMO

Adaptive radiations involve astounding bursts of phenotypic, ecological and species diversity. However, the microevolutionary processes that underlie the origins of these bursts are still poorly understood. We report the discovery of an intermediate C. sp. 'wide-mouth' scale-eating ecomorph in a sympatric radiation of Cyprinodon pupfishes, illuminating the transition from a widespread algae-eating generalist to a novel microendemic scale-eating specialist. We first show that this ecomorph occurs in sympatry with generalist C. variegatus and scale-eating specialist C. desquamator on San Salvador Island, Bahamas, but is genetically differentiated, morphologically distinct and often consumes scales. We then compared the timing of selective sweeps on shared and unique adaptive variants in trophic specialists to characterize their adaptive walk. Shared adaptive regions swept first in both the specialist desquamator and the intermediate 'wide-mouth' ecomorph, followed by unique sweeps of introgressed variation in 'wide-mouth' and de novo variation in desquamator. The two scale-eating populations additionally shared 9% of their hard selective sweeps with the molluscivore C. brontotheroides, despite no single common ancestor among specialists. Our work provides a new microevolutionary framework for investigating how major ecological transitions occur and illustrates how both shared and unique genetic variation can provide a bridge for multiple species to access novel ecological niches.


Assuntos
Especiação Genética , Peixes Listrados , Animais , Ecossistema , Peixes Listrados/genética , Simpatria
14.
Evolution ; 76(7): 1590-1606, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598089

RESUMO

The presence of stable color polymorphisms within populations begs the question of how genetic variation is maintained. Consistent variation among populations in coloration, especially when correlated with environmental variation, raises questions about whether environmental conditions affect either the fulcrum of those balanced polymorphisms, the plastic expression of coloration, or both. Color patterns in male bluefin killifish provoke both types of questions. Red and yellow morphs are common in all populations. Blue males are more common in tannin-stained swamps relative to clear springs. Here, we combined crosses with a manipulation of light to explore how genetic variation and phenotypic plasticity shape these patterns. We found that the variation in coloration is attributable mainly to two axes of variation: (1) a red-yellow axis with yellow being dominant to red, and (2) a blue axis that can override red-yellow and is controlled by genetics, phenotypic plasticity, and genetic variation for phenotypic plasticity. The variation among populations in plasticity suggests it is adaptive in some populations but not others. The variation among sires in plasticity within the swamp population suggests balancing selection may be acting not only on the red-yellow polymorphism but also on plasticity for blue coloration.


Assuntos
Fundulidae , Peixes Listrados , Adaptação Fisiológica , Animais , Cor , Fundulidae/genética , Variação Genética , Masculino , Polimorfismo Genético
15.
Environ Pollut ; 300: 118936, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124124

RESUMO

The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 µg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.


Assuntos
Disruptores Endócrinos , Peixes Listrados , Animais , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Masculino , Fenóis , Proteoma , Proteômica
16.
Chemosphere ; 288(Pt 1): 132482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34627815

RESUMO

Following the Deepwater Horizon oil spill in April 2010, much research has been conducted on the cardiotoxic effects of oil on fish. Sensitive life history stages, such as the embryonic period, have been targeted to elucidate the effects of polycyclic aromatic hydrocarbons (PAHs) on the developing cardiovascular systems of fish. However, much of this research has focused on rapidly developing pelagic species, with little emphasis on estuarine species with longer embryological periods. Moreover, previous studies have used heart rate as the primary endpoint to measure cardiac performance in embryos and larvae; an endpoint that on its own may overlook impairment in cardiac performance. This study aims to fill these knowledge gaps and provide a more holistic approach for assessing the effects of PAHs on cardiac function by exposing sheepshead minnow (Cyprinodon variegatus) embryos to two oil doses (150 and 300 µg/L tPAH nominally) throughout embryonic development and measuring cardiac responses through the identification of cardiotoxic phenotypes (pericardial edema) as well as calculation of cardiac output at 4 days post fertilization. Results of this study show significant increases in pericardial edema at both oil doses relative to controls as well as significantly reduced cardiac output - driven by reductions in ventricular stroke volume. This study is one of the first to assess cardiac output in embryonic fish exposed to oil and methods described here allow for more physiologically relevant measures of cardiac performance in early life stages through established and non-invasive measures.


Assuntos
Cyprinidae , Peixes Listrados , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
17.
Mol Cell Endocrinol ; 537: 111447, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469772

RESUMO

Fish experiencing abnormally high or prolonged elevations in temperature can exhibit impaired reproduction, even for species adapted to warm water environments. Such high temperature inhibition of reproduction has been linked to diminished gonadal steroidogenesis, but the mechanisms whereby hypothalamic-pituitary-gonadal (HPG) axis signaling is impacted by high temperature are not fully understood. Here, we characterized differences in HPG status in adult sheepshead minnow (Cyprinodon variegatus), a eurythermal salt marsh and estuarine species of eastern North America, exposed for 14 d to temperatures of 27 °C or 37 °C. Males and females at 37 °C had lower gonadosomatic index (GSI) values compared to fish at 27 °C, and females at 37 °C had fewer spawning capable eggs and lower circulating 17ß-estradiol (E2). Gene transcripts encoding gonadotropin-inhibitory hormone (gnih) and gonadotropin-releasing hormone-3 (gnrh3) were higher in relative abundance in the hypothalamus of both sexes at 37 °C. While pituitary mRNAs for the ß-subunits of follicle-stimulating hormone (fshß) and luteinizing hormone (lhß) were lowered only in males at 37 °C, Fsh and Lh receptor mRNA levels in the gonads were at lower relative levels in both the ovary and testis of fish at 37 °C. Females at 37 °C also showed reduced ovarian mRNA levels for steroid acute regulatory protein (star), P450 side-chain cleavage enzyme (cyp11a1), 3ß-hydroxysteroid dehydrogenase (3ßhsd), 17ß-hydroxysteroid dehydrogenase (hsd17ß3), and ovarian aromatase (cyp19a1a). Females at the higher 37 °C temperature also had a lower liver expression of mRNAs encoding estrogen receptor α (esr1) and several vitellogenin and choriogenin genes, but elevated mRNA levels for hepatic sex hormone-binding globulin (shbg). Our results substantiate prior findings that exposure of fish to high temperature can inhibit gonadal steroidogenesis and oogenesis, and point to declines in reproductive performance emerging from alterations at several levels of HPG axis signaling including increased hypothalamic Gnih expression, depressed gonadal steroidogenesis, and reduced egg yolk and egg envelope protein production in the liver.


Assuntos
Gônadas/metabolismo , Temperatura Alta , Sistema Hipotálamo-Hipofisário/metabolismo , Peixes Listrados/fisiologia , Reprodução/fisiologia , Transdução de Sinais , Animais , Estradiol/sangue , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peixes Listrados/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Oogênese , Hipófise/metabolismo , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Testosterona/sangue , Vitelogeninas/genética , Vitelogeninas/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990463

RESUMO

To investigate the origins and stages of vertebrate adaptive radiation, we reconstructed the spatial and temporal histories of adaptive alleles underlying major phenotypic axes of diversification from the genomes of 202 Caribbean pupfishes. On a single Bahamian island, ancient standing variation from disjunct geographic sources was reassembled into new combinations under strong directional selection for adaptation to the novel trophic niches of scale-eating and molluscivory. We found evidence for two longstanding hypotheses of adaptive radiation: hybrid swarm origins and temporal stages of adaptation. Using a combination of population genomics, transcriptomics, and genome-wide association mapping, we demonstrate that this microendemic adaptive radiation of novel trophic specialists on San Salvador Island, Bahamas experienced twice as much adaptive introgression as generalist populations on neighboring islands and that adaptive divergence occurred in stages. First, standing regulatory variation in genes associated with feeding behavior (prlh, cfap20, and rmi1) were swept to fixation by selection, then standing regulatory variation in genes associated with craniofacial and muscular development (itga5, ext1, cyp26b1, and galr2) and finally the only de novo nonsynonymous substitution in an osteogenic transcription factor and oncogene (twist1) swept to fixation most recently. Our results demonstrate how ancient alleles maintained in distinct environmental refugia can be assembled into new adaptive combinations and provide a framework for reconstructing the spatiotemporal landscape of adaptation and speciation.


Assuntos
Adaptação Fisiológica/genética , Especiação Genética , Peixes Listrados/genética , Filogenia , Análise Espaço-Temporal , Vertebrados/genética , Animais , Bahamas , Região do Caribe , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Geografia , Peixes Listrados/anatomia & histologia , Peixes Listrados/classificação , Polimorfismo de Nucleotídeo Único , Vertebrados/anatomia & histologia , Vertebrados/classificação
19.
Arch Environ Contam Toxicol ; 80(2): 461-473, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33528594

RESUMO

When oil is spilled into the environment its toxicity is affected by abiotic conditions. The cumulative and interactive stressors of chemical contaminants and environmental factors are especially relevant in estuaries where tidal fluctuations cause wide variability in salinity, temperature, and ultraviolet (UV) light penetration, which is an important modifying factor for polycyclic aromatic hydrocarbon (PAH) toxicity. Characterizing the interactions of multiple stressors on oil toxicity will improve prediction of environmental impacts under various spill scenarios. This study examined changes in crude oil toxicity with temperature, salinity, and UV light. Oil exposures included high-energy, water-accommodated fractions (HEWAFs) and thin oil sheens. Larval (24-48 h post hatch) estuarine species representing different trophic levels and habitats were evaluated. Mean 96 h LC50 values for oil prepared as a HEWAF and tested under standard conditions (20 ppt, 25 °C, No-UV) were 62.5 µg/L tPAH50 (mud snails), 198.5 µg/L (grass shrimp), and 774.5 µg/L (sheepshead minnows). Thin oil sheen 96 h LC50 values were 5.3 µg/L tPAH50 (mud snails), 14.7 µg/L (grass shrimp), and 22.0 µg/L (sheepshead minnows) under standard conditions. UV light significantly increased the toxicity of oil in all species tested. Oil toxicity also was greater under elevated temperature and lower salinity. Multi-stressor (oil combined with either increased temperature, decreased salinity, or both) LC50 values were reduced to 3 µg/L tPAH50 for HEWAFs and < 1.0 µg/L tPAH50 for thin oil sheens. Environmental conditions at the time of an oil spill will significantly influence oil toxicity and organismal response and should be taken into consideration in toxicity testing and oil spill damage assessments.


Assuntos
Larva/efeitos dos fármacos , Poluição por Petróleo , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Crustáceos , Peixes Listrados/fisiologia , Dose Letal Mediana , Louisiana , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Salinidade , Caramujos/efeitos dos fármacos , Temperatura , Testes de Toxicidade , Raios Ultravioleta
20.
Ecotoxicol Environ Saf ; 205: 111289, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949839

RESUMO

The Deepwater Horizon oil spill released 3.19 million barrels of crude oil into the Gulf of Mexico, making it the largest oil spill in U.S. history. Weathering and the application of dispersants can alter the solubility of compounds within crude oil, thus modifying the acute toxicity of the crude oil to aquatic life. The primary aim of our study was to determine the lasting impact of early-life stage sheepshead minnow (Cyprinodon variegatus variegatus) exposure to weathered, unweathered and dispersed crude oil on prey capture, male aggression, novel object interaction and global DNA methylation. Embryos were exposed from 1 to 10 dpf to water accommodations of crude oil and were raised to adulthood in artificial seawater. Our results suggest exposure to crude oil did not result in lasting impairment of complex behavioral responses of male sheepshead minnow. Exposure to dispersed weathered oil, however, decreased border dwelling in response to a novel object (i.e. decreased anxiety). Principal component analysis revealed that exposure to weathered oil had no overarching effect, but that unweathered crude oil increased variability in exploratory behaviors but decreased variability in anxiety-associated behaviors. Further work is needed to understand the effects of oil exposure on fish behavior and the potential ecological impact of subtle behavioral changes in fishes.


Assuntos
Comportamento Animal/efeitos dos fármacos , Peixes Listrados/fisiologia , Larva/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Metilação de DNA/efeitos dos fármacos , Ecologia , Golfo do México , Peixes Listrados/genética , Larva/genética , Larva/fisiologia , Masculino , Água do Mar/química , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA