Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.117
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732058

RESUMO

Monitoring inflammatory cytokines is crucial for assessing healing process and photobiomodulation (PBM) enhances wound healing. Meanwhile, cAMP response element-binding protein (CREB) is a regulator of cellular metabolism and proliferation. This study explored potential links between inflammatory cytokines and the activity of CREB in PBM-treated wounds. A total of 48 seven-week-old male SD rats were divided into four groups (wound location, skin or oral; treatment method, natural healing or PBM treatment). Wounds with a 6 mm diameter round shape were treated five times with an 808 nm laser every other day (total 60 J). The wound area was measured with a caliper and calculated using the elliptical formula. Histological analysis assessed the epidermal regeneration and collagen expression of skin and oral tissue with H&E and Masson's trichrome staining. Pro-inflammatory (TNF-α) and anti-inflammatory (TGF-ß) cytokines were quantified by RT-PCR. The ratio of phosphorylated CREB (p-CREB) to unphosphorylated CREB was identified through Western blot. PBM treatment significantly reduced the size of the wounds on day 3 and day 7, particularly in the skin wound group (p < 0.05 on day 3, p < 0.001 on day 7). The density of collagen expression was significantly higher in the PBM treatment group (in skin wound, p < 0.05 on day 3, p < 0.001 on day 7, and p < 0.05 on day 14; in oral wound, p < 0.01 on day 7). The TGF-ß/TNF-α ratio and the p-CREB/CREB ratio showed a parallel trend during wound healing. Our findings suggested that the CREB has potential as a meaningful marker to track the wound healing process.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Terapia com Luz de Baixa Intensidade , Ratos Sprague-Dawley , Cicatrização , Animais , Cicatrização/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Ratos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Pele/lesões , Citocinas/metabolismo , Fosforilação/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo , Colágeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Eur J Med Res ; 29(1): 282, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735974

RESUMO

BACKGROUND: Radiation induced acute skin toxicity (AST) is considered as a common side effect of breast radiation therapy. The goal of this study was to design dosiomics-based machine learning (ML) models for prediction of AST, to enable creating optimized treatment plans for high-risk individuals. METHODS: Dosiomics features extracted using Pyradiomics tool (v3.0.1), along with treatment plan-derived dose volume histograms (DVHs), and patient-specific treatment-related (PTR) data of breast cancer patients were used for modeling. Clinical scoring was done using the Common Terminology Criteria for Adverse Events (CTCAE) V4.0 criteria for skin-specific symptoms. The 52 breast cancer patients were grouped into AST 2 + (CTCAE ≥ 2) and AST 2 - (CTCAE < 2) toxicity grades to facilitate AST modeling. They were randomly divided into training (70%) and testing (30%) cohorts. Multiple prediction models were assessed through multivariate analysis, incorporating different combinations of feature groups (dosiomics, DVH, and PTR) individually and collectively. In total, seven unique combinations, along with seven classification algorithms, were considered after feature selection. The performance of each model was evaluated on the test group using the area under the receiver operating characteristic curve (AUC) and f1-score. Accuracy, precision, and recall of each model were also studied. Statistical analysis involved features differences between AST 2 - and AST 2 + groups and cutoff value calculations. RESULTS: Results showed that 44% of the patients developed AST 2 + after Tomotherapy. The dosiomics (DOS) model, developed using dosiomics features, exhibited a noteworthy improvement in AUC (up to 0.78), when spatial information is preserved in the dose distribution, compared to DVH features (up to 0.71). Furthermore, a baseline ML model created using only PTR features for comparison with DOS models showed the significance of dosiomics in early AST prediction. By employing the Extra Tree (ET) classifiers, the DOS + DVH + PTR model achieved a statistically significant improved performance in terms of AUC (0.83; 95% CI 0.71-0.90), accuracy (0.70), precision (0.74) and sensitivity (0.72) compared to other models. CONCLUSIONS: This study confirmed the benefit of dosiomics-based ML in the prediction of AST. However, the combination of dosiomics, DVH, and PTR yields significant improvement in AST prediction. The results of this study provide the opportunity for timely interventions to prevent the occurrence of radiation induced AST.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Humanos , Feminino , Neoplasias da Mama/radioterapia , Pessoa de Meia-Idade , Adulto , Idoso , Pele/efeitos da radiação , Pele/patologia , Lesões por Radiação/etiologia , Lesões por Radiação/diagnóstico , Dosagem Radioterapêutica
3.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709706

RESUMO

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Assuntos
Fibroblastos , Proteínas Filagrinas , Metaloproteinase 1 da Matriz , Fator 2 Relacionado a NF-E2 , Fator de Necrose Tumoral alfa , Raios Ultravioleta , Humanos , Raios Ultravioleta/efeitos adversos , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo , Protetores Solares/administração & dosagem , Protetores Solares/química , Protetores Solares/farmacologia , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Aminoácidos/química , Interleucina-1alfa/metabolismo , Histamina/sangue , Creme para a Pele/administração & dosagem , Biomarcadores/metabolismo , Colágeno Tipo I , Proteínas de Filamentos Intermediários/metabolismo , Antígeno Ki-67/metabolismo , Dímeros de Pirimidina , Células Cultivadas
4.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669190

RESUMO

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Assuntos
Elétrons , Órgãos em Risco , Impressão Tridimensional , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Pele , Humanos , Elétrons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Pele/efeitos da radiação , Imagens de Fantasmas , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação
5.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674067

RESUMO

Photobiomodulation (PBM) is a procedure that uses light to modulate cellular functions and biological processes. Over the past decades, PBM has gained considerable attention for its potential in various medical applications due to its non-invasive nature and minimal side effects. We conducted a narrative review including articles about photobiomodulation, LED light therapy or low-level laser therapy and their applications on dermatology published over the last 6 years, encompassing research studies, clinical trials, and technological developments. This review highlights the mechanisms of action underlying PBM, including the interaction with cellular chromophores and the activation of intracellular signaling pathways. The evidence from clinical trials and experimental studies to evaluate the efficacy of PBM in clinical practice is summarized with a special emphasis on dermatology. Furthermore, advancements in PBM technology, such as novel light sources and treatment protocols, are discussed in the context of optimizing therapeutic outcomes and improving patient care. This narrative review underscores the promising role of PBM as a non-invasive therapeutic approach with broad clinical applicability. Despite the need for further research to develop standard protocols, PBM holds great potential for addressing a wide range of medical conditions and enhancing patient outcomes in modern healthcare practice.


Assuntos
Terapia com Luz de Baixa Intensidade , Pele , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Pele/efeitos da radiação , Pele/metabolismo , Animais , Dermatopatias/radioterapia , Dermatopatias/terapia , Luz , Fototerapia/métodos
6.
Lasers Med Sci ; 39(1): 117, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678503

RESUMO

The skin contraction phenomenon occurs due to the energy emitted by the surgical CO2 LASER affecting the collagen architecture and intracellular water content in tissues. The study aimed to assess how gender, age, breed, body-weight, CO2 LASER emission mode, and potency influence skin contraction following the incision. The study involved 80 dogs (N = 80) of both genders, multiple breeds, undergoing major surgery with CO2 LASER. Subjects were grouped based on LASER potency (12 or 15 Watts) and emission mode (Superpulse-SP or Continuous-CT): GSP12, GSP15, GCT12, and GCT15. A 10 mm incision was performed using the surgical CO2 LASER beam, consistently employing a focal point of 0.4 mm, positioned at a distance of 1 mm from the skin surface, and always maintained perpendicular to it, and resulting lengths measured with a digital caliper. Results were considered significant for p-value < 0.05. GSP12 showed minimal contraction, while GCT15 exhibited the most significant. Male subjects in GCT12, GCT15, and GSP12 experienced less contraction than females. Purebred dogs had greater contraction than mixed breeds. GSP12 individuals showed age-related contraction decrease (p < 0.01), with skin contracting by 0.09 mm per year. Weight and skin contraction trended towards significance (p = 0.06), with a 0.02 mm increase per unit weight. For a constant power of 12 W, the analysis of the relationship between the emission mode of the LASER beam and the final skin contraction (GSP12 vs. GCT12) revealed statistically significant differences (p < 0.01). This study suggests that the use of the Continuous mode of LASER emission, regardless of the power used, is associated with a higher level of final skin contraction. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION FOR PROSPECTIVELY REGISTERED TRIALS: Project approval registration number by the Research and Teaching Ethics Committee (CEIE),Faculty of Veterinary Medicine-University of Lisbon (FMV_ULisboa), Lisboa-Portugal, N/Refª 015/2022.


Assuntos
Lasers de Gás , Pele , Cães , Animais , Lasers de Gás/uso terapêutico , Masculino , Feminino , Pele/efeitos da radiação , Fenômenos Fisiológicos da Pele
7.
Lasers Med Sci ; 39(1): 109, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649643

RESUMO

Necrosis is common in skin flap surgeries. Photobiomodulation, a noninvasive and effective technique, holds the potential to enhance microcirculation and neovascularization. As such, it has emerged as a viable approach for mitigating the occurrence of skin flap necrosis. The aim of this systematic review was to examine the scientific literature considering the use of photobiomodulation to increase skin-flap viability. The preferred reporting items for systematic reviews and meta-analyses (PRISMA), was used to conducted systematic literature search in the databases PubMed, SCOPUS, Elsevier and, Scielo on June 2023. Included studies investigated skin-flap necrosis employing PBMT irradiation as a treatment and, at least one quantitative measure of skin-flap necrosis in any animal model. Twenty-five studies were selected from 54 original articles that addressed PBMT with low-level laser (LLL) or light-emitting diode (LED) in agreement with the qualifying requirements. Laser parameters varied markedly across studies. In the selected studies, the low-level laser in the visible red spectrum was the most frequently utilized PBMT, although the LED PBMT showed a similar improvement in skin-flap necrosis. Ninety percent of the studies assessing the outcomes of the effects of PBMT reported smaller areas of necrosis in skin flap. Studies have consistently demonstrated the ability of PBMT to improve skin flap viability in animal models. Evidence suggests that PBMT, through enhancing angiogenesis, vascular density, mast cells, and VEGF, is an effective therapy for decrease necrotic tissue in skin flap surgery.


Assuntos
Terapia com Luz de Baixa Intensidade , Necrose , Retalhos Cirúrgicos , Animais , Terapia com Luz de Baixa Intensidade/métodos , Pele/efeitos da radiação , Pele/irrigação sanguínea , Retalhos Cirúrgicos/irrigação sanguínea
8.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 233-240, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650128

RESUMO

Skin photoaging affects appearance and is associated with a variety of skin diseases, even skin cancer. Therefore, the prevention and treatment of skin photoaging is very important. However, there is a lack of effective evaluation methods, so it is an urgent problem to explore a comprehensive, non-invasive and in vivo evaluation method. Adipose-derived mesenchymal stem cells (ADSCs) are widely used to improve skin conditions as easier to obtain and positive effects. Recently, as the development of ultrasound technology, skin ultrasound has been widely used. Changes in skin layer and structure can be observed by high-frequency ultrasound (HFUS). In addition, Shear wave elastography (SWE) technology can be used to monitor the change of skin hardness. However, it is necessary to further explore the ultrasound parameters in interpreting histological changes. We simulate the progression and treatment process of human skin photoaging by using UVB-induced nude mice skin photoaging model and ADSCs injection. The analysis of the degree and therapeutic effect of skin photoaging was conducted by HFUS, SWE and to verify with histopathology. Our study aims to clarify the value of HFUS combined SWE techniques in evaluating the degree and therapeutic efficacy of skin photoaging, which provides theoretical basis for diagnosis and treatment evaluation systems.


Assuntos
Células-Tronco Mesenquimais , Camundongos Nus , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Envelhecimento da Pele/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Humanos , Pele/efeitos da radiação , Pele/patologia , Tecido Adiposo/citologia , Técnicas de Imagem por Elasticidade , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Feminino
9.
Carbohydr Polym ; 336: 122136, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670762

RESUMO

The standard treatment for early-stage breast cancer involves breast-conserving surgery followed by adjuvant radiotherapy. However, approximately 20 % of patients experience distant metastasis, and adjuvant radiotherapy often leads to radiation-induced skin fibrosis (RISF). In this study, we develop an on-site injectable formulation composed of selenocystamine (SeCA) and hyaluronic acid (HyA), referred to as SeCA cross-linked HyA (SCH) agent, and investigate its potential to mitigate metastasis and prevent RISF associated with breast cancer therapy. SCH agents are synthesized using the nanoprecipitation method to modulate cell-cell tight junctions and tissue inflammation. The toxicity assessments reveal that SCH agents with a higher Se content (Se payload 17.4 µg/mL) are well tolerated by L929 cells compared to SeCA (Se payload 3.2 µg/mL). In vitro, SCH agents significantly enhance cell-cell tight junctions and effectively mitigate migration and invasion of breast cancer cells (4T1). In vivo, SCH agents mitigate distant lung metastasis. Furthermore, in animal models, SCH agents reduce RISF and promote wound repair. These findings highlight the potential of SCH agents as a novel therapeutic formulation for effectively mitigating metastasis and reducing RISF. This holds great promise for improving clinical outcomes in breast cancer patients undergoing adjuvant radiotherapy.


Assuntos
Neoplasias da Mama , Fibrose , Ácido Hialurônico , Ácido Hialurônico/química , Animais , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Camundongos , Fibrose/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos BALB C , Cistamina/química , Cistamina/farmacologia , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Injeções
10.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593652

RESUMO

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Assuntos
Catalase , Raios Ultravioleta , Catalase/metabolismo , Catalase/química , Humanos , Epiderme/efeitos da radiação , Epiderme/metabolismo , Epiderme/enzimologia , Pele/efeitos da radiação , Pele/metabolismo , Pele/química , Queratinas/química , Queratinas/metabolismo
11.
Int Immunopharmacol ; 132: 111971, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565040

RESUMO

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.


Assuntos
Ácidos Cafeicos , Queratinócitos , Lactatos , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Pele , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Transdução de Sinais/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Nucleotidiltransferases/metabolismo , Ácidos Cafeicos/farmacologia , Humanos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Feminino , Células RAW 264.7
12.
J Photochem Photobiol B ; 253: 112887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460430

RESUMO

BACKGROUND: The underlying molecular mechanisms that determine the biological effects of UVB radiation exposure on human skin are still only partially comprehended. OBJECTIVES: Our goal is to examine the human skin transcriptome and related molecular mechanisms following a single exposure to UVB in the morning versus evening. METHODS: We exposed 20 volunteer females to four-fold standard erythema doses (SED4) of narrow-band UVB (309-313 nm) in the morning or evening and studied skin transcriptome 24 h after the exposure. We performed enrichment analyses of gene pathways, predicted changes in skin cell composition using cellular deconvolution, and correlated cell proportions with gene expression. RESULTS: In the skin transcriptome, UVB exposure yielded 1384 differentially expressed genes (DEGs) in the morning and 1295 DEGs in the evening, of which the most statistically significant DEGs enhanced proteasome and spliceosome pathways. Unexposed control samples showed difference by 321 DEGs in the morning vs evening, which was related to differences in genes associated with the circadian rhythm. After the UVB exposure, the fraction of proinflammatory M1 macrophages was significantly increased at both timepoints, and this increase was positively correlated with pathways on Myc targets and mTORC1 signaling. In the evening, the skin clinical erythema was more severe and had stronger positive correlation with the number of M1 macrophages than in the morning after UVB exposure. The fractions of myeloid and plasmacytoid dendritic cells and CD8 T cells were significantly decreased in the morning but not in the evening. CONCLUSIONS: NB-UVB-exposure causes changes in skin transcriptome, inhibiting cell division, and promoting proteasome activity and repair responses, both in the morning and in the evening. Inflammatory M1 macrophages may drive the UV-induced skin responses by exacerbating inflammation and erythema. These findings highlight how the same UVB exposure influences skin responses differently in morning versus evening and presents a possible explanation to the differences in gene expression in the skin after UVB irradiation at these two timepoints.


Assuntos
Complexo de Endopeptidases do Proteassoma , Pele , Feminino , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Eritema/etiologia , Macrófagos , Expressão Gênica
13.
Mar Biotechnol (NY) ; 26(2): 276-287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441733

RESUMO

The present study aims to characterize and to evaluate the biological effects of a skin dressing manufactured with the organic part of the Chondrilla caribensis marine sponge (called spongin-like collagen (SC)) associated or not to photobiomodulation (PBM) on the skin wound healing of rats. Skin dressings were manufactured with SC and it was characterized using scanning electron microscopy (SEM) and a tensile assay. In order to evaluate its biological effects, an experimental model of cutaneous wounds was surgically performed. Eighteen rats were randomly distributed into three experimental groups: control group (CG): animals with skin wounds but without any treatment; marine collagen dressing group (DG): animals with skin wounds treated with marine collagen dressing; and the marine collagen dressing + PBM group (DPG): animals with skin wounds treated with marine collagen dressing and PBM. Histopathological, histomorphometric, and immunohistochemical evaluations (qualitative and semiquantitative) of COX2, TGFß, FGF, and VEGF were done. SEM demonstrates that the marine collagen dressing presented pores and interconnected fibers and adequate mechanical strength. Furthermore, in the microscopic analysis, an incomplete reepithelialization and the presence of granulation tissue with inflammatory infiltrate were observed in all experimental groups. In addition, foreign body was identified in the DG and DPG. COX2, TGFß, FGF, and VEGF immunostaining was observed predominantly in the wound area of all experimental groups, with a statistically significant difference for FGF immunostaining score of DPG in relation to CG. The marine collagen dressing presented adequate physical characteristics and its association with PBM presented favorable biological effects to the skin repair process.


Assuntos
Bandagens , Colágeno , Poríferos , Pele , Cicatrização , Animais , Cicatrização/efeitos da radiação , Ratos , Colágeno/metabolismo , Pele/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Masculino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo , Resistência à Tração , Fatores de Crescimento de Fibroblastos/metabolismo , Microscopia Eletrônica de Varredura
14.
Lasers Surg Med ; 56(4): 404-418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436524

RESUMO

BACKGROUND AND OBJECTIVES: A threshold fluence for melanosome disruption has the potential to provide a robust numerical indicator for establishing clinical endpoints for pigmented lesion treatment using a picosecond laser. Although the thresholds for a 755-nm picosecond laser were previously reported, the wavelength dependence has not been investigated. In this study, wavelength-dependent threshold fluences for melanosome disruption were determined. Using a mathematical model based on the thresholds, irradiation parameters for 532-, 730-, 755-, 785-, and 1064-nm picosecond laser treatments were evaluated quantitatively. STUDY DESIGN/MATERIALS AND METHODS: A suspension of melanosomes extracted from porcine eyes was irradiated using picosecond lasers with varying fluence. The mean particle size of the irradiated melanosomes was measured by dynamic light scattering, and their disruption was observed by scanning electron microscopy to determine the disruption thresholds. A mathematical model was developed, combined with the threshold obtained and Monte Carlo light transport to calculate irradiation parameters required to disrupt melanosomes within the skin tissue. RESULTS: The threshold fluences were determined to be 0.95, 2.25, 2.75, and 6.50 J/cm² for 532-, 730-, 785-, and 1064-nm picosecond lasers, respectively. The numerical results quantitatively revealed the relationship between irradiation wavelength, incident fluence, and spot size required to disrupt melanosomes distributed at different depths in the skin tissue. The calculated irradiation parameters were consistent with clinical parameters that showed high efficacy with a low incidence of complications. CONCLUSION: The wavelength-dependent thresholds for melanosome disruption were determined. The results of the evaluation of irradiation parameters from the threshold-based analysis provided numerical indicators for setting the clinical endpoints for 532-, 730-, 755-, 785-, and 1064-nm picosecond lasers.


Assuntos
Lasers de Estado Sólido , Melanossomas , Animais , Suínos , Melanossomas/efeitos da radiação , Lasers , Pele/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Resultado do Tratamento
15.
J Cosmet Dermatol ; 23(5): 1620-1628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38468421

RESUMO

BACKGROUND: Skin's exposure to intrinsic and extrinsic factors causes age-related changes, leading to a lower amount of dermal collagen and elastin. AIM: This study investigated the effects of a novel facial muscle stimulation technology combined with radiofrequency (RF) heating on dermal collagen and elastin content for the treatment of facial wrinkles and skin laxity. METHODS: The active group subjects (N = 6) received four 20-min facial treatments with simultaneous RF and facial muscle stimulation, once weekly. The control subject (N = 1) was untreated. Skin biopsies obtained at baseline, 1-month and 3-month follow-up were evaluated histologically to determine collagen and elastin fibers content. A group of independent aestheticians evaluated facial skin appearance and wrinkle severity. Patient safety was followed. RESULTS: In the active group, collagen-occupied area reached 11.91 ± 1.80 × 106 µm2 (+25.32%, p < 0.05) and 12.35 ± 1.44 × 105 µm2 (+30.00%, p < 0.05) at 1-month and 3-month follow-up visits. Elastin-occupied area at 1-month and 3-month follow-up was 1.64 ± 0.14 × 105 µm2 (+67.23%, p < 0.05), and 1.99 ± 0.21 × 105 µm2 (+102.80%, p < 0.05). In the control group, there was no significant difference (p > 0.05) in collagen and elastin fibers. Active group wrinkle scores decreased from 5 (moderate, class II) to 3 (mild, class I). All subjects, except the control, improved in appearance posttreatment. No adverse events or side effects occurred. CONCLUSION: Decreased dermal collagen and elastin levels contributes to a gradual decline in skin elasticity, leading to facial wrinkles and unfirm skin. Study results showed noticeable improvement in facial appearance and increased dermal collagen and elastin content subsequent to simultaneous, noninvasive RF, and facial muscle stimulation treatments.


Assuntos
Colágeno , Elastina , Músculos Faciais , Envelhecimento da Pele , Humanos , Elastina/análise , Elastina/metabolismo , Envelhecimento da Pele/efeitos da radiação , Colágeno/metabolismo , Colágeno/análise , Feminino , Pessoa de Meia-Idade , Adulto , Músculos Faciais/efeitos da radiação , Terapia por Radiofrequência/métodos , Terapia por Radiofrequência/efeitos adversos , Masculino , Terapia por Estimulação Elétrica/efeitos adversos , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Técnicas Cosméticas/efeitos adversos , Técnicas Cosméticas/instrumentação , Pele/efeitos da radiação , Pele/patologia , Face , Biópsia , Resultado do Tratamento
16.
J Dermatol Sci ; 114(1): 24-33, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448340

RESUMO

BACKGROUND: The unfolded protein response (UPR) is one of the cytoprotective mechanisms against various stresses and essential for the normal function of skin. Skin injury caused by ionizing radiation (IR) is a common side effect of radiotherapy and it is unclear how UPR affects IR-induced skin injury. OBJECTIVES: To verify the effect of UPR on IR-induced DNA damage in keratinocytes and the relation between an endoplasmic reticulum (ER) protein KTN1 and UPR. METHODS: All experiments were performed on keratinocytes models: HaCaT and HEK-A. ER lumen and the expression levels of KTN1 and UPR pathway proteins (PERK, IRE1α and ATF6) were examined by transmission electron microscopy and immunoblotting, respectively. 4-PBA, an UPR inhibitor, was used to detected its effects on DNA damage and cell proliferation. Subsequently, the effects of KTN1 deletion on UPR, DNA damage and cell proliferation after IR were detected. Tunicamycin was used to reactivate UPR and then we examined its effects on DNA damage. RESULTS: UPR was activated by IR in keratinocytes. Inhibition of UPR aggravated DNA damage and suppressed cell proliferation after IR. KTN1 expression was upregulated by IR and KTN1 depletion reduced ER expansion and the expression of UPR-related proteins. Moreover, KTN1 depletion aggravated DNA damage and suppressed cell proliferation after IR could reversed by reactivation of UPR. CONCLUSION: KTN1 deletion aggravates IR-induced keratinocyte DNA damage via inhibiting UPR. Our findings provide new insights into the mechanisms of keratinocytes in response to IR-induced damage.


Assuntos
Proliferação de Células , Dano ao DNA , Células HaCaT , Queratinócitos , Radiação Ionizante , Resposta a Proteínas não Dobradas , Humanos , Linhagem Celular , Proliferação de Células/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos da radiação , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos da radiação , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Queratinócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Pele/efeitos da radiação , Pele/patologia , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Resposta a Proteínas não Dobradas/efeitos da radiação , Resposta a Proteínas não Dobradas/efeitos dos fármacos
17.
Disaster Med Public Health Prep ; 18: e33, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38384188

RESUMO

The Radiation Emergency Assistance Center/Training Site (REAC/TS) is one of the US Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Emergency Response Team (NEST) assets and has been responding to radiological incidents since 1976. REAC/TS is in the Oak Ridge Institute for Science and Education (ORISE). A critical part of the REAC/TS mission is to provide emergency response, advice, and consultation on injuries and illnesses caused from ionizing radiation. Fortunately, radiation injuries are not frequent, but when they occur, they are more likely to be cutaneous radiation injuries (CRI) or internal contamination. In this paper, we will review selected cases from the REAC/TS experience in order to illustrate cutaneous patterns of injury and treatment options.


Assuntos
Lesões por Radiação , Pele , Humanos , Lesões por Radiação/etiologia , Lesões por Radiação/terapia , Pele/lesões , Pele/efeitos da radiação
18.
Radiother Oncol ; 194: 110183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423138

RESUMO

BACKGROUND: Toxicity after whole breast Radiotherapy is a relevant issue, impacting the quality-of-life of a not negligible number of patients. We aimed to develop a Normal Tissue Complication Probability (NTCP) model predicting late toxicities by combining dosimetric parameters of the breast dermis and clinical factors. METHODS: The skin structure was defined as the outer CT body contour's 5 mm inner isotropic expansion. It was retrospectively segmented on a large mono-institutional cohort of early-stage breast cancer patients enrolled between 2009 and 2017 (n = 1066). Patients were treated with tangential-field RT, delivering 40 Gy in 15 fractions to the whole breast. Toxicity was reported during Follow-Up (FU) using SOMA/LENT scoring. The study endpoint was moderate-severe late side effects consisting of Fibrosis-Atrophy-Telangiectasia-Pain (FATP G ≥ 2) developed within 42 months after RT completion. A machine learning pipeline was designed with a logistic model combining clinical factors and absolute skin DVH (cc) parameters as output. RESULTS: The FATP G2 + rate was 3.8 %, with 40/1066 patients experiencing side effects. After the preprocessing of variables, a cross-validation was applied to define the best-performing model. We selected a 4-variable model with Post-Surgery Cosmetic alterations (Odds Ratio, OR = 7.3), Aromatase Inhibitors (as a protective factor with OR = 0.45), V20 Gy (50 % of the prescribed dose, OR = 1.02), and V42 Gy (105 %, OR = 1.09). Factors were also converted into an adjusted V20Gy. CONCLUSIONS: The association between late reactions and skin DVH when delivering 40 Gy/15 fr was quantified, suggesting an independent role of V20 and V42. Few clinical factors heavily modulate the risk.


Assuntos
Neoplasias da Mama , Dosagem Radioterapêutica , Pele , Humanos , Feminino , Neoplasias da Mama/radioterapia , Pessoa de Meia-Idade , Pele/efeitos da radiação , Estudos Retrospectivos , Idoso , Lesões por Radiação/etiologia , Adulto , Órgãos em Risco/efeitos da radiação , Idoso de 80 Anos ou mais
19.
J Cosmet Dermatol ; 23(5): 1850-1861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327116

RESUMO

BACKGROUND: The oxidative stress induced by ultraviolet (UV) radiation is a pivotal factor in skin aging and can even contribute to the development of skin cancer. AIM: This study explored the antioxidant effect and mechanism of water-soluble intracellular extract (WIE) of Desmodesmus sp.YT (YT), aiming to develop a natural antioxidant suitable for incorporation into cosmetics. METHODS: The study evaluated the scavenging capacity of YT-WIE against free radicals and assessed its impact on human skin fibroblasts (HSF) cell viability and UV resistance using Cell Counting Kit-8 (CCK-8). Transcriptome sequencing was employed to elucidate the mechanism of action, while RT-qPCR and western blot were used to validate the expression of key genes. RESULTS: YT-WIE displayed robust antioxidant activity, demonstrating potent scavenging abilities against 2,2-diphenyl-1-picrylhydrazyl (DPPH; IC50 = 0.55 mg mL-1), 2,2'-Azino-bis (3 ethylbenzothiazoline-6-sulfonic acid; ABTS; IC50 = 3.11 mg mL-1), Hydroxyl (·OH; IC50 = 2.21 mg mL-1), and Superoxide anion (O2 •-; IC50 = 0.98 mg mL-1). Furthermore, compared to the control group, the YT-WIE group exhibited an 89.30% enhancement in HSF viability and a 44.63% increase in survival rate post-UV irradiation. Significant upregulation of antioxidant genes (GCLC, GCLM, TXNRD1, HMOX1, NQO1) was observed with YT-WIE treatment at 400 µg mL-1, with fold increases ranging from 1.13 to 5.85 times. CONCLUSION: YT-WIE demonstrated considerable potential as an antioxidant, shielding human cells from undue oxidative stress triggered by external stimuli such as UV radiation. This suggests its promising application in cosmetics antioxidants.


Assuntos
Antioxidantes , Fibroblastos , Estresse Oxidativo , Pele , Raios Ultravioleta , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Raios Ultravioleta/efeitos adversos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/citologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Água , Células Cultivadas
20.
Photochem Photobiol Sci ; 23(3): 517-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337129

RESUMO

Squamous cell carcinoma represents the second most common type of keratinocyte carcinoma with ultraviolet radiation (UVR) making up the primary risk factor. Oral photoprotection aims to reduce incidence rates through oral intake of photoprotective compounds. Recently, drug repurposing has gained traction as an interesting source of chemoprevention. Because of their reported photoprotective properties, we investigated the potential of bucillamine, carvedilol, metformin, and phenformin as photoprotective compounds following oral intake in UVR-exposed hairless mice. Tumour development was observed in all groups in response to UVR, with only the positive control (Nicotinamide) demonstrating a reduction in tumour incidence (23.8%). No change in tumour development was observed in the four repurposed drug groups compared to the UV control group, whereas nicotinamide significantly reduced carcinogenesis (P = 0.00012). Metformin treatment significantly reduced UVR-induced erythema (P = 0.012), bucillamine and phenformin increased dorsal pigmentation (P = 0.0013, and P = 0.0005), but no other photoprotective effect was observed across the repurposed groups. This study demonstrates that oral supplementation with bucillamine, carvedilol, metformin, or phenformin does not affect UVR-induced carcinogenesis in hairless mice.


Assuntos
Carcinoma de Células Escamosas , Cisteína/análogos & derivados , Neoplasias Cutâneas , Camundongos , Animais , Raios Ultravioleta , Carvedilol/farmacologia , Camundongos Pelados , Fenformin/farmacologia , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/etiologia , Carcinogênese/efeitos da radiação , Niacinamida/farmacologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/patologia , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA