Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063044

RESUMO

Endothelial dysfunction is cause and consequence of cardiovascular diseases. The endothelial hormone C-type natriuretic peptide (CNP) regulates vascular tone and the vascular barrier. Its cGMP-synthesizing guanylyl cyclase-B (GC-B) receptor is expressed in endothelial cells themselves. To characterize the role of endothelial CNP/cGMP signaling, we studied mice with endothelial-selective GC-B deletion. Endothelial EC GC-B KO mice had thicker, stiffer aortae and isolated systolic hypertension. This was associated with increased proinflammatory E-selectin and VCAM-1 expression and impaired nitric oxide bioavailability. Atherosclerosis susceptibility was evaluated in such KO and control littermates on Ldlr (low-density lipoprotein receptor)-deficient background fed a Western diet for 10 weeks. Notably, the plaque areas and heights within the aortic roots were markedly increased in the double EC GC-B/Ldlr KO mice. This was accompanied by enhanced macrophage infiltration and greater necrotic cores, indicating unstable plaques. Finally, we found that EC GC-B KO mice had diminished vascular regeneration after critical hind-limb ischemia. Remarkably, all these genotype-dependent changes were only observed in female and not in male mice. Auto/paracrine endothelial CNP/GC-B/cGMP signaling protects from arterial stiffness, systolic hypertension, and atherosclerosis and improves reparative angiogenesis. Interestingly, our data indicate a sex disparity in the connection of diminished CNP/GC-B activity to endothelial dysfunction.


Assuntos
GMP Cíclico , Camundongos Knockout , Peptídeo Natriurético Tipo C , Transdução de Sinais , Animais , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/genética , GMP Cíclico/metabolismo , Camundongos , Masculino , Feminino , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/genética , Células Endoteliais/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Comunicação Parácrina , Hipertensão/metabolismo , Hipertensão/genética , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Aorta/patologia
2.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629102

RESUMO

Human patients with mutations within NPPC or NPR2 genes (encoding C-type natriuretic peptide (CNP) and guanylyl cyclase-B (GC-B), respectively) display clinical signs associated with skeletal abnormalities, such as overgrowth or short stature. Mice with induced models of Nppc or Npr2 deletion display profound achondroplasia, dwarfism and early death. Recent pharmacological therapies to treat short stature are utilizing long-acting CNP analogues, but the effects of manipulating CNP expression during development remain unknown. Here, we use Danio rerio (zebrafish) as a model for vertebrate development, employing both pharmacological and reverse genetics approaches to alter expression of genes encoding CNP in zebrafish. Four orthologues of CNP were identified in zebrafish, and spatiotemporal expression profiling confirmed their presence during development. Bioinformatic analyses suggested that nppcl is the most likely the orthologue of mammalian CNP. Exogenous CNP treatment of developing zebrafish embryos resulted in impaired growth characteristics, such as body length, head width and eye diameter. This reduced growth was potentially caused by increased apoptosis following CNP treatment. Expression of endogenous nppcl was downregulated in these CNP-treated embryos, suggesting that negative feedback of the CNP system might influence growth during development. CRISPR knock-down of endogenous nppcl in developing zebrafish embryos also resulted in impaired growth characteristics. Collectively, these data suggest that CNP in zebrafish is crucial for normal embryonic development, specifically with regard to growth.


Assuntos
Acondroplasia , Peptídeo Natriurético Tipo C , Feminino , Gravidez , Humanos , Animais , Camundongos , Peptídeo Natriurético Tipo C/genética , Peixe-Zebra/genética , Transtornos do Crescimento , Mamíferos
3.
Drugs Today (Barc) ; 58(9): 451-456, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36102905

RESUMO

Achondroplasia is the commonest form of dwarfism and results from a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene on chromosome 4p16.3. The mutation is at nucleotide 1138 resulting in a G-to-A transition (134934.0001). This condition is characterized by full penetration meaning that everyone with this genetic mutation will exhibit the phenotypic characteristics of achondroplasia. It is a gain-of function mutation that causes increased inhibition of cartilage formation. C-type natriuretic peptide (CNP) acts on the growth plate through the natriuretic peptide receptor-B (NPR-B) causing the transformation of guanosine 5'-triphosphate into cyclic guanosine monophosphate. However, CNP cannot be used in the treatment of achondroplasia because it is rapidly degraded by neutral endopeptidase. Vosoritide is a modified recombinant human CNP and has a half-life 10 times that of CNP. Clinical trials have demonstrated that vosoritide is effective in significantly increasing the annualized growth velocity in children with achondroplasia before the fusion of the epiphyses.


Assuntos
Acondroplasia , Peptídeo Natriurético Tipo C , Acondroplasia/tratamento farmacológico , Acondroplasia/genética , Criança , Humanos , Mutação , Peptídeo Natriurético Tipo C/análogos & derivados , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/uso terapêutico , Neprilisina
4.
Calcif Tissue Int ; 111(5): 506-518, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35947145

RESUMO

C-type natriuretic peptide (CNP) activation of guanylyl cyclase-B (GC-B) catalyzes the synthesis of cGMP in chondrocytes and osteoblasts. Elevated cGMP stimulates long bone growth, and inactivating mutations in CNP or GC-B reduce cGMP, which causes dwarfism. GC-B7E/7E mice that express a GC-B mutant that cannot be inactivated by dephosphorylation exhibit increased CNP-dependent GC-B activity, which increases bone length, as well as bone mass and strength. Importantly, how GC-B increases bone mass is not known. Here, we injected 12-week-old, wild type mice once daily for 28 days with or without BMN-111 (Vosoritide), a proteolytically resistant CNP analog. We found that BMN-111 treated mice had elevated levels of osteocalcin and collagen 1 C-terminal telopeptide (CTX) as well as increased osteoblasts and osteoclasts. In BMN-111 injected mice, tibial mRNAs for Rank ligand and osteoprotegrin were increased and decreased, respectively, whereas sclerostin mRNA was elevated 400-fold, consistent with increased osteoclast activity and decreased osteoblast activity. Mineral apposition rates and trabecular bone mass were not elevated in response to BMN-111. Because 9-week-old male GC-B7E/7E mice have increased bone mass but do not exhibit increased mineral apposition rates, we examined 4-week-old male GC-B7E/7E mice and found that these animals had increased serum osteocalcin, but not CTX. Importantly, tibias from these mice had 37% more osteoblasts, 26% fewer osteoclasts as well as 36% and 40% higher mineral apposition and bone formation rates, respectively. We conclude that GC-B-dependent bone formation is coupled to an early juvenile process that requires both increased osteoblasts and decreased osteoclasts.


Assuntos
Peptídeo Natriurético Tipo C , Osteoclastos , Animais , Colágeno , GMP Cíclico , Masculino , Camundongos , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Osteoblastos/metabolismo , Osteocalcina , Osteoclastos/metabolismo , Osteogênese , Ligante RANK , RNA Mensageiro
5.
Proc Natl Acad Sci U S A ; 119(13): e2116470119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35333648

RESUMO

Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via Gi-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders.


Assuntos
Homeostase , Peptídeo Natriurético Tipo C , Termogênese , Animais , Fator Natriurético Atrial , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Knockout , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/fisiologia , Receptores do Fator Natriurético Atrial/metabolismo
6.
Mol Cell Endocrinol ; 507: 110780, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142860

RESUMO

In euryhaline fishes, atrial and B-type natriuretic peptides are important hormones in hypo-osmoregulation, whereas osmoregulatory functions of C-type natriuretic peptides (CNPs) remain to be investigated. Although four CNP isoforms (CNP1-4) are mainly expressed in the brain, multiorgan expression of CNP3 was found in euryhaline Japanese eel, Anguilla japonica. Here we identified the CNP3-expressing cells and examined their response to osmotic stress in eel. CNP3 was expressed in several endocrine cells: prolactin-producing cells (pituitary), glucagon-producing cells (pancreas), and cardiomyocytes (heart). Pituitary CNP3 expression was the highest among organs and was decreased following seawater transfer, followed by a decrease in the freshwater-adaptating (hyper-osmoregulatory) hormone prolactin. We also showed the negative correlation between CNP3/prolactin expression in the pituitary and plasma Cl- concentration, but not for plasma Na+ concentration. These results suggest that CNP3 in the pituitary (and pancreas) plays a critical role in freshwater adaptation of euryhaline eel together with prolactin.


Assuntos
Anguilla , Cloretos/sangue , Lactotrofos/metabolismo , Peptídeo Natriurético Tipo C/genética , Água do Mar , Aclimatação/genética , Aclimatação/fisiologia , Anguilla/sangue , Anguilla/genética , Anguilla/metabolismo , Animais , Regulação para Baixo/genética , Peptídeo Natriurético Tipo C/metabolismo , Concentração Osmolar , Osmorregulação/genética , Prolactina/metabolismo , Água do Mar/química , Equilíbrio Hidroeletrolítico/genética
7.
Cells ; 8(9)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540096

RESUMO

C-type natriuretic peptide (CNP) is the most conserved member of the mammalian natriuretic peptide family, and is implicated in the endocrine regulation of growth, metabolism and reproduction. CNP is expressed throughout the body, but is particularly abundant in the central nervous system and anterior pituitary gland. Pituitary gonadotropes are regulated by pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus, to control reproductive function. GnRH and CNP reciprocally regulate their respective signalling pathways in αT3-1 gonadotrope cells, but effects of pulsatile GnRH stimulation on CNP expression has not been explored. Here, we examine the sensitivity of the natriuretic peptide system in LßT2 and αT3-1 gonadotrope cell lines to continuous and pulsatile GnRH stimulation, and investigate putative CNP target genes in gonadotropes. Multiplex RT-qPCR assays confirmed that primary mouse pituitary tissue express Nppc,Npr2 (encoding CNP and guanylyl cyclase B (GC-B), respectively) and Furin (a CNP processing enzyme), but failed to express transcripts for Nppa or Nppb (encoding ANP and BNP, respectively). Pulsatile, but not continuous, GnRH stimulation of LßT2 cells caused significant increases in Nppc and Npr2 expression within 4 h, but failed to alter natriuretic peptide gene expression in αT3-1 cells. CNP enhanced expression of cJun, Egr1, Nr5a1 and Nr0b1, within 8 h in LßT2 cells, but inhibited Nr5a1 expression in αT3-1 cells. Collectively, these data show the gonadotrope natriuretic peptide system is sensitive to pulsatile GnRH signalling, and gonadotrope transcription factors are putative CNP-target genes. Such findings represent additional mechanisms by which CNP may regulate reproductive function.


Assuntos
Gonadotrofos/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Células Cultivadas , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Peptídeo Natriurético Tipo C/genética
8.
J Assist Reprod Genet ; 36(10): 2135-2144, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31399916

RESUMO

PURPOSE: To investigate the effectiveness of a biphasic IVM culture strategy at improving IVM outcomes in oocytes from small follicles (< 6 mm) compared with routine Standard IVM in patients with polycystic ovaries. METHODS: This prospective pilot study was performed in 40 women with polycystic ovaries whose oocytes were randomized to two IVM culture methods. Patients received a total stimulation dose of 450 IU rFSH. Cumulus-oocyte complexes (COCs) from follicles < 6 mm and ≥ 6 mm were retrieved and cultured separately in either a prematuration medium with c-type natriuretic peptide followed by IVM (CAPA-IVM), or STD-IVM. Primary outcomes were maturation rate, embryo quality, and the number of vitrified day 3 embryos per patient. RESULTS: Use of the CAPA-IVM system led to a significant improvement in oocyte maturation (p < 0.05), to a doubling in percentage of good and top-quality day 3 embryos per COC, and to an increased number of vitrified day 3 embryos (p < 0.001), compared to STD IVM. Oocytes from follicles < 6 mm benefited most from CAPA-IVM, showing a significant increase in the amount of good and top-quality embryos compared to STD IVM. CAPA-IVM yielded significantly (p < 0.0001) less GV-arrested oocytes and larger oocyte diameters (p < 0.05) than STD IVM. CONCLUSIONS: CAPA-IVM brings significant improvements in maturation and embryological outcomes, most notably to oocytes from small antral follicles (< 6 mm), which can be easily retrieved from patients with a minimal ovarian stimulation. The study demonstrates the robustness and transferability of the CAPA-IVM method across laboratories and populations.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Síndrome do Ovário Policístico/genética , Adulto , Animais , Células do Cúmulo/metabolismo , Células do Cúmulo/patologia , Feminino , Humanos , Meiose/genética , Peptídeo Natriurético Tipo C/genética , Recuperação de Oócitos , Oócitos/transplante , Oogênese/genética , Folículo Ovariano/metabolismo , Projetos Piloto , Síndrome do Ovário Policístico/patologia , Adulto Jovem
9.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072047

RESUMO

C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.


Assuntos
Etanolaminas/metabolismo , Miocárdio/metabolismo , Peptídeo Natriurético Tipo C/genética , Comunicação Parácrina/genética , Fenetilaminas/metabolismo , Fator Natriurético Atrial/genética , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Células Endoteliais/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Tipo C/metabolismo , Receptores do Fator Natriurético Atrial/genética
10.
Cell Tissue Bank ; 20(2): 209-220, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30854603

RESUMO

The treatment of articular cartilage defects has become a major clinical concern. Currently, additional efforts are necessary to develop effective methods to cure this disease. In this work, we combined gene therapy with tissue engineering methods to test their effect on cartilage repair. In in vitro experiments, we obtained C-type natriuretic peptide (CNP) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) by transfection with recombinant adenovirus containing the CNP gene and revealed that CNP gene-modified BMSCs had good chondrogenic differentiation ability. By the freeze-drying method, we successfully synthesized a chitosan/silk fibroin (CS/SF) porous scaffold, which had a suitable aperture size for chondrogenesis. Then, we loaded CNP gene-modified BMSCs onto CS/SF scaffolds and tested their effect on repairing full-thickness cartilage defects in rat joints. The gross morphology and histology examination results showed that the composite of the CNP gene-modified BMSCs and CS/SF scaffolds had better repair effects than those of the other three groups at each time point. Additionally, compared to the group with BMSCs and scaffolds, we found that there was more cartilage matrix in the CNP gene-modified BMSCs and CS/SF scaffolds group. Data obtained in the present study suggest that the composite of CNP gene-modified BMSCs and CS/SF scaffolds represent promising strategies for repairing focal cartilage lesions.


Assuntos
Cartilagem Articular/citologia , Regeneração Tecidual Guiada/métodos , Células-Tronco Mesenquimais/citologia , Peptídeo Natriurético Tipo C/genética , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adenoviridae/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Cartilagem Articular/crescimento & desenvolvimento , Células Cultivadas , Quitosana/química , Fibroínas/química , Terapia Genética/métodos , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção
11.
Reproduction ; 157(5): 445-455, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30817314

RESUMO

Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.


Assuntos
Peptídeo Natriurético Tipo C/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Folículo Ovariano/fisiologia , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovulação/efeitos dos fármacos , Ovulação/fisiologia , Indução da Ovulação/métodos , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo
12.
Circ Res ; 124(2): 256-262, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582449

RESUMO

RATIONALE: Somatic overexpression in mice using an adeno-associated virus (AAV) as gene transfer vectors has become a valuable tool to analyze the roles of specific genes in cardiac diseases. The lack of atrial-specific AAV vector has been a major obstacle for studies into the pathogenesis of atrial diseases. Moreover, gene therapy studies for atrial fibrillation would benefit from atrial-specific vectors. Atrial natriuretic factor (ANF) promoter drives gene expression specifically in atrial cardiomyocytes. OBJECTIVE: To establish the platform of atrial specific in vivo gene delivery by AAV-ANF. METHODS AND RESULTS: We constructed AAV vectors based on serotype 9 (AAV9) that are driven by the atrial-specific ANF promoter. Hearts from mice injected with AAV9-ANF-GFP (green fluorescent protein) exhibited strong and atrial-specific GFP expression without notable GFP in ventricular tissue. In contrast, similar vectors containing a cardiac troponin T promoter (AAV9-TNT4-GFP) showed GFP expression in all 4 chambers of the heart, while AAV9 with an enhanced chicken ß-actin promoter (AAV-enCB-GFP) caused ubiquitous GFP expression. Next, we used Rosa26mT/mG (membrane-targeted tandem dimer Tomato/membrane-targeted GFP), a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato before Cre-mediated excision, and membrane-targeted GFP after excision. AAV9-ANF-Cre led to highly efficient LoxP recombination in membrane-targeted tandem dimer Tomato/membrane-targeted green fluorescent protein mice with high specificity for the atria. We measured the frequency of transduced cardiomyocytes in atria by detecting Cre-dependent GFP expression from the Rosa26mT/mG allele. AAV9 dose was positively correlated with the number of GFP-positive atrial cardiomyocytes. Finally, we assessed whether the AAV9-ANF-Cre vector could be used to induce atrial-specific gene knockdown in proof-of-principle experiments using conditional JPH2 (junctophilin-2) knockdown mice. Four weeks after AAV9-ANF-Cre injection, a strong reduction in atrial expression of JPH2 protein was observed. Furthermore, there was evidence for abnormal Ca2+ handling in atrial myocytes isolated from mice with atrial-restricted JPH2 deficiency. CONCLUSIONS: AAV9-ANF vectors produce efficient, dose-dependent, and atrial-specific gene expression following a single-dose systemic delivery in mice. This vector is a novel reagent for both mechanistic and gene therapy studies on atrial diseases.


Assuntos
Dependovirus/genética , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Tipo C/genética , Precursores de Proteínas/genética , Animais , Fator Natriurético Atrial , Sinalização do Cálcio , Dependovirus/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Genes Reporter , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , Regulação para Cima
13.
PLoS One ; 13(9): e0204172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235256

RESUMO

Signaling by C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B, is a pivotal stimulator of endochondral bone growth. We recently developed CNP knockout (KO) rats that exhibit impaired skeletal growth with early growth plate closure. In the current study, we further characterized the phenotype and growth plate morphology in CNP-KO rats, and the effects of exogenous CNP in rats. We used CNP-53, an endogenous form of CNP consisting of 53 amino acids, and administered it for four weeks by continuous subcutaneous infusion at 0.15 or 0.5 mg/kg/day to four-week old CNP-KO and littermate wild type (WT) rats. We demonstrated that CNP-KO rats were useful as a reproducible animal model for skeletal dysplasia, due to their impairment in endochondral bone growth. There was no significant difference in plasma bone-turnover markers between the CNP-KO and WT rats. At eight weeks of age, growth plate closure was observed in the distal end of the tibia and the calcaneus of CNP-KO rats. Continuous subcutaneous infusion of CNP-53 significantly, and in a dose-dependent manner, stimulated skeletal growth in CNP-KO and WT rats, with CNP-KO rats being more sensitive to the treatment. CNP-53 also normalized the length of long bones and the growth plate thickness, and prevented growth plate closure in the CNP-KO rats. Using organ culture experiment of fetal rat tibia, gene set enrichment analysis indicated that CNP might have a negative influence on mitogen activated protein kinase signaling cascades in chondrocyte. Our results indicated that CNP-KO rats might be a valuable animal model for investigating growth plate physiology and the mechanism of growth plate closure, and that CNP-53, or its analog, may have the potential to promote growth and to prevent early growth plate closure in the short stature.


Assuntos
Lâmina de Crescimento/crescimento & desenvolvimento , Peptídeo Natriurético Tipo C/deficiência , Peptídeo Natriurético Tipo C/farmacologia , Animais , Biomarcadores/sangue , Peso Corporal/efeitos dos fármacos , Remodelação Óssea , Feminino , Técnicas de Inativação de Genes , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Humanos , Hipertrofia , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Tíbia/efeitos dos fármacos , Tíbia/patologia
14.
Int J Oncol ; 53(2): 579-591, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29901186

RESUMO

Although high-risk human papillomavirus (HR­HPV) infection has a prominent role in the aetiology of cervical cancer (CC), sex steroid hormones may also be involved in this process; however, the cooperation between oestrogen and HR­HPV in the early stages of cervical carcinogenesis is poorly understood. Since 17ß-oestradiol (E2) and the HPV type 16­E7 oncoprotein induce CC in transgenic mice, a microarray analysis was performed in the present study to generate global gene expression profiles from 2­month­old FVB (non­transgenic) and K14E7 (transgenic) mice who were left untreated or were treated for 1 month with E2. Upregulation of cancer-related genes that have not been previously reported in the context of CC, including glycerophosphodiester phosphodiesterase domain containing 3, interleukin 1 receptor type II, natriuretic peptide type C, MGAT4 family member C, lecithin-retinol acyltransferase (phosphatidylcholine-retinol-O-acyltransferase) and glucoside xylosyltransferase 2, was observed. Notably, upregulation of the serine (or cysteine) peptidase inhibitor clade B member 9 gene and downregulation of the Granzyme gene family were observed; the repression of the Granzyme B pathway may be a novel mechanism of immune evasion by cancer cells. The present results provide the basis for further studies on early biomarkers of CC risk and synergistic interactions between HR­HPV and oestrogen.


Assuntos
Estradiol/efeitos adversos , Perfilação da Expressão Gênica/métodos , Granzimas/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas E7 de Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Peptídeo Natriurético Tipo C/genética , Neoplasias Experimentais , Proteínas E7 de Papillomavirus/metabolismo , Diester Fosfórico Hidrolases/genética , Receptores Tipo II de Interleucina-1/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
15.
Clin Sci (Lond) ; 132(9): 905-908, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29739821

RESUMO

The polycystic ovary (PCO) syndrome (PCOS) is the most common cause of anovulatory infertility in women and is associated with several clinical disorders. Despite the great amount of research in the area, mechanisms involved in the genesis of this syndrome remain poorly understood. In a recent issue of Clinical Science (vol. 132, issue 7, 759-776), Wang and colleagues, highlight the important role of overactivated C-type natriuretic peptide (CNP) and natriuretic peptide receptor 2 (CNP/NPR2) system in preventing oocyte maturation and ovulation in PCOS mice model induced by androgen. Dehydroepiandrosterone (DHEA) treatment caused anovulation, high levels of androgen and estrogen receptors (AR and ER) in the ovary, high expression of CNP and natriuretic peptide receptor 2 (NPR2) in granulosa cells (GC), and an increase in testosterone and estradiol (E2) levels in sera. The high level of CNP/NPR2 was associated with oocyte meiotic arrest and very low ovulation rate. Treatment with human chorionic gonadotropin (hCG) or inhibitors of AR or ER reduced the level of CNP/NPR2, which resulted in meiotic resumption and ovulation. The article provided important information for understanding the effect of ovarian steroids on control of oocyte maturation and fertility and highlighted CNP/NPR2 as a specific pathway that is potentially involved in the ovulatory disruption in PCOS.


Assuntos
Anovulação , Hiperandrogenismo , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Meiose , Camundongos , Peptídeo Natriurético Tipo C/genética , Folículo Ovariano
16.
PLoS One ; 13(3): e0194812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566041

RESUMO

We have previously investigated the physiological role of C-type natriuretic peptide (CNP) on endochondral bone growth, mainly with mutant mouse models deficient in CNP, and reported that CNP is indispensable for physiological endochondral bone growth in mice. However, the survival rate of CNP knockout (KO) mice fell to as low as about 70% until 10 weeks after birth, and we could not sufficiently analyze the phenotype at the adult stage. Herein, we generated CNP KO rats by using zinc-finger nuclease-mediated genome editing technology. We established two lines of mutant rats completely deficient in CNP (CNP KO rats) that exhibited a phenotype identical to that observed in mice deficient in CNP, namely, a short stature with severely impaired endochondral bone growth. Histological analysis revealed that the width of the growth plate, especially that of the hypertrophic chondrocyte layer, was markedly lower and the proliferation of growth plate chondrocytes tended to be reduced in CNP KO rats. Notably, CNP KO rats did not have malocclusions and survived for over one year after birth. At 33 weeks of age, CNP KO rats persisted significantly shorter than wild-type rats, with closed growth plates of the femur in all samples, which were not observed in wild-type rats. Histologically, CNP deficiency affected only bones among all body tissues studied. Thus, CNP KO rats survive over one year, and exhibit a deficit in endochondral bone growth and growth retardation throughout life.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Peptídeo Natriurético Tipo C/genética , Animais , Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/mortalidade , Doenças do Desenvolvimento Ósseo/patologia , Nanismo/genética , Nanismo/patologia , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Lâmina de Crescimento/patologia , Osteogênese/genética , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
17.
Gen Comp Endocrinol ; 265: 180-187, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574150

RESUMO

Natriuretic peptide type C (NPPC) and its receptor, natriuretic peptide receptor 2 (NPR2), have essential roles in maintaining meiotic arrest of oocytes in several mammalian species. However, it is not known if a similar mechanism exists in non-mammalian vertebrates. Using zebrafish as a model, we show that Nppc is expressed in ovarian follicle cells, whereas Npr2 is mainly detected in oocytes. Treatment of intact and defolliculated oocytes with 100 nM NPPC for 6 h caused a large increase in cGMP concentrations, and a significant decrease in oocyte maturation (OM), an effect that was mimicked by treatment with 8-Br-cGMP. Treatment with E2 and G-1, the specific GPER agonist, also increased cGMP levels. Cyclic AMP levels were also increased by treatments with 8-Br-cGMP, E2 and G1. The estrogen upregulation of cAMP levels was blocked by co-treatment with AG1478, an inhibitor of EGFR activation. Gene expression of npr2, but not nppc, was significantly upregulated in intact oocytes by 6 h treatments with 20 nM E2 and G-1. Both cilostamide, a phosphodiesterase 3 (PDE3) inhibitor, and rolipram, a PDE4 inhibitor, significantly decreased OM of intact and defolliculated oocytes, and enhanced the inhibitory effects of E2 and G-1 on OM. These findings indicate the presence of a Nppc/Npr2/cGMP pathway maintaining meiotic arrest in zebrafish oocytes that is upregulated by estrogen activation of Gper. Collectively, the results suggest that Nppc through Npr2 cooperates with E2 through Gper in upregulation of cGMP levels to inhibit phosphodiesterase activity resulting in maintenance of oocyte meiotic arrest in zebrafish.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Estrogênios/farmacologia , Meiose , Oócitos/citologia , Receptores do Fator Natriurético Atrial/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Meiose/efeitos dos fármacos , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Folículo Ovariano/citologia , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Fator Natriurético Atrial/genética , Rolipram/farmacologia , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/genética
18.
Genet Med ; 20(1): 91-97, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661490

RESUMO

PurposeC-type natriuretic peptide (CNP) and its principal receptor, natriuretic peptide receptor B (NPR-B), have been shown to be important in skeletal development. CNP and NPR-B are encoded by natriuretic peptide precursor-C (NPPC) and natriuretic peptide receptor 2 (NPR2) genes, respectively. While NPR2 mutations have been described in patients with skeletal dysplasias and idiopathic short stature (ISS), and several Npr2 and Nppc skeletal dysplasia mouse models exist, no mutations in NPPC have been described in patients to date.MethodsNPPC was screened in 668 patients (357 with disproportionate short stature and 311 with autosomal dominant ISS) and 29 additional ISS families in an ongoing whole-exome sequencing study.ResultsTwo heterozygous NPPC mutations, located in the highly conserved CNP ring, were identified. Both showed significant reductions in cyclic guanosine monophosphate synthesis, confirming their pathogenicity. Interestingly, one has been previously linked to skeletal abnormalities in the spontaneous Nppc mouse long-bone abnormality (lbab) mutant.ConclusionsOur results demonstrate, for the first time, that NPPC mutations cause autosomal dominant short stature in humans. The NPPC mutations cosegregated with a short stature and small hands phenotype. A CNP analog, which is currently in clinical trials for the treatment of achondroplasia, seems a promising therapeutic approach, since it directly replaces the defective protein.


Assuntos
Nanismo/diagnóstico , Nanismo/genética , Genes Dominantes , Mutação , Peptídeo Natriurético Tipo C/genética , Adolescente , Sequência de Aminoácidos , Criança , Biologia Computacional/métodos , Análise Mutacional de DNA , Feminino , Gráficos de Crescimento , Heterozigoto , Humanos , Masculino , Peptídeo Natriurético Tipo C/química , Fenótipo , Sequenciamento do Exoma
19.
Theriogenology ; 106: 198-209, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29080478

RESUMO

Meiosis is of prime importance for successful gametogenesis, and insufficient maintenance of oocyte meiotic arrest compromises oocyte developmental competence. Recent studies have demonstrated that the C-type natriuretic peptide (CNP)-Natriuretic peptide receptor 2 (NPR2) pathway can inhibit mammalian oocyte meiotic resumption. In mouse and porcine, the inhibitory effect of mural granulosa cell (MGC)-derived CNP on oocyte meiotic resumption is mediated by NPR2 localized in cumulus cells (CCs) surrounding the oocytes. However, in the present study, we identified a novel mechanism for CNP-induced meiotic arrest that appears to be unique to bovine oocytes. Unlike mouse and porcine, bovine NPR2 not only localizes in CCs, but also in oocyte membranes. We also showed that CNP can directly activate intra-oocyte cGMP production via NPR2 localized in oocyte membranes, in parallel with the CC-mediated pathway. Furthermore, we demonstrated that Npr2 expression in bovine CCs and oocytes were synergistically regulated by estradiol and oocyte-derived growth factors. Finally, based on the profound inhibitory effect of CNP on meiotic resumption, we established a natural factor synchronized in vitro oocyte maturation (NFSOM) system, which can significantly improve the developmental competence of matured oocytes, thereby resulting in higher in vitro embryo production efficiency. Taken together, our study not only provides new insight into understanding the crosstalk between oocytes and follicular somatic cells in mammals, but also presents a promising strategy for improving the in vitro oocyte maturation systems of assisted reproductive technology (ART).


Assuntos
Bovinos/fisiologia , Meiose/fisiologia , Peptídeo Natriurético Tipo C/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Animais , Células do Cúmulo/fisiologia , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeo Natriurético Tipo C/genética , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Receptores do Fator Natriurético Atrial/genética
20.
Cell Signal ; 40: 222-229, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28964968

RESUMO

Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations of guanylyl cyclase-B (GC-B, also called NPRB or NPR2) cause dwarfism. FGF exposure inhibits GC-B activity in a chondrocyte cell line, but the mechanism of the inactivation is not known. Here, we report that FGF exposure causes dephosphorylation of GC-B in rat chondrosarcoma cells, which correlates with a rapid, potent and reversible inhibition of C-type natriuretic peptide-dependent activation of GC-B. Cells expressing a phosphomimetic mutant of GC-B that cannot be inactivated by dephosphorylation because it contains glutamate substitutions for all known phosphorylation sites showed no decrease in GC-B activity in response to FGF. We conclude that FGF rapidly inactivates GC-B by a reversible dephosphorylation mechanism, which may contribute to the signaling network by which activated FGFR3 causes dwarfism.


Assuntos
Nanismo/genética , Peptídeo Natriurético Tipo C/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptores do Fator Natriurético Atrial/genética , Animais , Condrócitos/metabolismo , GMP Cíclico/genética , Modelos Animais de Doenças , Nanismo/metabolismo , Nanismo/patologia , Ácido Glutâmico/metabolismo , Humanos , Fosforilação , Ratos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA