Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Proteome Res ; 23(10): 4392-4408, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39248652

RESUMO

A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow, from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at the protein and peptide levels allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and ProteomeXchange under the identifier PXD051318.


Assuntos
Proteômica , Controle de Qualidade , Proteômica/métodos , Proteômica/normas , Reprodutibilidade dos Testes , Humanos , Fluxo de Trabalho , Peptídeos/análise , Peptídeos/normas
2.
J Am Soc Mass Spectrom ; 32(8): 1901-1909, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-33390012

RESUMO

Aspartic acid (Asp) to isoaspartic acid (isoAsp) isomerization in therapeutic monoclonal antibodies (mAbs) and other biotherapeutics is a critical quality attribute (CQA) that requires careful control and monitoring during the drug discovery and production processes. The unwanted formation of isoAsp within biotherapeutics and resultant structural changes in the peptide backbone may negatively impact the efficacy, potency, and safety of the molecule or become immunogenic, especially if the isomerization occurs within the mAb complementarity determining region (CDR). Herein we describe a MALDI-TOF/TOF mass spectrometry method that affords unequivocal identification of the presence and the exact position of the isoAsp residue(s) in peptide standards ranging in size from a tripeptide to a docosapeptide (22 residues). In general, the peptide bond immediately N-terminal to the isoAsp residue is more susceptible to MALDI-TOF/TOF fragmentation than its unmodified counterpart. In some of the peptides evaluated in this study, fragmentation of the peptide bond C-terminal to the isoAsp residue (the aspartate effect) is also enhanced when compared to the control. Relative quantification by MALDI-TOF/TOF of this chemical modification is dependent upon a successful reversed-phase HPLC (rpHPLC) separation of the control and modified peptides. This method has also been validated on a therapeutic mAb that contains a well-documented isoAsp residue in the heavy chain CDR3 after forced degradation. Moreover, we also demonstrate that higher energy C-trap dissociation of only the singly charged species, and not the multiply charged form, of the isoAsp containing peptide, separated by rpHPLC, results in LC-MS/MS fragmentation that is highly consistent to that of MALDI-TOF/TOF.


Assuntos
Ácido Aspártico/análise , Ácido Aspártico/química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Regiões Determinantes de Complementaridade/química , Ácido Isoaspártico/análise , Ácido Isoaspártico/química , Peptídeos/análise , Peptídeos/normas , Espectrometria de Massas em Tandem
3.
Anal Chem ; 91(24): 15922-15931, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31794208

RESUMO

Abundant blood proteins adducted by active electrophiles are excellent markers to predict the risk of electrophile-induced toxicity. However, detecting endogenously adducted proteins by bottom-up selective (or parallel) reaction monitoring (SRM/PRM) is challenging because of the high variability in sample preparation and detection as well as low adduction levels. Here, we reported a new approach in developing PRM methods by combining intact protein measurement with standard additions to target optimal conditions for detecting catechol estrogens (CEs)-adducted human serum albumin (HSA). Blood serum was added with multiple amounts of CEs to obtain serum standards. Intact protein measurement revealed two linear ranges of adduction levels (adducted-CE/HSA): 0.34-0.42 (R2 > 0.94) and 0.81-8.54 (R2 > 0.96) against the amount of added CEs, respectively. Six adduction sites were identified by trypsin (K20, C34, K73, K281, H338, K378) or chymotrypsin (K20, C34, K378) digestion. PRM methods targeting all adducted/nonadducted peptide pairs based on chymotrypsin or trypsin digestion were developed, and the data were compared with those obtained by intact protein measurement. Correlation plots indicated that chymotrypsin-PRM leads to poor sensitivity and largely underestimated protein adduction levels. Trypsin-PRM leads to sensitive and highly correlated (R2 > 0.91) protein adduction levels with a detection limit below the endogenous level and relative standard deviation <25%. As a proof of concept, clinical serum samples were examined by trypsin-PRM, and a slightly higher adduction level was observed for the obesity group when compared with the healthy group. This is the first report on determining adduction levels of blood proteins for long-term exposure to CEs. The standard addition approach can be generally applied to protein adductomics with resolvable mass increments by intact protein measurement to accelerate the development of bottom-up methods close to the inherent limit.


Assuntos
Estrogênios de Catecol/química , Espectrometria de Massas/métodos , Peptídeos/análise , Albumina Sérica/química , Cromatografia Líquida de Alta Pressão , Quimotripsina/metabolismo , Estrogênios de Catecol/metabolismo , Humanos , Espectrometria de Massas/normas , Nanotecnologia , Peptídeos/metabolismo , Peptídeos/normas , Padrões de Referência , Albumina Sérica/metabolismo , Tripsina/metabolismo
4.
Sci Rep ; 9(1): 8836, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222112

RESUMO

Many cellular events are driven by changes in protein expression, measurable by mass spectrometry or antibody-based assays. However, using conventional technology, the analysis of transcription factor or membrane receptor expression is often limited by an insufficient sensitivity and specificity. To overcome this limitation, we have developed a high-resolution targeted proteomics strategy, which allows quantification down to the lower attomol range in a straightforward way without any prior enrichment or fractionation approaches. The method applies isotope-labeled peptide standards for quantification of the protein of interest. As proof of principle, we applied the improved workflow to proteins of the unfolded protein response (UPR), a signaling pathway of great clinical importance, and could for the first time detect and quantify all major UPR receptors, transducers and effectors that are not readily detectable via antibody-based-, SRM- or conventional PRM assays. As transcription and translation is central to the regulation of UPR, quantification and determination of protein copy numbers in the cell is important for our understanding of the signaling process as well as how pharmacologic modulation of these pathways impacts on the signaling. These questions can be answered using our newly established workflow as exemplified in an experiment using UPR perturbation in a glioblastoma cell lines.


Assuntos
Glioblastoma/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , Dosagem de Genes , Glioblastoma/química , Glioblastoma/patologia , Humanos , Marcação por Isótopo , Proteínas de Membrana/análise , Proteínas de Membrana/normas , Peptídeos/normas , Proteômica/normas , Fatores de Transcrição/análise , Fatores de Transcrição/normas
5.
J Proteome Res ; 18(2): 694-699, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30525668

RESUMO

Targeted proteomics experiments based on selected reaction monitoring (SRM) have gained wide adoption in the use of clinical biomarkers, cellular modeling, and numerous other biological experiments due to their highly accurate and reproducible quantification. The quantitative accuracy in targeted proteomics experiments is reliant on the stable-isotope, heavy-labeled peptide standards that are spiked into a sample and used as a reference when calculating the abundance of endogenous peptides. Therefore, the quality of measurement for these standards is a critical factor in determining whether data acquisition was successful. With improved mass spectrometry (MS) instrumentation that enables the monitoring of hundreds of peptides in hundreds to thousands of samples, quality assessment is increasingly important and cannot be performed manually. We present Q4SRM, a software tool that rapidly checks the signal from all heavy-labeled peptides and flags those that fail quality-control metrics. Using four metrics, the tool detects problems with both individual SRM transitions and the collective group of transitions that monitor a single peptide. The program's speed and simplicity enable its use at the point of data acquisition and can be ideally run immediately upon the completion of a liquid chromatography-SRM-MS analysis.


Assuntos
Marcação por Isótopo/normas , Proteômica/métodos , Controle de Qualidade , Software , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Peptídeos/normas , Proteômica/normas
6.
J Proteome Res ; 18(1): 565-570, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30481031

RESUMO

Protein abundance profiling using isobaric labeling is a well-established quantitative mass spectrometry technique. However, ratio distortion resulting from coisolated and cofragmented ions, commonly referred to as interference, remains a drawback of this strategy. Tribrid mass spectrometers, such as the Orbitrap Fusion and the Orbitrap Fusion Lumos with a triple mass analyzer configuration, facilitate methods (namely, SPS-MS3) that can help alleviate interference. However, few standards are available to measure interference and thereby aid in method development. Here we introduce the TKO6 standard that assesses ion interference and is designed specifically for data acquired at low (unit) mass resolution. We use TKO6 to compare interference in MS2- versus MS3-based quantitation methods, data acquisition methods of different lengths, and ion-trap-based tandem mass tag reporter ion analysis (IT-MS3) with conventional Orbitrap-based analysis (OT-MS3). We show that the TKO6 standard is a valuable tool for assessing quantification accuracy in isobaric-tag-based analyses.


Assuntos
Peptídeos/normas , Proteoma/análise , Proteômica/métodos , Íons , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Coloração e Rotulagem
7.
Anal Chem ; 90(24): 14126-14130, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30462486

RESUMO

Model mixtures of isobaric peptides were studied to evaluate the possibility, using tandem mass spectrometry experiments, for internal standard quantification of a tryptic peptide in the presence of an isobaric interference. To this end, direct injection electrospray ionization-tandem mass spectrometry (ESI-MS/MS) experiments were performed on an ion trap instrument using a large mass-selection window (15 m/ z) encompassing the isobaric mixture and the internal standard; MS/MS experiments were carried out to remove completely the interference from the mixture by fragmenting it. This allowed for the correct intensity assignment for the protonated peptide peak and, thus, for the analyte to be quantified through the relative intensity estimate of this peak with respect to the internal standard. This was done by monitoring the 15 m/ z mass-selection window only and without the necessity for careful inspection of any fragment ions peaks. The interference removal was assessed by determining an excitation voltage large enough for the analyte/internal standard ratio to remain constant ensuring correct quantification despite isobaric contamination. A calibration curve was obtained to predict reference samples and compared to reference samples purposely spiked with the interference using the proposed methodology; internal standard quantification of the analyte was made possible with ∼1% deviation despite the isobaric contamination.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização por Electrospray/normas , Sequência de Aminoácidos , Calibragem , Gases/química , Peptídeos/síntese química , Peptídeos/normas , Padrões de Referência , Tripsina/metabolismo
8.
Anal Sci ; 34(9): 1093-1098, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197378

RESUMO

Quantitative nuclear magnetic resonance (qNMR) has emerged as an easy, rapid and reproducible method for various pharmaceuticals. In the current study, a general qNMR approach for calibrating the purity of the thiopeptcin reference standard (also known as nocathiacin I) was developed using sulfadoxine as an internal standard. Experimental conditions, such as the relaxation delay time and number of scans, were systematically optimized, and the method was validated with different analytical parameters, including selectivity, stability, linearity, precision and robustness. To examine the reliability and feasibility of the present qNMR method, there was no significant difference in the quantification of this complex cyclic peptide compared to the mass balance method. The present study further exemplified that qNMR is a reliable and valuable approach for the assessing of absolute purity of small-molecule pharmaceuticals, which provides a useful tool for drug discovery and development.


Assuntos
Peptídeos/análise , Peptídeos e Proteínas de Sinalização Intercelular , Conformação Molecular , Peptídeos/normas , Espectroscopia de Prótons por Ressonância Magnética/normas , Padrões de Referência
9.
Anal Bioanal Chem ; 410(26): 6719-6731, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30143839

RESUMO

The purity value assignment of metrologically traceable peptide reference standards requires specialized primary methods. Conventionally, amino acid analysis by isotope dilution tandem mass spectrometry (LC-MS/MS) following peptide hydrolysis is employed as a reference method. By contrast, quantitative nuclear magnetic resonance (qNMR) spectroscopy allows for quantitation of intact peptides, thus eliminating potential bias due to hydrolysis. Both methods are susceptible to interference from related peptide impurities, which need to be accurately measured and accounted for. The mass balance approach has also been employed for peptide purity measurements, whereby the purity is defined by the sum of the mass fraction of all impurities identified. Ideally, results from these three orthogonal methods can be combined for final purity assignment of peptide reference standards. Here we report a novel strategy for correcting both LC-MS/MS and 1H-qNMR results for related peptide impurities and combining results from both methods using a Bayesian statistical approach using mass balance results as prior knowledge. The mass balance method relied on a validated 19F-qNMR method to measure the trifluoroacetic acid (TFA) counter-ion, considered an impurity in this case at nearly 25% by mass. Using a candidate certified reference material (CRM) for angiotensin II, excellent agreement was achieved with the three methods. The final purity value assignment of the candidate CRM was 691 ± 9 mg/g (k = 2).


Assuntos
Aminoácidos/análise , Angiotensina II/química , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/normas , Espectrometria de Massas em Tandem/métodos , Angiotensina II/análise , Angiotensina II/normas , Teorema de Bayes , Hidrólise , Modelos Químicos , Padrões de Referência , Reprodutibilidade dos Testes , Ácido Trifluoracético/análise
10.
Anal Bioanal Chem ; 410(26): 6963-6972, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30128809

RESUMO

Identification and quantitation of related impurities is vital in obtaining corrected purity values for peptide certified reference materials. The sensitivity and selectivity of high-resolution mass spectrometry (MS) renders it an indispensable technique in this arena. Typical quantitation efforts involve constructing external calibration curves, although analysis of dilute peptide solutions can be complicated by analyte adsorption to vial walls, instrument tubing, etc. The standard addition method alleviates many concerns associated with this sample loss as the calibrant solutions more closely match the matrix of the samples. Yet, both strategies require acquisition of synthetic impurity peptide standards. Label-free proteomics relies on electrospray ionization (ESI)-MS signals to quantify identical peptides across multiple samples; however, peptides of differing sequence can exhibit widely disparate ESI-MS responses. This study explores the use of peak area ratios to quantitate sequence-related peptide impurities in an angiotensin II candidate certified reference material. Using synthetic standards of five abundant substances, impurity mass fractions calculated via the relative response method are in reasonable agreement with those determined from standard addition experiments, whereas external calibration measurements frequently overestimate impurity amounts. For a synthetic peptide and its related sequence impurities, the relative response method can expedite analysis and lower expenditures, and in some cases improve data quality.


Assuntos
Angiotensina II/normas , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Angiotensina II/química , Humanos , Limite de Detecção , Peptídeos/normas , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA