Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Nat Commun ; 15(1): 3945, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730238

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Simulação de Dinâmica Molecular , Ribossomos , Ribossomos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biossíntese de Proteínas , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673985

RESUMO

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Humanos , Anuros , Pele/microbiologia , Pele/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química
3.
Pak J Biol Sci ; 27(3): 152-159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686737

RESUMO

<b>Background and Objective:</b> Rabbit meat is a livestock product potentially viable as a protein source to obtain peptides. Antioxidant and antimicrobial peptides are ingredients extracted from various foods through enzymatic hydrolysis, chemical hydrolysis and fermentation to produce health-promoting foods. This research aims to investigate the potential of rabbit meat as a source of antioxidant and antimicrobial peptides through hydrolysis using trypsin and zingibain enzymes. <b>Materials and Methods:</b> This research conducted an explorative-descriptive approach, focusing on antioxidant and antimicrobial activity. Rabbit meat was extracted using trypsin, zingibain and a combination of trypsin and crude extract zingibain. The hydrolyzed rabbit meat extract was tested at intervals of 0, 2, 6, 16, 24, 40 and 48 hrs to determine the degree of hydrolysis and the profile of hydrolyzed proteins with electrophoresis SDS PAGE. The antioxidant activity was tested using the DPPH method and the antimicrobial activity using agar well diffusion method. <b>Results:</b> The degree of hydrolysis increased with the hydrolysis time. The highest protein content of rabbit meat extract hydrolyzed with trypsin was 287.65 mg/mL, observed during 12 hrs hydrolysis. The optimum conditions for the hydrolysis of rabbit meat protein were obtained at 24 hrs, with an IC<sub>50</sub> value of 52.45% hydrolyzed by trypsin. As per antimicrobial activities, <i>Escherichia coli</i> and <i>Salmonella</i> sp. were more effective in inhibiting rabbit meat hydrolysates compared to <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i>. The inhibition of all pathogen increased until 12 hrs hydrolysis but decreased in 24 hrs hydrolysis. <b>Conclusion:</b> The combination zingibain enzyme and trypsin is feasible for hydrolyzing rabbit meat and the optimum hydrolysis time was 24 hrs with IC<sub>50</sub> 52.45 ppm, although accompanied by reduction in antibacterial activities.


Assuntos
Antioxidantes , Carne , Tripsina , Animais , Coelhos , Antioxidantes/farmacologia , Tripsina/metabolismo , Hidrólise , Hidrolisados de Proteína/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos/farmacologia , Peptídeos/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
4.
Biomaterials ; 308: 122558, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581764

RESUMO

Mesenchymal stem cell (MSC)-based therapy is an effective strategy for regenerative therapy. However, safety and ease of use are still issues to be overcome in clinical applications. Exosomes are naturally derived nanoparticles containing bioactive molecules, which serve as ideal cell-free therapeutic modalities. However, issues such as delivery, long-term preservation and activity maintenance of exosomes are other problems that limit their application. In this study, we proposed the use of rapid freeze-dry-thaw macroporous hydrogels for the encapsulation of HucMSC-derived exosomes (HucMSC-Exos) combined with an antimicrobial peptide coating. This exosome-encapsulated hyaluronic acid macroporous hydrogel HD-DP7/Exo can achieve long-term storage and transport by lyophilization and can be rapidly redissolved for treatment. After comprehensively comparing the therapeutic effects of HucMSC-Exos and HucMSC-loaded hydrogels, we found that HucMSC-Exos could also effectively regulate fibroblasts, vascular endothelial cells, and macrophages and inhibit myofibroblast-mediated fibrosis, thus promoting tissue regeneration and inhibiting scar formation in a mouse model of deep second-degree burn infection healing. These properties of lyophilized storage and whole-process-repair make HD-DP7/Exo have potential application value and application prospects.


Assuntos
Peptídeos Antimicrobianos , Exossomos , Hidrogéis , MicroRNAs , Cicatrização , Animais , Exossomos/metabolismo , Hidrogéis/química , Cicatrização/efeitos dos fármacos , Camundongos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Bandagens , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Queimaduras/terapia , Ácido Hialurônico/química , Masculino , Cicatriz , Camundongos Endogâmicos C57BL
5.
Toxicon ; 241: 107657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428753

RESUMO

Spider venom boasts extensive peptide diversity, constituting a natural biochemical arsenal for defense and predation. The new family HvAMPs, including 9 homologous members, were identified from the unnormalized cDNA library of Heteropoda venatoria venom gland by Sanger sequencing. The putative mature peptide is composed of 22 aliphatic amino acid residues. The mature peptides of HvAMP1 and HvAMP5, with 3 different amino acids, were synthesized and both were shown to adopt an amphipathic α-helical structure and amphipathicity in SDS buffer by CD spectroscopy. In comparison to HvAMP1, HvAMP5 exhibits higher antibacterial activity, particularly against Gram-positive bacteria, coupled with reduced hemolytic activity and cytotoxicity. Results from SYTO 9/PI staining indicate that HvAMP5 acts by disrupting bacterial cell membranes. Analysis of the relationships between structures and functions suggests that HvAMP5 enhances antibacterial activity and reduces mammalian cell toxicity by increasing positive charge and proline substitution. The three residues variation can augment the electrostatic attraction of antibacterial peptides to the bacterial phospholipid bilayer. The present study suggests that the HvAMPs may exert lytic action against cells of different origins to increase cellular and tissue barrier permeability to facilitate spider's defense or predation. Moreover, HvAMP5 holds promise as a novel antibacterial agent for treating Gram-positive bacterial infections. Simultaneously, the numerous diverse amino acid residue substitutions within the HvAMP family offer a template for future study.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Aminoácidos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Mamíferos , Testes de Sensibilidade Microbiana , Peptídeos
6.
Biochim Biophys Acta Biomembr ; 1866(4): 184309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460782

RESUMO

Continual synthesis and remodeling of the peptidoglycan layer surrounding Gram-positive cells is essential for their survival. Diverse antimicrobial peptides target the lipid intermediates involved in this process. To sense and counteract assault from antimicrobial peptides, low G + C content gram-positive bacteria (Firmicutes) have evolved membrane protein complexes known as Bce-modules. These complexes consist minimally of an ABC transporter and a two-component system that work in tandem to perceive and confer resistance against antimicrobial peptides. In this mini-review I highlight recent breakthroughs in comprehending the structure and function of these unusual membrane protein complexes, with a particular focus on the BceAB-RS system present in Bacillus subtilis.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Peptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Percepção
7.
Antonie Van Leeuwenhoek ; 117(1): 55, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488950

RESUMO

Antimicrobial peptides (AMPs) are promising cationic and amphipathic molecules to fight antibiotic resistance. To search for novel AMPs, we applied a computational strategy to identify peptide sequences within the organisms' proteome, including in-house developed software and artificial intelligence tools. After analyzing 150.450 proteins from eight proteomes of bacteria, plants, a protist, and a nematode, nine peptides were selected and modified to increase their antimicrobial potential. The 18 resulting peptides were validated by bioassays with four pathogenic bacterial species, one yeast species, and two cancer cell-lines. Fourteen of the 18 tested peptides were antimicrobial, with minimum inhibitory concentrations (MICs) values under 10 µM against at least three bacterial species; seven were active against Candida albicans with MICs values under 10 µM; six had a therapeutic index above 20; two peptides were active against A549 cells, and eight were active against MCF-7 cells under 30 µM. This study's most active antimicrobial peptides damage the bacterial cell membrane, including grooves, dents, membrane wrinkling, cell destruction, and leakage of cytoplasmic material. The results confirm that the proposed approach, which uses bioinformatic tools and rational modifications, is highly efficient and allows the discovery, with high accuracy, of potent AMPs encrypted in proteins.


Assuntos
Anti-Infecciosos , Proteoma , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Inteligência Artificial , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
8.
Colloids Surf B Biointerfaces ; 236: 113823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442502

RESUMO

Hydrophobic antimicrobial peptide L30, a potential antibiotic candidate, has poor water solubility and hemolytic activity. Herein, a biocompatible nano-formulation composed of liposomes and dendritic mesoporous silica encapsulation (LDMSNs@L30) was constructed for L30 to solve the limits for its clinical development. The characterization, antimicrobial activity and therapeutic effect of LDMSNs@L30 on Staphylococcus aureus 9 (cfr+) infected mice models were investigated. LDMSNs@L30 displayed a smooth, spherical, and monodisperse nanoparticle with a hydrodynamic diameter of 177.40 nm, an encapsulation rate of 56.13%, a loading efficiency of 32.26%, a release rate of 66.5%, and effective slow-release of L30. Compared with free L30, the formulation could significantly increase the solubility of L30 in PBS with the maximum concentration from 8 µg/mL to 2.25 mg/mL and decrease the hemolytic activity of hydrophobic peptide L30 with the HC5 from 65.36 µg/mL to more than 500 µg/mL. The nano delivery system LDMSNs@L30 also exhibited higher therapeutic effects on mice models infected with S. aureus 9 (cfr+) than those of free L30 after 7 days of treatment by reducing the lung inflammation and the inflammatory cytokines levels in plasma, showing better health score and pulmonary pathological improvement. Our research suggests that nano-formulation can be expected to be a promising strategy for peptide drugs in therapeutic applications.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Peptídeos Antimicrobianos , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Nanotecnologia
9.
Photochem Photobiol Sci ; 23(4): 665-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443738

RESUMO

Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.


Assuntos
Alginatos , Escherichia coli K12 , Polietilenoglicóis , Polietilenoimina , Nanogéis , Peptídeos Antimicrobianos , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/farmacologia , Escherichia coli
10.
Eur J Pharm Biopharm ; 198: 114244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467336

RESUMO

Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.


Assuntos
Neoplasias , Ácidos Nucleicos , Animais , Humanos , Peptídeos Antimicrobianos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Técnicas de Transferência de Genes , Peptídeos/química , Ácidos Nucleicos/química , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/metabolismo
11.
ACS Chem Biol ; 19(4): 981-991, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38527226

RESUMO

The development of new antimicrobial agents effective against Gram-negative bacteria remains a major challenge in drug discovery. The lasso peptide cloacaenodin has potent antimicrobial activity against multiple strains in the Enterobacter genus, one of the ESKAPE pathogens. Here, we show that cloacaenodin uses a previously uncharacterized TonB-dependent transporter, which we name CloU, to cross the outer membrane (OM) of susceptible bacteria. Inner membrane transport is mediated by the protein SbmA. CloU is distinct from the known OM transporters (FhuA and PupB) utilized by other antimicrobial lasso peptides and thus offers important insight into the spectrum of activity of cloacaenodin. Using knowledge of the transport pathway to predict other cloacaenodin-susceptible strains, we demonstrate the activity of cloacaenodin against clinical isolates of Enterobacter and of a Kluyvera strain. Further, we use molecular dynamics simulations and mutagenesis of CloU to explain the variation in cloacaenodin susceptibility observed across different strains of Enterobacter. This work expands the currently limited understanding of lasso peptide uptake and advances the potential of cloacaenodin as an antibiotic.


Assuntos
Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos , Enterobacter/efeitos dos fármacos , Enterobacter/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Bactérias
12.
BMC Biotechnol ; 24(1): 14, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491556

RESUMO

Cancer associated drug resistance is a major cause for cancer aggravation, particularly as conventional therapies have presented limited efficiency, low specificity, resulting in long term deleterious side effects. Peptide based drugs have emerged as potential alternative cancer treatment tools due to their selectivity, ease of design and synthesis, safety profile, and low cost of manufacturing. In this study, we utilized the Red Sea metagenomics database, generated during AUC/KAUST Red Sea microbiome project, to derive a viable anticancer peptide (ACP). We generated a set of peptide hits from our library that shared similar composition to ACPs. A peptide with a homeodomain was selected, modified to improve its anticancer properties, verified to maintain high anticancer properties, and processed for further in-silico prediction of structure and function. The peptide's anticancer properties were then assessed in vitro on osteosarcoma U2OS cells, through cytotoxicity assay (MTT assay), scratch-wound healing assay, apoptosis/necrosis detection assay (Annexin/PI assay), RNA expression analysis of Caspase 3, KI67 and Survivin, and protein expression of PARP1. L929 mouse fibroblasts were also assessed for cytotoxicity treatment. In addition, the antimicrobial activity of the peptide was also examined on E coli and S. aureus, as sample representative species of the human bacterial microbiome, by examining viability, disk diffusion, morphological assessment, and hemolytic analysis. We observed a dose dependent cytotoxic response from peptide treatment of U2OS, with a higher tolerance in L929s. Wound closure was debilitated in cells exposed to the peptide, while annexin fluorescent imaging suggested peptide treatment caused apoptosis as a major mode of cell death. Caspase 3 gene expression was not altered, while KI67 and Survivin were both downregulated in peptide treated cells. Additionally, PARP-1 protein analysis showed a decrease in expression with peptide exposure. The peptide exhibited minimal antimicrobial activity on critical human microbiome species E. coli and S. aureus, with a low inhibition rate, maintenance of structural morphology and minimal hemolytic impact. These findings suggest our novel peptide displayed preliminary ACP properties against U2OS cells, through limited specificity, while triggering apoptosis as a primary mode of cell death and while having minimal impact on the microbiological species E. coli and S. aureus.


Assuntos
Anti-Infecciosos , Antineoplásicos , Sais , Animais , Camundongos , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/farmacologia , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Linhagem Celular Tumoral , Oceano Índico , Antígeno Ki-67/metabolismo , Staphylococcus aureus , Apoptose , Peptídeos/farmacologia , Peptídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Anexinas/farmacologia
13.
Talanta ; 273: 125881, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492283

RESUMO

This work describes fabrication of gold electrodes modified with peptide conjugate DAL-PEG-DK5-PEG-OH that enables ultra-sensitive detection of lipopolysaccharide (LPS) isolated from the reference strain of Escherichia coli O26:B6. The initial step of the established procedure implies immobilization of the fully protected DAL-PEG-DK5-PEG-OH peptide on the surface of the gold electrode previously modified by cysteamine. Then side chain- and Fmoc-deprotection was performed in situ on the electrode surface, followed by its incubation in 1 % of BSA solution to block non-specific bindings sites before LPS detection. The efficiency of the modification was confirmed by X-ray Photoelectron Spectroscopy (XPS) measurements. Additionally, the cyclic voltammetry (CV) and electrochemical impendance spectroscopy (EIS) were employed to monitor the effectiveness of each step of the modification. The obtained results confirmed that the presence of the surface-attached covalently bound peptide DAL-PEG-DK5-PEG-OH enables LPS detection by means of CV technique within the range from 5 × 10-13 to 5 × 10-4 g/mL in PBS solution. The established limit of detection (LOD) for EIS measurements was 4.93 × 10-21 g/mL with wide linear detection range from 5 × 10-21 to 5 × 10-14 g/mL in PBS solution. Furthermore, we confirmed the ability of the electrode to detect LPS in a complex biological samples, like mouse urine and human serum. The effectiveness of the electrodes in identifying LPS in both urine and serum matrices was confirmed for samples containing LPS at both 2.5 × 10-15 g/mL and 2.5 × 10-9 g/mL.


Assuntos
Técnicas Biossensoriais , Lipopolissacarídeos , Animais , Camundongos , Humanos , Ouro/química , Peptídeos Antimicrobianos , Endotoxinas , Eletrodos , Peptídeos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
14.
Microbiol Spectr ; 12(5): e0390523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501823

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative facultative anaerobe that has become an important cause of severe infections in humans, particularly in patients with cystic fibrosis. The development of efficacious methods or mendicants against P. aeruginosa is still needed. We previously reported that regenerating islet-derived family member 4 (Reg4) has bactericidal activity against Salmonella Typhimurium, a Gram-negative flagellated bacterium. We herein explore whether Reg4 has bactericidal activity against P. aeruginosa. In the P. aeruginosa PAO1-chronic infection model, Reg4 significantly inhibits the colonization of PAO1 in the lung and subsequently ameliorates pulmonary inflammation and fibrosis. Reg4 recombinant protein suppresses the growth motility and biofilm formation capability of PAO1 in vitro. Mechanistically, Reg4 not only exerts bactericidal action via direct binding to the P. aeruginosa cell wall but also enhances the phagocytosis of alveolar macrophages in the host. Taken together, our study demonstrates that Reg4 may provide protection against P. aeruginosa-induced pulmonary inflammation and fibrosis via its antibacterial activity.IMPORTANCEChronic lung infection with Pseudomonas aeruginosa is a leading cause of morbidity and mortality in patients with cystic fibrosis. Due to the antibiotic resistance of Pseudomonas aeruginosa, antimicrobial peptides appear to be a potential alternative to combat its infection. In this study, we report an antimicrobial peptide, regenerating islet-derived 4 (Reg4), that showed killing activity against clinical strains of Pseudomonas aeruginosa PAO1 and ameliorated PAO1-induced pulmonary inflammation and fibrosis. Experimental data also showed Reg4 directly bound to the bacterial cell membrane and enhanced the phagocytosis of host alveolar macrophages. Our presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.


Assuntos
Antibacterianos , Proteínas Associadas a Pancreatite , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Camundongos , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Antibacterianos/farmacologia , Humanos , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/imunologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Pneumonia/microbiologia , Peptídeos Antimicrobianos/farmacologia , Fagocitose/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Fibrose Pulmonar/microbiologia , Modelos Animais de Doenças
15.
Appl Microbiol Biotechnol ; 108(1): 196, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324214

RESUMO

Citrus canker is an infectious bacterial disease and one of the major threats to the orange juice industry, a multibillion-dollar market that generates hundreds of thousands of jobs worldwide. This disease is caused by the Gram-negative bacterium Xanthomonas citri subsp. citri. In Brazil, the largest producer and exporter of concentrate orange juice, the control of citrus canker is exerted by integrated management practices, in which cupric solutions are intensively used in the orchards to refrain bacterial spreading. Copper ions accumulate and are as heavy metals toxic to the environment. Therefore, the aim of the present work was to evaluate bifunctional fusion proteins (BiFuProts) as novel and bio-/peptide-based alternatives to copper formulations to control citrus canker. BiFuProts are composed of an anchor peptide able to bind to citrus leaves, and an antimicrobial "killer" peptide to protect against bacterial infections of plants. The selected BiFuProt (Mel-CgDEF) was bactericidal against X. citri at 125 µg mL-1, targeting the bacterial cytoplasmic membrane within the first minutes of contact. The results in the greenhouse assays proved that Mel-CgDEF at 250 µg mL-1 provided protection against X. citri infection on the leaves, significantly reducing the number of lesions by area when compared with the controls. Overall, the present work showed that the BiFuProt Mel-CgDEF is a biobased and biodegradable possible alternative for substitute cupric formulations. KEY POINTS: • The bifunctional fusion protein Mel-CgDEF was effective against Xanthomonas citri. • Mel-CgDEF action mechanism was the disruption of the cytoplasmic membrane. • Mel-CgDEF protected citrus leaves against citrus canker disease.


Assuntos
Citrus , Xanthomonas , Cobre , Peptídeos , Peptídeos Antimicrobianos
16.
J Nat Prod ; 87(3): 544-553, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38366995

RESUMO

Chelidonium majus, known as Greater Celandine, is a latex-bearing plant that has been leveraged for its anticancer and antimicrobial properties. Herein, C. majus aerial tissue is mined for the presence of antimicrobial peptides. A highly abundant cysteine-rich peptide with a length of 25 amino acids, deemed CM-AMP1, is characterized through multiple mass spectrometric approaches. Electron-activated dissociation is leveraged to differentiate between isoleucine and leucine residues and complement conventional collision-induced dissociation to gain full sequence coverage of the full-length peptide. CM-AMP1 shares little sequence similarity with any proteins in publicly available databases, highlighting the novelty of its cysteine landscape and core motif. The presence of three disulfide bonds in the native peptide confers proteolytic stability, and antimicrobial activity is greatly decreased upon the alkylation of the cysteine residues. Synthetic variants of CM-AMP1 are used to confirm the activity of the full-length sequence and the core motif. To assess the biological impact, E. coli was grown in a sublethal concentration of CM-AMP1 and quantitative proteomics was used to identify proteins produced by the bacteria under stress, ultimately suggesting a membrane lytic antimicrobial mechanism of action. This study integrates multiple analytical methods for molecular and biological characterization of a unique antimicrobial peptide identified from C. majus.


Assuntos
Anti-Infecciosos , Chelidonium , Chelidonium majus , Chelidonium/química , Chelidonium/metabolismo , Peptídeos Antimicrobianos , Cisteína , Escherichia coli , Anti-Infecciosos/farmacologia
17.
ChemMedChem ; 19(8): e202300576, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38301146

RESUMO

Strategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria. This controlled approach not only yields diverse nanostructures but also holds promise for applications in antibacterial therapeutics.


Assuntos
Ouro , Nanoestruturas , Ouro/farmacologia , Ouro/química , Peptídeos Antimicrobianos , Peptídeos/farmacologia , Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química
18.
J Oral Pathol Med ; 53(3): 201-207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402639

RESUMO

BACKGROUND: The objective of this study was to evaluate and compare the expression levels of TNF-α, omentin-1, and IL-6 in periodontitis patients before and after treatment with biological antimicrobial peptide (AMP) periodontal gel. METHODS: There involved 86 periodontitis patients admitted to our hospital from January 2020 to March 2021. They were equally and randomly distributed into the study group and the control group. The efficacy and adverse reactions were compared between the two groups after treatment, Additionally, the sulcus bleeding index (SBI), plaque index (PLI), gingival index (GI), periodontal probing depth (PD), and levels of TNF-α, omentin-1, and IL-6 were measured before and after treatment. RESULTS: After treatment, the total effective rate of the study group was significantly higher than that of the control group (p < 0.05), while the scores of four indicators (SBI, PLI, GI, and PD) and the levels of TNF-α, omentin-1, and IL-6 in the study group were evidently lower than the control group (p < 0.05). The study group had 1 case of mild irritant reaction, with an adverse reaction rate of 2.33% (1/43). And the control group had 1 case of nausea and 1 case of allergy, with an adverse reaction rate of 4.65% (2/43). The adverse reactions demonstrated no statistical difference between the two groups (χ2 = 0.345, p = 0.557). CONCLUSIONS: The levels of TNF-α and IL-6 were highly expressed before the auxiliary therapy of biological AMP periodontal gel for periodontitis, alongside low expression of omentin-1. Subsequently, the biological antibacterial polypeptide periodontal gel demonstrated efficacy in the treatment of periodontitis.


Assuntos
Periodontite Crônica , Periodontite , Humanos , Fator de Necrose Tumoral alfa , Interleucina-6 , Antibacterianos , Periodontite/tratamento farmacológico , Peptídeos Antimicrobianos , Líquido do Sulco Gengival , Periodontite Crônica/tratamento farmacológico
19.
Dev Comp Immunol ; 154: 105144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316232

RESUMO

Antimicrobial peptides (AMPs) are an essential part of the vertebrate innate immune system. Piscidins are a family of AMPs specific in fish. In our previous investigation, we identified four paralogous genes of piscidins in the orange-spotted grouper (Epinephelus coicodes), which exhibited distinct activities against bacteria, fungi, and parasitic ciliated protozoa. Piscidins demonstrated their capability to modulate the expression of diverse immune-related genes; however, their precise immunoregulatory functions remain largely unexplored. In this study, we examined the immunomodulatory properties of putative mature peptides derived from four E. coicodes piscidins (ecPis1S, ecPis2S, ecPis3S, and ecPis4S) in head kidney leukocytes (HKLs) or monocytes/macrophages (MO/MΦ)-like cells isolated from E. coicodes. Our data demonstrate that E. coicodes piscidins exhibit immunomodulatory activities supported by multiple lines of evidence. Firstly, all four piscidins displayed chemotactic activities towards HKLs, with the most potent chemotactic activity observed in ecPis2S. Secondly, stimulation with E. coicodes piscidins enhanced respiratory burst and phagocytic activity in MO/MФ-like cells, with ecPis3S showing the highest efficacy in increasing phagocytosis of MO/MΦ-like cells. Thirdly, mRNA expression levels of chemokine receptors, Toll-like receptors, T cell receptors, and proinflammatory cytokines were modulated to varying extents by the four piscidins in E. coicodes HKLs. Overall, our findings indicate that the immunological activities of these four paralogous piscidins from E. coicodes are exhibited in a paralog-specific and concentration-dependent manner, highlighting their distinct and versatile immunomodulatory properties. This study makes a significant contribution to the field of fish AMPs immunology by elucidating the novel mechanisms through which members of the piscidin family exert their immunomodulatory effects. Moreover, it provides valuable insights for further exploration of fish immunomodulating agents.


Assuntos
Bass , Animais , Bass/genética , Bass/metabolismo , Sequência de Aminoácidos , Peptídeos Antimicrobianos , Quimiotaxia , Explosão Respiratória , Peptídeos Catiônicos Antimicrobianos/metabolismo , Alinhamento de Sequência , Proteínas de Peixes/metabolismo , Macrófagos/metabolismo , Fagocitose
20.
Front Immunol ; 15: 1326033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318188

RESUMO

Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.


Assuntos
Venenos de Abelha , Meliteno , Meliteno/farmacologia , Meliteno/química , Meliteno/metabolismo , Peptídeos Antimicrobianos , Venenos de Abelha/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA