Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.425
Filtrar
1.
Nat Commun ; 15(1): 3945, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730238

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Simulação de Dinâmica Molecular , Ribossomos , Ribossomos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biossíntese de Proteínas , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673985

RESUMO

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Humanos , Anuros , Pele/microbiologia , Pele/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química
3.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540740

RESUMO

Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/ß defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites. The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin family of AMP in humans, has been the major focus for the past few decades of research. The host defense activity of LL37 is likely underscored by its expression throughout the body, spanning from the epithelial cells of various organs-testis, skin, respiratory tract, and gastrointestinal tract-to immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts several other host defense activities, including inflammatory response modulation, chemo-attraction, and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known biophysical, structural, and functional studies in recent years. We believe that this review will pave the way for future research on the structures, biochemical and biophysical properties, and design of novel LL37-based molecules.


Assuntos
Anti-Infecciosos , Catelicidinas , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Cicatrização , Pele/metabolismo
4.
Antonie Van Leeuwenhoek ; 117(1): 55, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488950

RESUMO

Antimicrobial peptides (AMPs) are promising cationic and amphipathic molecules to fight antibiotic resistance. To search for novel AMPs, we applied a computational strategy to identify peptide sequences within the organisms' proteome, including in-house developed software and artificial intelligence tools. After analyzing 150.450 proteins from eight proteomes of bacteria, plants, a protist, and a nematode, nine peptides were selected and modified to increase their antimicrobial potential. The 18 resulting peptides were validated by bioassays with four pathogenic bacterial species, one yeast species, and two cancer cell-lines. Fourteen of the 18 tested peptides were antimicrobial, with minimum inhibitory concentrations (MICs) values under 10 µM against at least three bacterial species; seven were active against Candida albicans with MICs values under 10 µM; six had a therapeutic index above 20; two peptides were active against A549 cells, and eight were active against MCF-7 cells under 30 µM. This study's most active antimicrobial peptides damage the bacterial cell membrane, including grooves, dents, membrane wrinkling, cell destruction, and leakage of cytoplasmic material. The results confirm that the proposed approach, which uses bioinformatic tools and rational modifications, is highly efficient and allows the discovery, with high accuracy, of potent AMPs encrypted in proteins.


Assuntos
Anti-Infecciosos , Proteoma , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Inteligência Artificial , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
5.
Eur J Med Chem ; 268: 116224, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387338

RESUMO

The emergence of bacterial strains resistant to antibiotics is a major issue in the medical field. Antimicrobial peptides are widely studied as they do not generate as much resistant bacterial strains as conventional antibiotics and present a broad range of activity. Among them, the homopolypeptide poly(l-arginine) presents promising antibacterial properties, especially in the perspective of its use in biomaterials. Linear poly(l-arginine) has been extensively studied but the impact of its 3D structure remains unknown. In this study, the antibacterial properties of newly synthesized branched poly(l-arginine) peptides, belonging to the family of multiple antigenic peptides, are evaluated. First, in vitro activities of the peptides shows that branched poly(l-arginine) is more efficient than linear poly(l-arginine) containing the same number of arginine residues. Surprisingly, peptides with more arms and more residues are not the most effective. To better understand these unexpected results, interactions between these peptides and the membranes of Gram positive and Gram negative bacteria are simulated thanks to molecular dynamic. It is observed that the bacterial membrane is more distorted by the branched structure than by the linear one and by peptides containing smaller arms. This mechanism of action is in full agreement with in vitro results and suggest that our simulations form a robust model to evaluate peptide efficiency towards pathogenic bacteria.


Assuntos
Antibacterianos , Simulação de Dinâmica Molecular , Peptídeos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Arginina/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
6.
Bioorg Chem ; 145: 107151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359706

RESUMO

Antimicrobial peptides (AMPs) are a group of polypeptide chains that have the property to target and kill a myriad of microbial organisms including viruses, bacteria, protists, etc. The first discovered AMP was named gramicidin, an extract of aerobic soil bacteria. Further studies discovered that these peptides are present not only in prokaryotes but in eukaryotes as well. They play a vital role in human innate immunity and wound repair. Consequently, they have maintained a high level of intrigue among scientists in the field of immunology, especially so with the rise of antibiotic-resistant pathogens decreasing the reliability of antibiotics in healthcare. While AMPs have promising potential to substitute for common antibiotics, their use as effective replacements is barred by certain limitations. First, they have the potential to be cytotoxic to human cells. Second, they are unstable in the blood due to action by various proteolytic agents and ions that cause their degradation. This review provides an overview of the mechanism of AMPs, their limitations, and developments in recent years that provide techniques to overcome those limitations. We also discuss the advantages and drawbacks of AMPs as a replacement for antibiotics as compared to other alternatives such as synthetically modified bacteriophages, traditional medicine, and probiotics.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Reprodutibilidade dos Testes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Bactérias
7.
J Phys Chem Lett ; 15(7): 1828-1835, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38330920

RESUMO

Many people simultaneously exhibit multiple diseases, which complicates efficient medical treatments. For example, patients with cancer are frequently susceptible to infections. However, developing drugs that could simultaneously target several diseases is challenging. We present a novel theoretical method to assist in selecting compounds with multiple therapeutic targets. The idea is to find correlations between the physical and chemical properties of drug molecules and their abilities to work against multiple targets. As a first step, we investigated potential drugs against cancer and viral infections. Specifically, we investigated antimicrobial peptides (AMPs), which are short positively charged biomolecules produced by living systems as a part of their immune defense. AMPs show anticancer and antiviral activity. We use chemoinformatics and correlation analysis as a part of the machine-learning method to identify the specific properties that distinguish AMPs with dual anticancer and antiviral activities. Physical-chemical arguments to explain these observations are presented.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Neoplasias , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Antivirais , Neoplasias/tratamento farmacológico
8.
Chem Biodivers ; 21(2): e202301840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088493

RESUMO

Resistance to antimicrobial drugs has been considered a public health problem. Likewise, the increasing resistance of cancer cells to drugs currently used in therapy has also become a problem. Therefore, the research and development of synthetic peptides bring a new perspective on the emergence of new drugs for treating this resistance since bioinformatics provides a means to optimize these molecules and save time and costs in research. Peptides have several mechanisms of action, such as forming pores on the cell membrane and inhibiting protein synthesis. Some studies report the use of antimicrobial peptides with the potential for action against cancer cells, suggesting a repositioning of antimicrobial peptides to fight back cancer resistance. There is an alteration in the microenvironment, making its net charge negative for the survival and growth of cancer cells. The changes in glycoproteins favor the membrane to have a more negative charge, favoring the interaction between the cells and the peptide, thus making possible the repositioning of these antimicrobial peptides against cancer. Here, we will discuss the mechanism of action, targets and effects of peptides, comparison between microbial and cancer cells, and proteomic changes caused by the interaction of peptides and cells.


Assuntos
Anti-Infecciosos , Neoplasias , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Reposicionamento de Medicamentos , Proteômica , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico
9.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069041

RESUMO

Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Neoplasias Gástricas , Humanos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Neoplasias Gastrointestinais/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias Gástricas/tratamento farmacológico , Antibacterianos/farmacologia
10.
Nano Lett ; 23(24): 11874-11883, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38097378

RESUMO

Antibiotic resistance is a global threat. Antimicrobial peptides (AMPs) are highly desirable to treat multidrug-resistant pathogen infection. However, few AMPs are clinically available, due to high cost, instability, and poor selectivity. Here, ultrashort AMPs (2-3 residues with an N-terminal cysteine) are designed and assembled as gold nanoparticles. Au-S conjugation and ultrashort size restrict nonspecific reactions and peptide orientation, thus concentrating positively charged residues on the surface. The nanostructured assemblies enormously enhance antimicrobial abilities by 1000-6000-fold and stability. One representative (Au-Cys-Arg-NH2, Au_CR) shows selective antibacterial activity against Staphylococcus aureus with 10 nM minimal inhibitory concentration. Au_CR has comparable or better in vivo antimicrobial potency than vancomycin and methicillin, with low propensity to induce resistance, little side effects, and high stability (17.5 h plasma half-life). Au_CR acts by inducing collapse of membrane potential and rupture of the bacterial membrane. The report provides insights for developing AMP-metal nanohybrids, particularly tethering nonspecific reactions and AMP orientation on the metal surface.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ouro/química , Dipeptídeos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Nanopartículas Metálicas/química , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
11.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003414

RESUMO

Bioactive peptides have emerged as promising therapeutic agents with antimicrobial, antifungal, antiparasitic, and, recently, antitumoral properties with a mechanism of action based on membrane destabilization and cell death, often involving a conformational change in the peptide. This biophysical study aims to provide preliminary insights into the membrane-level antitumoral mode of action of crotalicidin, a cationic host defense peptide from rattlesnake venom, toward breast cancer cell lines. The lipid composition of breast cancer cell lines was obtained after lipid extraction and quantification to prepare representative cell membrane models. Membrane-peptide interaction studies were performed using differential scanning calorimetry and Fourier-transform infrared spectroscopy. The outcome evidences the potential antitumoral activity and selectivity of crotalicidin toward breast cancer cell lines and suggests a mechanism initiated by the electrostatic interaction of the peptide with the lipid bilayer surface and posterior conformation change with membrane intercalation between the acyl chains in negatively charged lipid systems. This research provides valuable information that clears up the antitumoral mode of action of crotalicidin.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Bicamadas Lipídicas/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Varredura Diferencial de Calorimetria
12.
Bioorg Med Chem Lett ; 96: 129499, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37804993

RESUMO

A4K14-Citropin 1.1 (GLFAVIKKVASVIKGL-NH2) is a derived antimicrobial peptide (AMP) with a more stable α-helical structure at the C-terminal compared to prototype Citropin 1.1 which was obtained from glandular skin secretions of Australian freetail lizards. In a previous report, A4K14-Citropin 1.1 has been considered as an anti-cancer lead compound. However, linear peptides are difficult to maintain stable secondary structure, resulted in poor pharmacokinetic properties. In this study, we designed and synthesized a series of benzyl-stapled derivatives of A4K14-Citropin 1.1. And their physical and chemical properties, as well as biological activity, were both explored. The result showed that AC-CCSP-2-o and AC-CCSP-3-o exhibited a higher degree of helicity and greater anti-cancer activity compared with the prototype peptide. Besides, there was no significant difference in the hemolytic effect between the stapled peptides and the prototype peptide. AC-CCSP-2-o and AC-CCSP-3-o could serve as promising anti-cancer lead compounds for the novel anti-cancer drug development.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Anfíbios/química , Estrutura Secundária de Proteína , Conformação Proteica em alfa-Hélice
13.
ACS Infect Dis ; 9(11): 2252-2268, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855266

RESUMO

Due to excessive use or abuse in the food industry, agriculture, and medicine, many pathogens are developing resistance against conventional antibiotics. Antimicrobial peptides (AMPs) hold promise as effective therapeutic options for the treatment of bacterial infections. Herein, a novel cathelicidin antimicrobial peptide (Zs-CATH) was identified from the tree frog Zhangixalus smaragdinus. Zs-CATH mainly adopted an amphipathic ß-sheet structure in a membrane-mimetic environment. It showed broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria in vitro and significantly protected mice from lethal infections induced by Gram-negative bacteria Escherichia coli ATCC 25922 or Gram-positive bacteria Staphylococcus aureus ATCC 25923 in vivo. In addition, Zs-CATH exerted a strong anti-inflammatory effect by neutralizing lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and promoting macrophage M2 polarization, thus inhibiting the secretion of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß) and enhancing the production of M2 macrophage markers IL-10, IL-4, and CD206. The MAPK and NF-κB inflammatory signaling pathways and transcriptional activator 6 (STAT6) were involved in this effect. In mice, Zs-CATH rapidly recruited neutrophils and monocytes/macrophages to the abdominal cavity but not T and B lymphocytes. Zs-CATH did not exhibit a direct chemoattractant effect on phagocytes but significantly promoted phagocyte migration in the presence of macrophages. Zs-CATH stimulated macrophages to secrete chemokines CXCL1, CXCL2, and CCL2, which mediated the recruitment of phagocytes. Furthermore, Zs-CATH promoted the production of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs), which are oxygen-dependent and oxygen-independent mechanisms of the microbicidal activity of neutrophils, respectively. Zs-CATH exhibited no toxic side effects on mammalian cells and mice. These findings show that in addition to direct antibacterial activity, Zs-CATH also possesses the ability to modulate immune and inflammatory processes during bacterial infection, showing potential for development as anti-infective and/or anti-inflammatory agents.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Animais , Camundongos , Catelicidinas/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Macrófagos , Anuros , Oxigênio/metabolismo , Oxigênio/farmacologia , Mamíferos
14.
Protein Sci ; 32(10): e4778, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37695921

RESUMO

In 2023, the Antimicrobial Peptide Database (currently available at https://aps.unmc.edu) is 20-years-old. The timeline for the APD expansion in peptide entries, classification methods, search functions, post-translational modifications, binding targets, and mechanisms of action of antimicrobial peptides (AMPs) has been summarized in our previous Protein Science paper. This article highlights new database additions and findings. To facilitate antimicrobial development to combat drug-resistant pathogens, the APD has been re-annotating the data for antibacterial activity (active, inactive, and uncertain), toxicity (hemolytic and nonhemolytic AMPs), and salt tolerance (salt sensitive and insensitive). Comparison of the respective desired and undesired AMP groups produces new knowledge for peptide design. Our unification of AMPs from the six life kingdoms into "natural AMPs" enabled the first comparison with globular or transmembrane proteins. Due to the dominance of amphipathic helical and disulfide-linked peptides, cysteine, glycine, and lysine in natural AMPs are much more abundant than those in globular proteins. To include peptides predicted by machine learning, a new "predicted" group has been created. Remarkably, the averaged amino acid composition of predicted peptides is located between the lower bound of natural AMPs and the upper bound of synthetic peptides. Synthetic peptides in the current APD, with the highest cationic and hydrophobic amino acid percentages, are mostly designed with varying degrees of optimization. Hence, natural AMPs accumulated in the APD over 20 years have laid the foundation for machine learning prediction. We discuss future directions for peptide discovery. It is anticipated that the APD will continue to play a role in research and education.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos , Aminoácidos
15.
Amino Acids ; 55(10): 1349-1359, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548712

RESUMO

The amphibian family Leptodactylidae is divided into three sub-families: Leiuperinae, Leptodactylinae, and Paratelmatobiinae. Host-defense peptides (HDPs) present in the skins of frogs belonging to the Leptodactylinae have been studied extensively, but information is limited  regarding peptides from Leiuperinae species. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Tungara frog Engystomops pustulosus (Leiuperinae) collected in Trinidad led to the isolation and structural characterization of previously undescribed pustulosin-1 (FWKADVKEIG KKLAAKLAEELAKKLGEQ), [Q28E] pustulosin-1 (pustulosin-2), and pustulosin-3 (DWKETAKELLKKIGAKVAQVISDKLNPAPQ). The primary structures of these peptides do not resemble those of previously described frog skin HDPs. In addition, the secretions contained tigerinin-1EP (GCKTYLIEPPVCT) with structural similarity to the tigerinins previously identified in skin secretions from frogs from the family Dicroglossidae. Pustulosin-1 and -3 adopted extended α-helical conformations in 25% trifluoroethanol-water and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). Pustulosin-1 and -3 displayed cytotoxic activity against a range of human tumor-derived cell lines (A549, MDA-MB-231, and HT29), but their therapeutic potential for development into anti-cancer agents is limited by their comparable cytotoxic activity against non-neoplastic human umbilical vein endothelial cells. The peptides also displayed weak antimicrobial activity against Escherichia coli (MIC = 125 µM) but were inactive against Staphylococcus aureus. Tigerinin-1EP was inactive against both the tumor-derived cells and bacteria.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Células Endoteliais/metabolismo , Proteínas de Anfíbios/química , Anuros/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias/metabolismo , Pele/metabolismo , Testes de Sensibilidade Microbiana
16.
Int J Biol Macromol ; 247: 125698, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37414326

RESUMO

Antimicrobial peptides (AMPs) exert their biological functions by perturbation with cellular membrane. Conjugation of AMPs with photosensitizer (PS) is a promising strategy for enhancing the efficacy and reducing systemic toxicity of AMPs. However, it is still elusive how the conjugated PS impacts the perturbation of AMPs on cell membrane from molecular level. Here, we addressed this issue by a multiscale computational strategy on pyropheophorbide-a (PPA) conjugated K6L9 (PPA-K6L9), a PS-AMP conjugate developed by us previously. Our atomistic molecular dynamics (MD) simulations revealed that the porphyrin moiety of PPA enhanced the stability of the conjugate in a lipid bilayer membrane model. Moreover, such moiety also maintained the amphipathic structure of K6L9, which is crucial for membrane pore formation. Coarse-grained MD simulations further showed that the conjugates aggregated in membrane environment and formed more stable toroidal pores with respect to K6L9 alone, suggesting the conjugation of PPA may enhance the membrane-disruption activity of K6L9. Consistent with this, our cellular experiments confirmed that PPA-K6L9 was more toxic to 4 T1 tumor cells than K6L9. This study provides insights into the mechanism by which PS-AMP conjugates disrupt cellular membranes and could aid in the design of more potent AMP conjugates.


Assuntos
Peptídeos Antimicrobianos , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular
17.
Protein Pept Lett ; 30(8): 690-698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37488753

RESUMO

BACKGROUND: Antimicrobial resistance is an emerging global health challenge that has led researchers to study alternatives to conventional antibiotics. A promising alternative is antimicrobial peptides (AMPs), produced as the first line of defense by almost all living organisms. To improve its biological activity, the conjugation of AMPs is a promising approach. OBJECTIVE: In this study, we evaluated the N-terminal conjugation of p-Bt (a peptide derived from Bothrops Jararacuçu`s venom) with ferrocene (Fc) and gallic acid (GA). Acetylated and linear versions of p-Bt were also synthesized to evaluate the importance of N-terminal charge and dimeric structure. METHODS: The compounds were obtained using solid-phase peptide synthesis. Circular dichroism, vesicle permeabilization, antimicrobial activity, and cytotoxicity studies were conducted. RESULTS: No increase in antibacterial activity against Escherichia coli was observed by adding either Fc or GA to p-Bt. However, Fc-p-Bt and GA-p-Bt exhibited improved activity against Staphylococcus aureus. No cytotoxicity upon fibroblast was observed for GA-p-Bt. On the other hand, conjugation with Fc increased cytotoxicity. This toxicity may be related to the membrane permeabilization capacity of this bioconjugate, which showed the highest carboxyfluorescein leakage in vesicle permeabilization experiments. CONCLUSION: Considering these observations, our findings highlight the importance of adding bioactive organic compounds in the N-terminal position as a tool to modulate the activity of AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Ácido Gálico , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Escherichia coli , Ácido Gálico/farmacologia , Metalocenos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Lisina/química , Lisina/farmacologia
18.
Biochimie ; 214(Pt B): 216-227, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37499896

RESUMO

Antimicrobial peptides (AMPs) are essential for defence against pathogens in all living organisms and possessed activities against bacteria, fungi, viruses, parasites and even cancer cells. AMPs are short peptides containing 12-100 amino acids conferring a net positive charge and an amphiphilic property in most cases. Although, anionic AMPs also exist. AMPs can be classified based on the types of secondary structures, charge, hydrophobicity, amino acid composition, length, etc. Their mechanism of action usually includes a membrane disruption process through pore formation (three different models have been described, barrel-stave, toroidal or carpet model) but AMPs can also penetrate and impair intracellular functions. Besides their activity against pathogens, they have also shown immunomodulatory properties in complex scenarios through many different interactions. The aim of this review to summarize knowledge about AMP's and discuss the potential application of AMPs as therapeutics, the challenges due to their limitations, including their susceptibility to degradation, the potential generation of AMP resistance, cost, etc. We also discuss the current FDA-approved drugs based on AMPs and strategies to circumvent natural AMPs' limitations.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Fungos , Bactérias/metabolismo , Antibacterianos
19.
Int J Antimicrob Agents ; 62(3): 106909, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37419291

RESUMO

OBJECTIVES: We recently designed a series of cationic deoxythymidine-based amphiphiles that mimic the cationic amphipathic structure of antimicrobial peptides (AMPs). Among these amphiphiles, ADG-2e and ADL-3e displayed the highest selectivity against bacterial cells. In this study, ADG-2e and ADL-3e were evaluated for their potential as novel classes of antimicrobial, antibiofilm, and anti-inflammatory agents. METHODS: Minimum inhibitory concentrations of ADG-2e and ADL-3e against bacteria were determined using the broth microdilution method. Proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K was determined by radial diffusion and HPLC analysis. Biofilm activity was investigated using the broth microdilution and confocal microscopy. The antimicrobial mechanism was investigated by membrane depolarization, cell membrane integrity analysis, scanning electron microscopy (SEM), genomic DNA influence and genomic DNA binding assay. Synergistic activity was evaluated using checkerboard method. Anti-inflammatory activity was investigated using ELISA and RT-PCR. RESULTS: ADG-2e and ADL-3e showed good resistance to physiological salts and human serum, and a low incidence of drug resistance. Moreover, they exhibit proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K. ADG-2e and ADL-3e were found to kill bacteria by an intracellular target mechanism and bacterial cell membrane-disrupting mechanism, respectively. Furthermore, ADG-2e and ADL-3e showed effective synergistic effects when combined with several conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Importantly, ADG-2e and ADL-3e not only suppressed MDRPA biofilm formation but also effectively eradicated mature MDRPA biofilms. Furthermore, ADG-2e and ADL-3e drastically decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) gene expression and protein secretion in lipopolysaccharide (LPS)-stimulated macrophages, implying potent anti-inflammatory activity in LPS-induced inflammation. CONCLUSION: Our findings suggest that ADG-2e and ADL-3e could be further developed as novel antimicrobial, antibiofilm, and anti-inflammatory agents to combat bacterial infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Lipopolissacarídeos , Endopeptidase K/farmacologia , Pepsina A/farmacologia , Tripsina/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia , Bactérias , Biofilmes , Timidina/farmacologia , Testes de Sensibilidade Microbiana
20.
Amino Acids ; 55(8): 1013-1022, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37310533

RESUMO

Antimicrobial peptides (AMPs) are a crucial component of the natural defense system that the host employs to protect itself against invading pathogens. PMAP-23, a cathelicidin-derived AMP, has potent and broad-spectrum antimicrobial activity. Our earlier studies led us to hypothesize that PMAP-23 adopts a dynamic helix-hinge-helix structure, initially attaching to membrane surfaces through the N-helix and subsequently inserting the C-helix into the lipid bilayer. Here, we rationally designed PMAP-NC with increased amphipathicity and hydrophobicity in the N- and C-helix, respectively, based on the hypothesis of the interaction of PMAP-23 with membranes. Compared to the parental PMAP-23, PMAP-NC showed two-eightfold improved bactericidal activity against both Gram-positive and Gram-negative strains with fast killing kinetics. Fluorescence studies demonstrated that PMAP-NC largely disrupted membrane integrity, indicating that efficiency and kinetics of bacterial killing are associated with the membrane permeabilization. Interestingly, PMAP-NC exhibited much better anticancer activity against tumor cells than PMAP-23 but displayed low hemolytic activity against human erythrocytes. Collectively, our findings suggest that PMAP-NC, with the structural arrangement of an amphipathic helix-hinge-hydrophobic helix that plays a critical role in rapid and efficient membrane permeabilization, can be an attractive candidate for novel antimicrobial and/or anticancer drugs.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/química , Catelicidinas , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA