Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429857

RESUMO

Opioid peptides and their receptors are expressed in the mammalian retina; however, little is known about how they might affect visual processing. The melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), which mediate important non-image-forming visual processes such as the pupillary light reflex (PLR), express ß-endorphin-preferring, µ-opioid receptors (MORs). The objective of the present study was to elucidate if opioids, endogenous or exogenous, modulate pupillary light reflex (PLR) via MORs expressed by ipRGCs. MOR-selective agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAMGO) or antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) was administered via intravitreal injection. PLR was recorded in response to light stimuli of various intensities. DAMGO eliminated PLR evoked by light with intensities below melanopsin activation threshold but not that evoked by bright blue irradiance that activated melanopsin signaling, although in the latter case, DAMGO markedly slowed pupil constriction. CTAP or genetic ablation of MORs in ipRGCs slightly enhanced dim-light-evoked PLR but not that evoked by a bright blue stimulus. Our results suggest that endogenous opioid signaling in the retina contributes to the regulation of PLR. The slowing of bright light-evoked PLR by DAMGO is consistent with the observation that systemically applied opioids accumulate in the vitreous and that patients receiving chronic opioid treatment have slow PLR.


Assuntos
Peptídeos Opioides/genética , Receptores Opioides mu/genética , Retina/metabolismo , Percepção Visual/genética , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalinas/antagonistas & inibidores , Encefalinas/genética , Humanos , Luz , Camundongos , Peptídeos/farmacologia , Receptores Opioides/genética , Receptores Opioides mu/antagonistas & inibidores , Reflexo/genética , Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos , beta-Endorfina/genética
2.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435320

RESUMO

Nicotine addiction is a severe public health problem. The aim of this study was to investigate the alterations in key neurotransmissions after 60 days of withdrawal from seven weeks of intermittent cigarette smoke, e-cigarette vapours, or an e-cigarette vehicle. In the nicotine withdrawal groups, increased depressive and anxiety/obsessive-compulsive-like behaviours were demonstrated in the tail suspension, sucrose preference and marble burying tests. Cognitive impairments were detected in the spatial object recognition test. A significant increase in Corticotropin-releasing factor (Crf) and Crf1 mRNA levels was observed, specifically after cigarette withdrawal in the caudate-putamen nucleus (CPu). The nociceptin precursor levels were reduced by cigarette (80%) and e-cigarette (50%) withdrawal in the CPu. The delta opioid receptor showed a significant reduction in the hippocampus driven by the exposure to an e-cigarette solubilisation vehicle, while the mRNA levels doubled in the CPu of mice that had been exposed to e-cigarettes. Withdrawal after exposure to e-cigarette vapour induced a 35% Bdnf mRNA decrease in the hippocampus, whereas Bdnf was augmented by 118% by cigarette withdrawal in the CPu. This study shows that long-term withdrawal-induced affective and cognitive symptoms associated to lasting molecular alterations in peptidergic signalling may determine the impaired neuroplasticity in the hippocampal and striatal circuitry.


Assuntos
Vapor do Cigarro Eletrônico/efeitos adversos , Hipocampo/efeitos dos fármacos , RNA Mensageiro/genética , Síndrome de Abstinência a Substâncias/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Núcleo Caudado/fisiopatologia , Hormônio Liberador da Corticotropina/genética , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Opioides/genética , Orexinas/genética , Putamen/efeitos dos fármacos , Putamen/metabolismo , Putamen/fisiopatologia , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores Opioides/genética , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Regulação para Cima/efeitos dos fármacos
3.
Peptides ; 128: 170307, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217145

RESUMO

Opioid peptides, derived from PENK, POMC, PDYN and PNOC precursors, together with their receptors (DOR, MOR, KOR and ORL1), constitute the opioid system and are suggested to participate in multiple physiological/pathological processes in vertebrates. However, the question whether an opioid system exists and functions in non-mammalian vertebrates including birds remains largely unknown. Here, we cloned genes encoding opioid system from the chicken brain and examined their functionality and tissue expression. As in mammals, 6 opioid peptides encoded by PENK (Met-enkephalin and Leu-enkephalin), POMC (ß-endorphin), PDYN (dynorphin-A and dynorphin-B) and PNOC (nociceptin) precursors and four opioid receptors were found to be highly conserved in chickens. Using pGL3-CRE-luciferase and pGL4-SRE-luciferase reporter systems, we demonstrated that chicken opioid receptors (cDOR, cMOR, cKOR and cORL1) expressed in CHO cells, could be differentially activated by chicken opioid peptides, and resulted in the inhibition of cAMP/PKA and activation of MAPK/ERK signaling pathways. cDOR is potently activated by Met-enkephalin and Leu-enkephalin, and cKOR is potently activated by dynorphin-A, dynorphin-B and nociceptin, whereas cORL1 is specifically activated by nociceptin. Unlike cDOR, cKOR and cORL1, cMOR is moderately/weakly activated by enkephalins and other opioid peptides. These findings suggest the ligand-receptor pair in chicken opioid system is similar, but not identical to, that in mammals. Quantitative real-time PCR revealed that the opioid system is mainly expressed in chicken central nervous system including the hypothalamus. Collectively, our data will help to facilitate the better understanding of the conserved roles of opioid system across vertebrates.


Assuntos
Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Galinhas , Clonagem Molecular/métodos , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/genética , DNA Complementar/genética , Peptídeos Opioides/química , Peptídeos Opioides/genética , Receptores Opioides/química , Receptores Opioides/genética , Homologia de Sequência , Distribuição Tecidual
4.
Mol Cell Proteomics ; 17(9): 1737-1749, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29895708

RESUMO

The cerebellum is a brain structure involved in motor and cognitive functions. The development of the cerebellar cortex (the external part of the cerebellum) is under the control of numerous factors. Among these factors, neuropeptides including PACAP or somatostatin modulate the survival, migration and/or differentiation of cerebellar granule cells. Interestingly, such peptides contributing to cerebellar ontogenesis usually exhibit a specific transient expression profile with a low abundance at birth, a high expression level during the developmental processes, which take place within the first two postnatal weeks in rodents, and a gradual decline toward adulthood. Thus, to identify new peptides transiently expressed in the cerebellum during development, rat cerebella were sampled from birth to adulthood, and analyzed by a semi-quantitative peptidomic approach. A total of 33 peptides were found to be expressed in the cerebellum. Among these 33 peptides, 8 had a clear differential expression pattern during development, 4 of them i.e. cerebellin 2, nociceptin, somatostatin and VGF [353-372], exhibiting a high expression level during the first two postnatal weeks followed by a significative decrease at adulthood. A focus by a genomic approach on nociceptin, confirmed that its precursor mRNA is transiently expressed during the first week of life in granule neurons within the internal granule cell layer of the cerebellum, and showed that the nociceptin receptor is also actively expressed between P8 and P16 by the same neurons. Finally, functional studies revealed a new role for nociceptin, acting as a neurotrophic peptide able to promote the survival and differentiation of developing cerebellar granule neurons.


Assuntos
Córtex Cerebelar/metabolismo , Fatores de Crescimento Neural/metabolismo , Peptídeos Opioides/metabolismo , Peptídeos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/metabolismo , Feminino , Peróxido de Hidrogênio/toxicidade , Masculino , Fatores de Crescimento Neural/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos Opioides/química , Peptídeos Opioides/genética , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Opioides/metabolismo , Receptor de Nociceptina , Nociceptina
5.
Drug Alcohol Depend ; 166: 150-8, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27430399

RESUMO

BACKGROUND: Nicotine dependence is maintained by neurobiological adaptations in the dopaminergic brain reward pathway with the contribution of opioidergic circuits. This study assessed the role of opioid peptides and receptors on the molecular changes associated with nicotine dependence. To this aim we analysed nicotine effects on opioid gene and receptor expression in the reward pathway in a nicotine sensitization model. METHODS: Sprague-Dawley rats received nicotine administrations for five days and locomotor activity assessment showed the development of sensitization. The mRNA expression of prodynorphin (pdyn), pronociceptin (pnoc) and the respective receptors was measured by quantitative PCR in the ventral midbrain (VM), the nucleus accumbens (NAc), the caudate-putamen (CPu), the pre-frontal cortex (PFCx), and the hippocampus. RESULTS: A significant positive effect of sensitization on pdyn mRNA levels was detected in the CPu. This effect was supported by a significant and selective correlation between the two parameters in this region. Moreover, chronic but not acute nicotine treatment significantly decreased pdyn mRNA levels in the NAc and increased expression in the PFCx. Pnoc mRNA was significantly increased in the VM and the PFCx after sub-chronic administration of nicotine, whereas no alterations were observed after acute treatment. No treatment associated changes were detected in κ-opioid receptor or nociceptin receptor mRNAs. CONCLUSIONS: This experiment revealed an effect of nicotine administration that was distinguishable from the effect of nicotine sensitization. While several pnoc and pdyn changes were associated to nicotine administration, the only significant effect of sensitization was a significant increase in pdyn in the CPu.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalinas/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Motivação/efeitos dos fármacos , Motivação/genética , Rede Nervosa/efeitos dos fármacos , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Precursores de Proteínas/genética , RNA Mensageiro/genética , Receptores Opioides/genética , Recompensa , Tabagismo/genética , Animais , Mapeamento Encefálico , Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Peptídeos Opioides/genética , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/genética , Tabagismo/metabolismo , Receptor de Nociceptina
6.
Neuropeptides ; 50: 51-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25812480

RESUMO

Nociceptin/Orphanin FQ (N/OFQ) is a 17-amino acid peptide that binds to the nociceptin receptor (NOP). N/OFQ and NOP receptors are expressed in numerous brain areas. The generation of specific agonists, antagonists and receptor-deficient mice or rats has enabled progress in elucidating the biological functions of N/OFQ. These tools have been employed to identify the biological significance of the N/OFQ system and how it interacts with other endogenous systems to regulate several body functions. The present review focuses on the role of N/OFQ in the regulation of body temperature and its relationship with energy balance. Critical evaluation of the literature data suggests that N/OFQ, acting through the NOP receptor, may cause hypothermia by influencing the complex thermoregulatory system that operates as a federation of independent thermoeffector loops to control body temperature at the hypothalamic level. Furthermore, N/OFQ counteracts hyperthermia elicited by cannabinoids or µ-opioid agonists. N/OFQ-induced hypothermia is prevented by ω-conotoxin GVIA, an N-type calcium channel blocker. Hypothermia induced by N/OFQ is considered within the framework of the complex action that this neuropeptide exerts on energy balance. Energy stores are regulated through the complex neural controls exerted on both food intake and energy expenditure. In laboratory rodents, N/OFQ stimulates consummatory behavior and decreases energy expenditure. Taken together, these studies support the idea that N/OFQ contributes to the regulation of energy balance by acting as an "anabolic" neuropeptide as it elicits effects similar to those produced in the hypothalamus by other neuropeptides such as orexins and neuropeptide Y.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Hipotálamo/fisiologia , Peptídeos Opioides/fisiologia , Animais , Química Encefálica , Citocinas/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Febre/fisiopatologia , Hiperfagia/fisiopatologia , Camundongos , Neuropeptídeos/fisiologia , Obesidade/fisiopatologia , Peptídeos Opioides/genética , Peptídeos Opioides/farmacologia , RNA Mensageiro/análise , Ratos , Receptores Opioides/genética , Receptores Opioides/fisiologia , Aumento de Peso/fisiologia , Receptor de Nociceptina , Nociceptina
7.
Vitam Horm ; 97: 1-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25677767

RESUMO

Nociceptin (orphanin FQ) is a 17-residue neuropeptide hormone with roles in both nociception and analgesia. It is an opioid-like peptide that binds to and activates the G-protein-coupled receptor opioid receptor-like-1 (ORL-1, NOP, orphanin FQ receptor, kappa-type 3 opioid receptor) on central and peripheral nervous tissue, without activating classic delta-, kappa-, or mu-opioid receptors or being inhibited by the classic opioid antagonist naloxone. The three-dimensional structure of ORL-1 was recently published, and the activation mechanism is believed to involve capture by ORL-1 of the high-affinity binding, prohelical C-terminus. This likely anchors the receptor-activating N-terminus of nociception nearby for insertion in the membrane-spanning helices of ORL-1. In search of higher agonist potency, two lysine and two aspartate residues were strategically incorporated into the receptor-binding C-terminus of the nociceptin sequence and two Lys(i)→Asp(i+4) side chain-side chain condensations were used to generate lactam cross-links that constrained nociceptin into a highly stable α-helix in water. A cell-based assay was developed using natively expressed ORL-1 receptors on mouse neuroblastoma cells to measure phosphorylated ERK as a reporter of agonist-induced receptor activation and intracellular signaling. Agonist activity was increased up to 20-fold over native nociceptin using a combination of this helix-inducing strategy and other amino acid modifications. An NMR-derived three-dimensional solution structure is described for a potent ORL-1 agonist derived from nociceptin, along with structure-activity relationships leading to the most potent known α-helical ORL-1 agonist (EC50 40 pM, pERK, Neuro-2a cells) and antagonist (IC50 7 nM, pERK, Neuro-2a cells). These α-helix-constrained mimetics of nociceptin(1-17) had enhanced serum stability relative to unconstrained peptide analogues and nociceptin itself, were not cytotoxic, and displayed potent thermal analgesic and antianalgesic properties in rats (ED50 70 pmol, IC50 10 nmol, s.c.), suggesting promising uses in vivo for the treatment of pain and other ORL-1-mediated responses.


Assuntos
Analgésicos Opioides/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Peptídeos/farmacologia , Receptores Opioides/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Animais , Desenho de Fármacos , Drogas em Investigação/química , Drogas em Investigação/metabolismo , Drogas em Investigação/farmacologia , Humanos , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neurônios/metabolismo , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Peptídeos Opioides/química , Peptídeos Opioides/genética , Peptídeos Opioides/metabolismo , Peptídeos Opioides/farmacologia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Conformação Proteica , Engenharia de Proteínas , Receptores Opioides/agonistas , Receptores Opioides/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Receptor de Nociceptina , Nociceptina
8.
Mol Pain ; 11: 2, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25563474

RESUMO

BACKGROUND: The treatment of spinal cord injury (SCI)-induced neuropathic pain presents a challenging healthcare problem. The lack of available robust pharmacological treatments underscores the need for novel therapeutic methods and approaches. Due to the complex character of neuropathic pain following SCI, therapies targeting multiple mechanisms may be a better choice for obtaining sufficient long-term pain relief. Previous studies in our lab showed analgesic effects using combinations of an NMDA antagonist peptide [Ser1]histogranin (SHG), and the mu-opioid peptides endomorphins (EMs), in several pain models. As an alternative to drug therapy, this study evaluated the analgesic potential of these peptides when delivered via gene therapy. RESULTS: Lentiviruses encoding SHG and EM-1 and EM-2 were intraspinally injected, either singly or in combination, into rats with clip compression SCI 2 weeks following injury. Treated animals showed significant reduction in mechanical and thermal hypersensitivity, compared to control groups injected with GFP vector only. The antinociceptive effects of individually injected components were modest, but the combination of EMs and SHG produced robust and sustained antinociception. The onset of the analgesic effects was observed between 1-5 weeks post-injection and sustained without decrement for at least 7 weeks. No adverse effects on locomotor function were observed. The involvement of SHG and EMs in the observed antinociception was confirmed by pharmacologic inhibition using intrathecal injection of either the opioid antagonist naloxone or an anti-SHG antibody. Immunohistochemical analysis showed the presence of SHG and EMs in the spinal cord of treated animals, and immunodot-blot analysis of CSF confirmed the presence of these peptides in injected animals. In a separate group of rats, delayed injection of viral vectors was performed in order to mimic a more likely clinical scenario. Comparable and sustained antinociceptive effects were observed in these animals using the SHG-EMs combination vectors compared to the group with early intervention. CONCLUSIONS: Findings from this study support the potential for direct gene therapy to provide a robust and sustained alleviation of chronic neuropathic pain following SCI. The combination strategy utilizing potent mu-opioid peptides with a naturally-derived NMDA antagonist may produce additive or synergistic analgesic effects without the tolerance development for long-term management of persistent pain.


Assuntos
Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Peptídeos Opioides/uso terapêutico , Proteínas/uso terapêutico , Traumatismos da Medula Espinal/complicações , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Vetores Genéticos/fisiologia , Humanos , Hiperalgesia/tratamento farmacológico , Lentivirus/genética , Masculino , Neuroblastoma/patologia , Neuropeptídeos/biossíntese , Neuropeptídeos/uso terapêutico , Peptídeos Opioides/biossíntese , Peptídeos Opioides/genética , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Proteínas/genética , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
9.
J Pharmacol Sci ; 124(1): 47-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24366190

RESUMO

We previously reported that nicotine (NIC)-induced analgesia was elicited in part by activation of the endogenous opioid system. Moreover, it is well known that NIC has physical-dependence liability, but its mechanism is unclear. Therefore, we examined whether physical dependence on NIC was mediated by activation of the endogenous opioid system in ICR mice. We evaluated increased serum corticosterone (SCS) as an indicator of NIC withdrawal, as it is a quantitative indicator of naloxone (opioid receptor antagonist, NLX)-precipitated morphine withdrawal in mice. In this study, NLX precipitated an SCS increase in mice receiving repeated NIC, by a dose-dependent mechanism, and correlated with the dose and number of days of repeated NIC administration. When an opioid receptor antagonist (naltrexone) was concomitantly administered with repeated NIC, the NLX-precipitated SCS increase was not elicited. Concomitant administration of the α7 nicotinic acetylcholine receptor (nAChR) antagonist (methyllycaconitine) with repeated NIC, but not the α4ß2 nAChR antagonist (dihydro-ß-erythroidine), did not elicit an SCS increase by NLX. Thus, a physical dependence on NIC was in part mediated by the activation of the endogenous opioid system, located downstream of α7 nAChR.


Assuntos
Nicotina/administração & dosagem , Peptídeos Opioides/genética , Peptídeos Opioides/fisiologia , Tabagismo/genética , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Aconitina/administração & dosagem , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Biomarcadores/sangue , Corticosterona/sangue , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Naloxona/administração & dosagem , Naloxona/farmacologia , Antagonistas de Entorpecentes , Síndrome de Abstinência a Substâncias/sangue , Síndrome de Abstinência a Substâncias/diagnóstico , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
10.
PLoS One ; 8(10): e76682, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124588

RESUMO

BACKGROUND AND OBJECTIVES: Nociceptin/Orphanin FQ (N/OFQ) is a non-classical endogenous opioid peptide that modulates immune function in vitro. Its importance in inflammation and human sepsis is unknown. The objectives of this study were to determine the relationship between N/OFQ, transcripts for its precursor (pre-pro-N/OFQ [ppNOC]) and receptor (NOP), inflammatory markers and clinical outcomes in patients undergoing cardiopulmonary bypass and with sepsis. METHODS: A prospective observational cohort study of 82 patients admitted to Intensive Care (ICU) with sepsis and 40 patients undergoing cardiac surgery under cardiopulmonary bypass (as a model of systemic inflammation). Sixty three healthy volunteers, matched by age and sex to the patients with sepsis were also studied. Clinical and laboratory details were recorded. Polymorph ppNOC and NOP receptor mRNA were determined using quantitative PCR. Plasma N/OFQ was determined using ELISA and cytokines (TNF- α, IL-8, IL-10) measured using radioimmunoassay. Data from patients undergoing cardiac surgery were recorded before, 3 and 24 hours after cardiopulmonary bypass. ICU patients with sepsis were assessed on Days 1 and 2 of ICU admission, and after clinical recovery. MAIN RESULTS: Plasma N/OFQ concentrations increased (p<0.0001) on Days 1 and 2 of ICU admission with sepsis compared to matched recovery samples. Polymorph ppNOC (p= 0.019) and NOP mRNA (p<0.0001) decreased compared to healthy volunteers. TNF-α, IL-8 and IL-10 concentrations increased on Day 1 compared to matched recovery samples and volunteers (p<0.0001). Similar changes (increased plasma N/OFQ, [p=0.0058], decreased ppNOC [p<0.0001], increased IL-8 and IL-10 concentrations [both p<0.0001]) occurred after cardiac surgery but these were comparatively lower and of shorter duration. CONCLUSIONS: The N/OFQ system is modulated in ICU patients with sepsis with similar but reduced changes after cardiac surgery under cardiopulmonary bypass. Further studies are required to clarify the role of the N/OFQ system in inflammation and sepsis, and the mechanisms involved.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Peptídeos Opioides/metabolismo , Complicações Pós-Operatórias , Sepse/etiologia , Sepse/metabolismo , Idoso , Estudos de Casos e Controles , Cuidados Críticos , Citocinas/sangue , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Peptídeos Opioides/genética , RNA Mensageiro/genética , Receptores Opioides/genética , Receptores Opioides/metabolismo , Sepse/terapia , Fatores de Tempo , Nociceptina
11.
Endocrinology ; 154(11): 4249-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23928375

RESUMO

Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep.


Assuntos
Retroalimentação Fisiológica , Peptídeos Opioides/metabolismo , Progesterona/metabolismo , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/administração & dosagem , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estro , Feminino , Hipotálamo/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Peptídeos Opioides/administração & dosagem , Peptídeos Opioides/genética , Peptídeos Opioides/farmacologia , Ovariectomia , Progesterona/administração & dosagem , Progesterona/farmacologia , Transporte Proteico , Receptores de Progesterona/metabolismo , Nociceptina
12.
J Environ Pathol Toxicol Oncol ; 31(2): 167-77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23216641

RESUMO

Approximately 30 years ago, we developed 2 mouse lines with enhanced and decreased opioid system activity using bidirectional selection for high (high analgesia [HA] line) and low (low analgesia [LA] line) swim stress-induced analgesia. These mouse lines differ substantially in pain sensitivity, measured as hind paw withdrawal latency in a hot plate test. Moreover, compared with the LA mice, the HA mice exhibited reduced energy expenditure under stress and different depression-like behavior as well as higher sensitivity to mutagens and the high frequency of spontaneous and carcinogen-induced tumors. In the current study, we observed distinct differences in the growth rate of orthotopically implanted melanoma and the onset of cancer pain. Whereas the HA line was prone to tumors and carcinogenesis was rapid in all specimens, the LA mice either did not develop tumors (70%) or developed tumors that often regressed spontaneously (30%). Animals from both lines developed robust thermal hypersensitivity in the tumor-bearing paw compared with animals that were injected with saline. However, we found that hyperalgesia in tumor-bearing mice persists for a much shorter time in the HA than in LA mice. Naltrexone, given subcutaneously, restored hyperalgesia in the HA mice, whereas it was ineffective in the LA mice. The results suggest that activity of the opioid system may influence carcinogenesis and the intensity of cancer pain and indicates that HA and LA mice are good models for such studies.


Assuntos
Predisposição Genética para Doença/genética , Hiperalgesia/genética , Melanoma/genética , Modelos Animais , Neoplasias Cutâneas/genética , Estresse Fisiológico/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Genótipo , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Masculino , Melanoma/patologia , Melanoma/fisiopatologia , Camundongos , Naltrexona/efeitos adversos , Antagonistas de Entorpecentes/efeitos adversos , Peptídeos Opioides/genética , Peptídeos Opioides/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/fisiopatologia , Natação/fisiologia
13.
J Dent Res ; 91(5): 447-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21972258

RESUMO

Cancer pain is an ever-present public health concern. With innovations in treatment, cancer patients are surviving longer, but uncontrollable pain creates a poor quality of life for these patients. Oral cancer is unique in that it causes intense pain at the primary site and significantly impairs speech, swallowing, and masticatory functions. We propose that oral cancer pain has underlying biologic mechanisms that are generated within the cancer microenvironment. A comprehensive understanding of key mediators that control cross-talk between the cancer and peripheral nervous system, and possible interventions, underlies effective cancer pain management. The purpose of this review is to explore the current studies on oral cancer pain and their implications in clinical management for cancer pain in general. Furthermore, we will explore the endogenous opioid systems and novel cancer pain therapeutics that target these systems, which could solve the issue of opiate tolerance and improve quality of life in oral cancer patients.


Assuntos
Carcinoma de Células Escamosas/fisiopatologia , Dor Facial/etiologia , Neoplasias Bucais/fisiopatologia , Dor Intratável/etiologia , Analgésicos Opioides/farmacologia , Animais , Carcinoma de Células Escamosas/complicações , Tolerância a Medicamentos/fisiologia , Endotelina-1/fisiologia , Dor Facial/tratamento farmacológico , Dor Facial/fisiopatologia , Humanos , Neoplasias Bucais/complicações , Fator de Crescimento Neural/fisiologia , Nociceptores/fisiologia , Peptídeos Opioides/genética , Peptídeos Opioides/fisiologia , Peptídeos Opioides/uso terapêutico , Manejo da Dor/métodos , Dor Intratável/tratamento farmacológico , Dor Intratável/fisiopatologia , Cuidados Paliativos , Qualidade de Vida , Receptores Ativados por Proteinase/fisiologia
14.
J Physiol Pharmacol ; 62(4): 461-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22100847

RESUMO

Endogenous opioid peptides are involved in the regulation of the HPA-axis function and stress response mechanism. However, there is a scarcity of data on opioid involvement in the regulation of the adrenocortical endocrine function. This study was performed to: 1) establish the expression of proenkephalin, POMC and prodynorphin genes in the porcine adrenal cortex and test in vitro the influence of ACTH, angiotensin II, CRH and epinephrine on this expression, and 2) determine the effects of opioid receptor agonists on basal and ACTH- or angiotensin II-affected secretion of cortisol, aldosterone and progesterone by the cultured adrenocortical cells. Our experiment has demonstrated the presence of mRNAs for opioid precursors in cells isolated from the adrenal cortex and the significant effects of ACTH and angiotensin II, but not CRH or epinephrine, on adrenocortical transcription of the analyzed genes. Angiotensin II reduced the expression of the POMC gene but stimulated that of prodynorphin. In turn, ACTH decreased the transcription of prodynorphin. The study has also demonstrated the effects of selective opioid receptor agonists - DPLPE (delta), FK33-824 (mu) and U50,488 (kappa) - on adrenal steroidogenesis in pigs. Basal secretion of cortisol was enhanced after the activation of mu or kappa receptors, whereas ACTH-stimulated cortisol output was increased only by the mu receptor agonist. Angiotensin II-treated cells significantly decreased aldosterone secretion in the presence of the kappa receptor agonist. The present results suggest that opioid peptides are synthesized in the porcine adrenal cortex, indicating their involvement in the regulation of adrenal steroidogenesis through autocrine and/or paracrine interactions.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Expressão Gênica , Peptídeos Opioides/genética , Receptores Opioides/agonistas , Esteroides/biossíntese , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Córtex Suprarrenal/citologia , Córtex Suprarrenal/metabolismo , Aldosterona/biossíntese , Aldosterona/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , D-Ala(2),MePhe(4),Met(0)-ol-encefalina/farmacologia , D-Penicilina (2,5)-Encefalina/farmacologia , Expressão Gênica/efeitos dos fármacos , Hidrocortisona/biossíntese , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Progesterona/biossíntese , Progesterona/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Suínos
15.
Gen Comp Endocrinol ; 170(2): 253-64, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20937278

RESUMO

At the close of the Devonian Period the rapid decline in the diversity of the lobe-finned fishes was countered by the emergence and diversification of the ray-finned fishes and the cartilaginous fishes that now dominate marine and freshwater ecosystems. All of these jawed vertebrates were derived from the ancestral gnathostomes; a chordate lineage that had experienced two genome duplication events during the evolution of the phylum. This review analyzes trends in the phylogeny of the opioid/orphanin gene family (four prohormone/neuropeptide precursor-coding genes) in the major classes of gnathostomes that survived the extinction events at the close of the Devonian Period and focuses on some features of this gene family that appear to set the cartilaginous fishes (class Chondrichthyes) apart from class Sarcopterygii (lobe-finned fishes and tetrapods) and class Actinopterygii (the ray-finned fishes).


Assuntos
Evolução Molecular , Proteínas de Peixes/genética , Peixes/genética , Família Multigênica , Peptídeos Opioides/genética , Filogenia , Sequência de Aminoácidos , Animais , Extinção Biológica , Proteínas de Peixes/química , Genoma , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos Opioides/química , Alinhamento de Sequência
16.
Mov Disord ; 25(11): 1723-32, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20589874

RESUMO

Expression and release of nociceptin/orphanin FQ (N/OFQ) are elevated in the substantia nigra reticulata of 6-hydroxydopamine-hemilesioned rats, suggesting a pathogenic role for N/OFQ in Parkinson's disease. In this study, we investigated whether elevation of N/OFQ expression in 6-hydroxydopamine-hemilesioned rats selectively occurs in substantia nigra and whether hypomotility following acute haloperidol administration is accompanied by a rise in nigral N/OFQ levels. Moreover, to prove a link between N/OFQ and idiopathic Parkinson's disease in humans, we measured N/OFQ levels in the cerebrospinal fluid of parkinsonian patients undergoing surgery for deep brain stimulation. In situ hybridization demonstrated that dopamine depletion was associated with increase of N/OFQ expression in substantia nigra (compacta +160%, reticulata +105%) and subthalamic nucleus (+45%), as well as reduction in caudate putamen (-20%). No change was observed in globus pallidus, nucleus accumbens, thalamus, and motor cortex. Microdialysis coupled to the bar test allowed to demonstrate that acute administration of haloperidol (0.8 and 3 mg/kg) increased nigral N/OFQ levels (maximally of +47% and +53%, respectively) in parallel with akinesia. A correlation with preclinical studies was found by analyzing N/OFQ levels in humans. Indeed, N/OFQ levels were found to be approximately 3.5-fold elevated in the cerebrospinal fluid of parkinsonian patients (148 fmol/ml) compared with nonparkinsonian neurologic controls (41 fmol/ml). These data represent the first clinical evidence linking N/OFQ to idiopathic Parkinson's disease in humans. They strengthen the pathogenic role of N/OFQ in the modulation of parkinsonism across species and provide a rationale for developing N/OFQ receptor antagonists as antiparkinsonian drugs.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Peptídeos Opioides/metabolismo , Doença de Parkinson/patologia , Adrenérgicos/toxicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Haloperidol/uso terapêutico , Humanos , Masculino , Microdiálise/métodos , Pessoa de Meia-Idade , Peptídeos Opioides/líquido cefalorraquidiano , Peptídeos Opioides/genética , Oxidopamina/toxicidade , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Ratos , Ratos Sprague-Dawley , Adulto Jovem , Nociceptina
17.
Am J Physiol Regul Integr Comp Physiol ; 299(2): R655-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20427724

RESUMO

Nociceptin/orphanin FQ (N/OFQ), the nociceptin opioid peptide (NOP) receptor ligand, increases feeding when injected centrally. Initial data suggest that N/OFQ blocks the development of a conditioned taste aversion (CTA). The current project further characterized the involvement of N/OFQ in the regulation of hunger vs. aversive responses in rats by employing behavioral, immunohistochemical, and real-time PCR methodology. We determined that the same low dose of the NOP antagonist [Nphe(1)]N/OFQ(1-13)NH(2) delivered via the lateral ventricle diminishes both N/OFQ- and deprivation-induced feeding. This anorexigenic effect did not stem from aversive consequences, as the antagonist did not cause the development of a CTA. When [Nphe(1)]N/OFQ(1-13)NH(2) was administered with LiCl, it moderately delayed extinction of the LiCl-induced CTA. Injection of LiCl + antagonist compared with LiCl alone generated an increase in c-Fos immunoreactivity in the central nucleus of the amygdala. The antagonist alone elevated Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, nucleus of the solitary tract, and central nucleus of the amygdala. Hypothalamic NOP mRNA levels were decreased during energy intake restriction induced by aversion, as well as in non-CTA rats food-restricted to match CTA-reduced consumption. Brain stem NOP was upregulated only in aversion. Prepro-N/OFQ mRNA showed a trend toward upregulation in restricted rats (P = 0.068). We conclude that the N/OFQ system promotes feeding by affecting the need to replenish lacking calories and by reducing aversive responsiveness. It may belong to mechanisms that shift a balance between the drive to ingest energy and avoidance of potentially tainted food.


Assuntos
Comportamento Animal , Encéfalo/metabolismo , Condicionamento Psicológico , Ingestão de Alimentos , Ingestão de Energia , Fome , Peptídeos Opioides/metabolismo , Transdução de Sinais , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Tronco Encefálico/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Extinção Psicológica , Regulação da Expressão Gênica , Fome/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Injeções Intraventriculares , Cloreto de Lítio/administração & dosagem , Masculino , Antagonistas de Entorpecentes , Peptídeos Opioides/genética , Fragmentos de Peptídeos/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor de Nociceptina , Nociceptina
18.
Peptides ; 30(2): 226-33, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19022308

RESUMO

A regular daily meal regimen, as opposed to ad libitum consumption, enforces eating at a predefined time and within a short timeframe. Hence, it is important to study food intake regulation in animal feeding models that somewhat reflect this pattern. We investigated the effect of scheduled feeding on the intake of a palatable, high-sugar diet in rats and attempted to define central mechanisms - especially those related to opioid signaling--responsible for overeating sweet foods under such conditions. We found that scheduled access to food, even as challenging as 20 min per day, does not prevent overconsumption of a high-sucrose diet compared to a standard one. An opioid receptor antagonist, naloxone, at 0.3-1 mg/kg b. wt., decreased the intake of the sweet diet, whereas higher doses were required to reduce bland food consumption. Real-time PCR analysis revealed that expression of hypothalamic and brainstem genes encoding opioid peptides and receptors did not differ in sucrose versus regular diet-fed rats, which suggests that scheduled intake of sweet food produces only a transient change in the opioid tone. Intake of sugar was also associated with upregulation of orexin and oxytocin genes in the hypothalamus and NPY in the brainstem. We conclude that scheduled consumption of sugar diets is associated with activity of a complex network of neuroregulators involving opioids, orexin, oxytocin and NPY.


Assuntos
Regulação do Apetite , Sacarose Alimentar/administração & dosagem , Hiperfagia/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Animais , Ingestão de Alimentos , Preferências Alimentares , Hiperfagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Naloxona/farmacologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/genética , Neurotransmissores/metabolismo , Peptídeos Opioides/genética , Peptídeos Opioides/metabolismo , Orexinas , Ocitocina/genética , Ocitocina/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Brain Res Bull ; 77(2-3): 136-42, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18588953

RESUMO

Capsaicin inhibited the equilibrium specific binding of endogenous opioid-like peptide ligands such as endomorphin-1, nociceptin, and dynorphin((1-17)) in rat brain membrane preparations. We studied the in vitro effect of capsaicin (1-10 microM) on homologous and heterologous competitive binding of opioid ligands, using unlabeled synthetic peptides and the following tritiated compounds: [(3)H]endomorphin-1, [(3)H]endomorphin-2, [(3)H]nociceptin((1-17)) and [(3)H]dynorphin((1-17)). Capsaicin-dependent inhibition was also observed in [(35)S]GTPgammaS stimulation assays in the presence of certain opioid peptides. The inhibition of opioid binding was further investigated using other synthetic and natural mu-opioid ligands such as [D-Ala(2),(NMe)Phe(4),Gly(5)-ol]enkephalin (DAMGO), morphine and naloxone. The decrease in opioid ligand affinity upon capsaicin treatments was most apparent with endomorphin-1, followed by nociceptin and dynorphin. The binding of other investigated opioids were not affected in the presence of capsaicin. In [(3)H]endomorphin-1 binding assays, capsazepine antagonized the inhibitory effect of capsaicin in rat brain membranes suggesting the involvement of TRPV1 receptors. In Chinese hamster ovary (CHO) cells stably expressing mu-opioid receptors, but lacking vanilloid receptors, the inhibition by capsaicin on the binding of [(3)H]endomorphin-1 was not present. It is concluded that the inhibitory effect of capsaicin on the receptor binding affinity of endogenous opioid peptides in brain membrane preparations seems not to be a direct effect, it is rather a negative feedback interaction with opioid receptors.


Assuntos
Capsaicina/metabolismo , Peptídeos/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Receptores Opioides/metabolismo , Fármacos do Sistema Sensorial/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Dinorfinas/química , Dinorfinas/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Humanos , Ligantes , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos Opioides/química , Peptídeos Opioides/genética , Peptídeos Opioides/metabolismo , Ligação Proteica , Ensaio Radioligante , Ratos , Ratos Wistar , Trítio/química , Receptor de Nociceptina , Nociceptina
20.
Psychoneuroendocrinology ; 33(4): 425-36, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18280051

RESUMO

Regulations of hormonal stress responses entail the initiation, amplitude and termination of the reaction, as well as its integration with other stress response systems. This study investigates the role of endogenous opioids in the regulation and integration of behavioral, thermal and hormonal stress responses, as these neuromodulators and their receptors are expressed in limbic structures responsible for stress responses. For this purpose, we subjected mice with selective deletion of beta-endorphin, enkephalin or dynorphin to the zero-maze test, a mildly stressful situation, and registered behaviors and stress hormone levels. Behavioral stress reactivity was assessed using zero-maze, light-dark and startle-reactivity paradigms. Animals lacking enkephalin displayed increased anxiety-related behavioral responses in each three, dynorphin knockouts in two models, whereas the responses of beta-endorphin knockouts indicated lower anxiety level in the zero-maze test. All knockout strains showed marked changes in hormonal stress reactivity. Increase in ACTH level after zero-maze test situation, unlike in wild type animals, failed to reach the level of significance in Penk1(-/-) and Pdyn(-/-) mice. Corticosterone plasma levels rapidly increased in all strains, with a lower peak response in knockouts. In wild-type and beta-endorphin-deficient mice, corticosterone levels returned to baseline within 60min after stress exposure. In contrast, mice lacking dynorphin and enkephalin showed longer-lasting elevated corticosterone levels, indicating a delayed termination of the stress reaction. Importantly, the behavioral and hormonal responses correlated in wild-type but not in knockout mice. Hyperthermia elicited by stress was reduced in animals lacking dynorphin and absent in Penk1(-/-) mice, despite of the heightened behavioral anxiety level of these strains. These results demonstrate an important role on the endogenous opioid system in the integration of behavioral and hormonal stress responses.


Assuntos
Ansiedade/metabolismo , Corticosterona/sangue , Peptídeos Opioides/metabolismo , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Tonsila do Cerebelo/metabolismo , Análise de Variância , Animais , Ansiedade/genética , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Comportamento Exploratório/fisiologia , Hipotermia/complicações , Hipotermia/psicologia , Sistema Límbico/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos Opioides/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reflexo de Sobressalto/fisiologia , Estresse Psicológico/complicações , Estresse Psicológico/genética , Fatores de Tempo , beta-Endorfina/genética , beta-Endorfina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA